

CENTRAL FALLS HIGH SCHOOL

CENTRAL FALLS HIGH SCHOOL 10 HIGGINSON AVE, CENTRAL FALLS, RI

100% CONSTRUCTION DOCUMENTS

PREPARED BY:

Ai3 ARCHITECTS, Inc.

111 Speen Street Suite 300 Framingham, MA 01701 VOLUME 3 OF 3

OCTOBER 13, 2023 Project #: 2202.02

TABLE OF CONTENTS

VOLUME 1 (DIVISIONS 00 THROUGH 09)

DIVISION 00 — PRO	CUREMENT AND CONTRACTING REQUIREMENTS
Document 00 01 01	Project Cover
Document 00 01 02	Project Directory
Document 00 01 10	Table of Contents
Document 00 11 13	Advertisement for Bids
Document 00 21 13	Instructions to Bidders
Document 00 41 13	Bid Form
Document 00 43 13	Bid Security Form (AIA Form A310, 2010)
Document 00 43 23	Bid Attachment – Alternates Form
Document 00 43 93	Bid Submittal Checklist
Document 00 45 13	Bidder's Qualifications and Evaluation
Document 00 45 15	Contractor's Qualification Statement (AIA Form A305)
Document 00 45 19	Non-Collusion Affidavit
Document 00 45 39	DBE Special Provision Affidavit
Document 00 45 43	Certificate of Authority to Sign Contract on Behalf of
	Corporation
Document 00 45 44	Foreign Corporation Certification
Document 00 45 47	Tax Compliance Certification
Document 00 45 49	Prompt Payment to Subcontractors Affidavit
Document 00 52 00	Agreement Form (AIA Form A101), Standard Form of Agreement Between Owner and Contractor where the basis of payment is a Stipulated Sum.
Document 00 54 04	Tax Compliance Certification
Document 00 61 13	Performance and Payment Bond Forms (AIA Form A312, 2010)
Document 00 63 13	Request for Interpretation (RFI) Form
Document 00 63 25	Substitution Request Form
Document 00 72 00	General Conditions (AIA Form A201), General Conditions of the Contract for Construction
Document 00 73 16	Insurance Requirements
Document 00 73 46	Wage Determination Schedule and Requirements

DIVISION 01 — GENERAL REQUIREMENTS Section 01 10 00 Summary

Section 01 10 00	Summary
Section 01 14 00	Work Restrictions
Section 01 23 00	Alternates
Section 01 25 13	Product Substitution Procedures
Section 01 26 13	Request for Interpretation
Section 01 29 00	Payment Procedures
Section 01 31 00	Project Management and Coordination
Section 01 32 00	Construction Progress Documentation
Section 01 33 00	Submittal Procedures
Section 01 35 43	Environmental Procedures
Section 01 41 00	Regulatory Requirements
	(with 200-RICR-20-05-4 attached)
Section 01 41 17	Utilities Notification
Section 01 42 00	References
Section 01 43 39	Mock-Ups
Section 01 45 00	Quality Control
Section 01 45 23	Structural Tests and Special Instructions with attachments:

TABLE OF CONTENTS 00 01 10 - 1

	Statement of Special Inspections, Final Report Form
Section 01 45 29	Testing Laboratory Services
Section 01 50 00	Temporary Facilities and Controls
Section 01 56 39	Temporary Tree and Plant Protection
Section 01 60 00	Product Requirements
Section 01 73 00	Execution
Section 01 74 19	Construction Waste Management and Disposal
Section 01 75 00	Starting and Adjusting
Section 01 77 00	Closeout Procedures
Section 01 78 00	Closeout Submittals
Section 01 78 36	Warranties
Section 01 79 00	Demonstration and Training
Section 01 81 13	Sustainable Design Requirements with attachment:
	NE-CHPS Product Data Form
Section 01 81 19	Indoor Air Quality Requirements
Section 01 91 13	General Commissioning Requirements
Section 01 91 19	Building Enclosure Requirements

DIVISION 02 — EXISTING CONDITIONS

Section 02 28 20	Asbestos Remediation
Section 02 41 00	Site Demolition
Section 02 41 17	Building Demolition

DIVISION 03 — CONCRETE

Section 03 05 13	Concrete Sealers
Section 03 11 00	Concrete Formwork
Section 03 15 10	Concrete Control Construction and Expansion Joints
Section 03 15 15	Polyvinyl Chloride Waterstops
Section 03 15 20	Hydrophilic Rubber Waterstops
Section 03 20 00	Concrete Reinforcing
Section 03 30 00	Cast-in-Place Concrete
Section 03 45 00	Precast Architectural Concrete
Section 03 60 00	Grouting

DIVISION 04 — MASONRY

Section 04 20 00 Unit Masonry

DIVISION 05 — METALS

Section 05 12 00	Structural Steel Framing
Section 05 21 10	Steel Framed Roof Deck
Section 05 31 00	Steel Decking
Section 05 40 00	Cold-Formed Metal Framing
Section 05 50 00	Metal Fabrications
Section 05 51 00	Metal Stairs and Railings

DIVISION 06 — WOOD, PLASTICS AND COMPOSITESSection 06 10 00 Rough Carpentry

Section 06 10 00	Rough Carpentry
Section 06 16 00	Sheathing
Section 06 20 00	Finish Carpentry
Section 06 20 13	Exterior Finish Carpentry
Section 06 40 00	Architectural Woodwork
Section 06 55 00	Solid Surfacing

DIVISION 07 —	- THERMAL	AND MOI	STURF	PROTE	CTION
	-	AIND MO	SIUKE	FINDIL	

	ENMAL AND MOISTONET NOTESTION
Section 07 13 24	Pre-Applied Sheet Waterproofing
Section 07 16 13	Polymer Modified Cement Waterproofing
Section 07 21 00	Thermal Insulation
Section 07 21 29	Spray-On Sound Absorption
Section 07 21 31	Closed Cell Sprayed Foam Insulation
Section 07 27 13	Self-Adhering Sheet Air Barriers
Section 07 42 13	Metal Wall Panels
Section 07 46 46	Fiber Cement Siding
Section 07 48 00	Cladding Support System
Section 07 54 19	Polyvinyl Chloride (PVC) Roofing
Section 07 61 00	Sheet Metal Roofing
Section 07 62 00	Sheet Metal Flashing and Trim
Section 07 71 00	Roof Specialties
Section 07 72 00	Roof Accessories
Section 07 72 73	Vegetated Roof Systems - Tray
Section 07 81 00	Applied Fireproofing
Section 07 84 00	Firestopping
Section 07 92 00	Joint Sealants
Section 07 95 13	Construction and Expansion Joints

DIVISION 08 — OPE	NINGS
Section 08 05 13	Common Work Results - Door and Hardware Installation
Section 08 11 13	Hollow Metal Doors and Frames
Section 08 14 16	Flush Wood Doors
Section 08 31 00	Access Doors and Panels
Section 08 33 26	Overhead Coiling Grilles
Section 08 34 73	Sound Control Doors
Section 08 35 15	Sliding Glass Panels
Section 08 35 23	Accordion Folding Fire Doors
Section 08 43 13	Aluminum-Framed Storefronts
Section 08 43 15	Bullet Resistant Aluminum Storefront Framing System
Section 08 44 13	Glazed Aluminum Curtain Walls
Section 08 71 00	Door Hardware
Section 08 80 00	Glazing
Section 08 87 00	Glazing Surface Films
Section 08 88 60	Fire-Rated Glazing and Framing Systems
Section 08 90 00	Louvers and Vents

DIVISION 09 — FINISHES

Section 09 05 60	Common Work Results for Flooring
Section 09 21 16	Shaft Wall Assemblies
Section 09 22 16	Non-Structural Metal Framing
Section 09 29 00	Gypsum Board
Section 09 51 00	Acoustical Ceilings
Section 09 64 29	Wood Strip and Plank Flooring
Section 09 64 53	Resilient Wood Flooring Assemblies
Section 09 64 66	Wood Athletic Flooring
Section 09 65 13	Resilient Base and Accessories
Section 09 65 19	Resilient Tile Flooring
Section 09 65 23	Rubber Flooring
Section 09 65 36	Static-Control Resilient Flooring
Section 09 67 23	Resinous Flooring
Section 09 68 00	Carpeting

TABLE OF CONTENTS 00 01 10 - 3 100% Construction Documents / 10.13.2023

Section 09 68 13	Tile Carpeting
Section 09 72 16	Rigid Sheet Vinyl Wall Cladding
Section 09 77 33	Sanitary Wall Panels
Section 09 81 00	Acoustical Insulation
Section 09 84 00	Acoustic Room Components
Section 09 91 00	Painting
Document 09 91 13	Exterior Painting Schedule
Document 09 91 23	Interior Painting Schedule
Section 09 96 00	High-Performance Coatings
Section 09 96 46	Intumescent Paints

VOLUME 2 (DIVISIONS 10 THROUGH 33 + APPENDIX A THROUGH E)

DIVISION 10 — SPECIALTIES

DIVISION IS — SI ECIALTIES		
Section 10 11 16	Markerboards	
Section 10 12 00	Display Cases	
Section 10 14 00	Signage	
	with attachments:	
	Sign Schedule, Sign Drawings	
Section 10 21 13	Toilet Compartments	
Section 10 21 23	Cubicle Curtains and Track	
Section 10 22 13	Wire Mesh Partitions	
Section 10 22 39	Folding Panel Partitions	
Section 10 26 41	Bullet Resistant Panels	
Section 10 28 13	Toilet Accessories	
Section 10 40 00	Safety Specialties	
Section 10 51 13	Metal Lockers	
Section 10 51 23	Phenolic Lockers	

DIVISION 11 — EQUIPMENT

DIVIDION II - LQU	II WIEINI
Section 11 31 00	Appliances
Section 11 40 00	Foodservice Equipment
Section 11 52 13	Projection Screens
Section 11 53 00	Laboratory Equipment
Section 11 53 13	Laboratory Fume Hoods
Section 11 53 54	Chemical Storage Containers
Section 11 61 00	Theatre and Stage Equipment
Section 11 66 23	Gymnasium Equipment
Section 11 66 25	Basketball Equipment
Section 11 66 53	Gymnasium Dividers
Section 11 68 00	Play Field Equipment and Structures
Section 11 95 13	Kilns

DIVISION 12 — FURNISHINGS

Section 12 24 00	Window Shades
Section 12 30 00	Casework
Section 12 35 51	Musical Instrument Storage Casework
Section 12 48 13	Entrance Floor Mats and Frames
Section 12 61 00	Fixed Audience Seating
Section 12 66 13	Telescoping Bleachers

DIVISION 13 — SPECIAL CONSTRUCTIONSection 13 34 19 Metal Building Systems

360001113 34 13	Metal building Systems
Section 13 34 23	Pre-engineered Restroom Building

TABLE OF CONTENTS 00 01 10 - 4 100% Construction Documents / 10.13.2023

DIVISION 14 — CONVEYING SYSTEMS

Section 14 22 00 **Compact Traction Elevators**

DIVISION 21 — FIRE SUPPRESSION

Section 21 00 00 Fire Protection

DIVISION 22 — PLUMBING

Section 22 00 00 Plumbing

Section 22 08 00 Commissioning of Plumbing

DIVISION 23 — HEATING, VENTILATING AND AIR CONDITIONING

Section 23 00 00 Heating, Ventilating and Air Conditioning

Section 23 08 00 Commissioning of HVAC

DIVISION 26 — ELECTRICAL

Section 26 00 00 Electrical

Section 26 08 00 Commissioning of Electrical

DIVISION 27 — COMMUNICATIONS

Structured Cabling Section 27 10 00

Audio-Video Communications Section 27 40 00

Section 27 50 00 Distributed Communications and Monitoring

DIVISION 28 — ELECTRONIC SAFETY AND SECURITY

Electronic Safety and Security Section 28 00 00

DIVISION 31 — EARTHWORK

Section 31 00 00 Earthwork Section 31 10 00

Site Preparation and Clearing Section 31 23 19 **Dewatering and Drainage**

Section 31 25 00 **Erosion Control**

DIVISION 32 — EXTERIOR IMPROVEMENTS

Section 32 00 00 Bituminous Concrete Pavement, Curbing and Edging Section 32 12 17 Asphalt for Courts and Tracks Section 32 13 12 Site Concrete Section 32 13 13 Concrete Paving

Section 32 14 00 **Unit Pavers**

Crushed Stone Surfacing Section 32 15 40

Pavement Markings Section 32 17 23

Section 32 17 24 Sians

Textured Acrylic Color Surfacing Section 32 18 24

Synthetic Surface Section 32 18 25

Section 32 31 13 Chain Link Fencing and Gates

Site Furnishings Section 32 33 00

Soil Preparation for Lawn Establishment Section 32 91 01

Section 32 91 02 Soil Preparation for Rain Gardens

Section 32 91 03 Soil Preparation for Trees and Planting Beds

Section 32 91 04 Soil Preparation for Athletic Fields

Section 32 92 19 Seeding for Lawn Areas

Seeding for Non-Lawn Areas Section 32 92 20

Section 32 93 00 **Plants**

Section 32 94 34 Planter Soil Mix

DIVISION 33 — UTILITIESSection 33 05 13 Drain

DIVISION 33 — UTII	LITIES
Section 33 05 13	Drainage Manholes and Catch Basins
Section 33 10 00	Water Distribution
Section 33 30 01	Sanitary Sewer
Section 33 40 00	Storm Drainage Systems

APPENDICES

Appendix A	Keynole List
Appendix B	NE-CHPS Project Scorecard

Appendix B
Appendix C
Appendix D
Appendix E **Building Enclosure Commissioning Plan**

Hazardous Materials Visual Inspection and Sampling

Geotechnical Report

VOLUME 3 (APPENDIX F)

Appendix F Environmental Reports and Attachments:

Letter of Responsibility

Pre-Site Investigation Report & Safe School Siting Act Public

Meeting Summary Release Notification Site Investigation Report

Phase I Environmental Site Assessment and Limited Subsurface

Investigation

End - Table of Contents

APPENDIX F

ENVIRONMENTAL REPORTS AND ATTACHMENTS:

Letter of Responsibility

Pre-Site Investigation Report & Safe School Siting Act Public Meeting Summary

Release Notification

Site Investigation Report

Phase I Environmental Site Assessment and Limited Subsurface Investigation

DO NOT REMOVE THIS PAGE INTENTIONALLY LEFT BLANK

235 Promenade Street, Providence, Rhode Island 02908

LETTER OF RESPONSIBILITY File No. SR-04-2061 B

January 19, 2023

CERTIFIED MAIL

Thomas E. Deller, AICP
Director of the Department of Planning and Economic Development
City of Central Falls
580 Broad Street
Central Falls, RI 02863

RE: International Meat Market 756 & 770 Lonsdale Avenue Central Falls, Rhode Island Plat Map 6 / Lots 26 & 203

Dear Mr. Deller:

On April 22, 2020, the Rhode Island Department of Environmental Management's (the Department) Office of Land Revitalization and Sustainable Materials Management (LRSMM) enacted the codified 250-RICR-140-30-1, Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (the Remediation Regulations). The purpose of these regulations is to create an integrated program requiring reporting, investigation, and remediation of contaminated sites in order to eliminate and/or control threats to human health and the environment in a timely and cost-effective manner. A Letter of Responsibility (LOR) is a preliminary document used by the Department to codify and define the relationship between the Department and a Performing Party.

Please be advised of the following facts:

- 1. The above referenced property is located at 756 & 770 Lonsdale Avenue, Central Falls, Rhode Island (the Site). The Site is further identified by the City of Central Falls Tax Assessor's Office as Plat Map 6 / Lots 26 & 203.
- 2. The Department is in receipt of the following document:
 - a. <u>Release Notification Package</u>, received by the Department on January 11, 2023, and prepared by SAGE Environmental, Inc. (SAGE)
- 3. The above referenced document identifies concentrations of polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPHs), and metals, specifically arsenic and lead, in Site soils that exceed the Department's Method 1 Direct Exposure Criteria, as referenced in

the <u>Remediation Regulations</u>.

- 4. Based on the presence and nature of these Hazardous Substances and petroleum hydrocarbons, the Department concurs that a Release of Hazardous Materials has occurred as defined by Sections 1.4(A)(33), 1.4(A)(34), 1.4(A)(59), and 1.4(A)(63) of the <u>Remediation Regulations</u>.
- 5. The City of Central Falls is identified as the current owner of the Site by the City of Central Falls Tax Assessor's office and as such is a Responsible Party as defined by Section 1.4(A)(70) of the Remediation Regulations.

As a result of the information known and the conditions observed at the site, the Department requests that the City of Central Falls comply with the following:

1. If necessary, prior to the implementation of any additional site investigation field activities and in accordance with Section 1.8.7(A)(1) of the <u>Remediation Regulations</u>, the City of Central Falls must notify all abutting property owners, tenants, easement holders, and the municipality that an investigation is about to occur. The notice should briefly indicate the purpose of the investigation, the work to be performed, and the approximate scheduled dates of activities. Please submit a draft notification to the Department via E-mail for review and approval prior to distribution. A boilerplate notification to be distributed can be found online at: https://dem.ri.gov/environmental-protection-bureau/land-revitalization-and-sustainable-materials-management/state-4.

The Department will require a copy of the public notice letter and a list of all recipients. Failure to comply with the aforementioned items may result in enforcement actions as specified in Rhode Island General Laws 23-19.1-17 and 23-19.1-18.

- **2.** Ensure that the requirements of Rhode Island General Law (RIGL), Title 23, *Health and Safety*, Chapter 23-19.14, *Industrial Property Remediation and Reuse Act*, Section 23-19.14-5, *Environmental Equity and Public Participation*, have been fulfilled. A copy of this section of the RIGL and an outline highlighting the requirements to be performed by the Performing Party under this policy have been attached for your reference. Please note that all materials issued, as part of public notice will be required to be distributed in English and in the predominant language of the area surrounding the Site. Environmental Justice Area public notice requirements and documents to be distributed can be found online at https://dem.ri.gov/environmental-protection-bureau/land-revitalization-and-sustainable-materials-management/environment-justice.
- 3. Ensure that the requirements of Rhode Island General Law (RIGL), Title 23, Health and Safety, Chapter 23-19.14, Industrial Property Remediation and Reuse Act, Section 23-19.14-5, Environmental Equity and Public Participation, have been fulfilled. A copy of this section of the RIGL has been attached for your reference. In accordance with the Industrial Property Remediation and Reuse Act, prior to the establishment of a final scope of investigation for the Site, and after the completion of All Appropriate Inquiries (AAI), hold a public meeting for the purposes of obtaining information about conditions at the Site and the environmental history at the Site that may be useful in establishing the scope

of the investigation and/or establishing the objectives for the environmental clean-up of the Site.

- a. The public meeting shall be held in the City or Town in which the Site is located.
- b. Public notice shall be given of the meeting at least ten (10) business days prior to the meeting.
- c. Following the meeting, the record of the meeting shall be open for a period of not less than ten (10) and not more than twenty (20) business days for the receipt of public comment.
- d. The results of all appropriate inquiries, analysis, and the public meeting, including the comment period and responses to all comments received, shall be documented in a written report submitted to the Department.

No work (remediation or construction) shall be permitted at the property until the public meeting and comment period regarding the Site's proposed reuse has closed. The above detailed required public notice, meeting and comment period shall be in addition to any other requirements for public notice and comment relating to the investigation or remedy of the Site and may be part of another meeting pertaining to the Site provided that the minimum standards established by RIGL Section 23-19.14-5 for notice and comment are met.

- 4. Additionally, ensure that the requirements of RIGL Title 23, *Health and Safety*, Chapter 23-19.14, *Industrial Property Remediation and Reuse Act*, Section 23-19.14-4, *Objectives of Environmental Clean-Up* have been met. A copy of this section of the RIGL has been attached for your reference. The requirements of the Objectives of Environmental Clean-Up statute, include, but are not limited to the following:
 - a. Thirty (30) days prior to final selection of the location for construction or leasing the building, the project sponsor must complete the following public notice requirements with ten (10) days prior written notice to the public of each measure:
 - I. Prepare and post on the sponsor's website that:
 - a. Projects project costs;
 - b. Projects the time period required to complete the project; and
 - c. Discusses the rationale for selecting the property.
 - II. Solicit written comments on the abovementioned report for a period of thirty (30) days and conduct a public hearing within that thirty (30) days for public comment; and
 - III. Prepare a second report summarizing and responding to the public comments received and post said second report on the sponsor's website.
 - b. The site investigation shall include analysis for the chemicals of potential concern for vapor intrusion. The list of chemicals of potential concern for vapor intrusion is attached for your reference;
 - c. Remediate the soils where chemicals of potential concern for vapor intrusion or petroleum exceed the residential direct exposure criteria through the physical removal of said chemicals or petroleum through excavation or in situ treatment; and
 - d. Equip the school building with both a passive sub slab ventilation system capable of

conversion to an active system and a vapor barrier beneath the school building or incorporated in the concrete slab, all in compliance with an approved Department Remedial Action Work Plan (RAWP) and completed prior to the occupancy of the school;

- 5. Conduct further investigation of the Site soil and groundwater, if warranted, in accordance with Section 1.8 of the <u>Remediation Regulations</u>.
- 6. Upon completion of the additional site investigation submit a Site Investigation Report (SIR) in accordance with Section 1.8 of the <u>Remediation Regulations</u> within ninety (90) days from the date of this letter. Given that some limited environmental investigation has already been performed at the Site, you may incorporate portions of the information already gathered and work already performed to address the items covered in Section 1.8. The SIR should include at least two remedial alternatives other than no action/natural attenuation and include future plans for the re-use or redevelopment (if applicable) of the property.
- 7. Submit an SIR checklist in accordance with Section 1.8.8 of the <u>Remediation Regulations</u>. The SIR checklist was created as a supplemental tool to expedite the review and approval process by cross-referencing the specific sections and pages within the SIR that provide the detailed information that addresses each stated requirement within Section 1.20 of the <u>Remediation Regulations</u>.
- 8. Upon approval by the Department of the SIR, be prepared to bring the Site into compliance with the <u>Remediation Regulations</u>.

Please be advised that the City of Central Falls, as the Responsible Party, is responsible for the proper investigation and remediation of hazardous substances and petroleum hydrocarbons at this site. Also be advised that any remedial alternative that proposes to leave contaminated media on-site at levels which exceed the Department's Residential Direct Exposure Criteria, applicable Leachability Criteria, or applicable Groundwater Criteria will, at a minimum, necessitate the recording of an institutional control in the form of an Environmental Land Usage Restriction (ELUR) on the deed for the site, and will likely require implementation of additional engineered controls to restrict human exposure.

Please notify this office within seven days of the receipt of this letter of your plans to address these items. All correspondences should be sent to the attention of:

Joanna Pawlina
RIDEM / Office of Land Revitalization and Sustainable Materials Management
235 Promenade Street
Providence, RI 02908

If you have any questions regarding this letter or would like the opportunity to meet with Department personnel, please contact me by telephone at (401) 222-2797 ext. 2777117, or by E-mail at Joanna.Pawlina@dem.ri.gov.

Sincerely,

Joanna Pawlina

Environmental Scientist

J. Pawlina

Office of Land Revitalization &

Sustainable Materials Management

cc: Kelly Owens, RIDEM/LRSMM

Ashley Blauvelt, RIDEM/LRSMM

Rachel Simpson, RIDEM/LRSMM

Jacob Butterworth, SAGE Environmental Inc.

Lacy Reyna, SAGE Environmental Inc.

DO NOT REMOVE THIS PAGE INTENTIONALLY LEFT BLANK

April 11, 2023

Ms. Joanna Pawlina, Environmental Scientist
Rhode Island Department of Environmental Management
Office of Land Revitalization & Sustainable Materials Management
235 Promenade Street
Providence, RI 02908-5767
Sent via hard copy and email: Joanna.Pawlina@dem.ri.gov

RE: Pre-Site Investigation Report & Safe School Siting Act Public Meeting Summary
756 & 770 Lonsdale Avenue
(Plat 9, Lots 26 & 203)
Central Falls, Rhode Island 02863
SAGE Project No. S4350
RIDEM File No. SR-04-2061B

Dear Ms. Pawlina:

This letter is being provided to summarize public involvement activities conducted by SAGE Environmental, Inc. (SAGE) relative to the referenced property (Site).

On January 26, 2023, SAGE mailed notices to abutters of the Site of the commencement of Site Investigation activities. The goal of the investigation is to determine if a release of oil or hazardous materials has occurred on the Site and will involve the sampling of environmental media (specifically soil and groundwater) by SAGE. These notices provided Site-specific information, including a summary of the results of the Phase I Environmental Site Assessment All Appropriate Inquiries and a limited subsurface investigation conducted at the Site. Copies of the notices to abutters are attached.

In accordance with the Public Involvement requirements under Rhode Island General Laws (R.I.G.L.), Title 23, Health and Safety, Chapter 23-19.14, Industrial Property Remediation and Reuse Act, Section 23-19.14-5, Environmental Equity and Public Participation, as well as Section 1.8.7.A.3 of the Rhode Island Department of Environmental Management's (RIDEM's or the Department's) *Remediation Regulations*, the City of Central Falls scheduled and held a Public Meeting on April 2, 2012. On March 7, 2023, Notice of a Public Meeting was published in the Pawtucket Times. Notice of a Public Meeting was also subsequently in the March 8-14, 2023, edition of the Valley Breeze. The Public Meeting Notices are attached. The purpose of this meeting is to discuss the environmental investigations associated with the proposed reuse of the Site as a school by the City of Central Falls, as well as to obtain information about conditions at the Site and its environmental history that may be useful in establishing the final scope of the investigation and/or establishing the objectives of the environmental cleanup of the Site.

On March 22, 2023, this meeting was held at Central Falls Department of Public Works 1280 High Street, Central Falls from 4:30 pm to 5:30 pm. Attendees included Rhode Island Department of Environmental Management (RIDEM) representatives and City of Central Falls representatives. No member of the Public attended the Public Meeting. An audio recording of the Public Meeting is attached for reference. The record of the meeting remained open for a period of thirteen (13) days for receipt of public comments, and concluded on **April 7, 2023, at 4:30 pm**.

During the public comment period, the Department's Office of Land Revitalization & Sustainable Materials Management did not receive any public comments, nor were any comments/questions submitted to SAGE directly.

Should you have any questions pertaining to this information, please do not hesitate to contact either of the undersigned.

Sincerely,

SAGE Environmental, Inc.

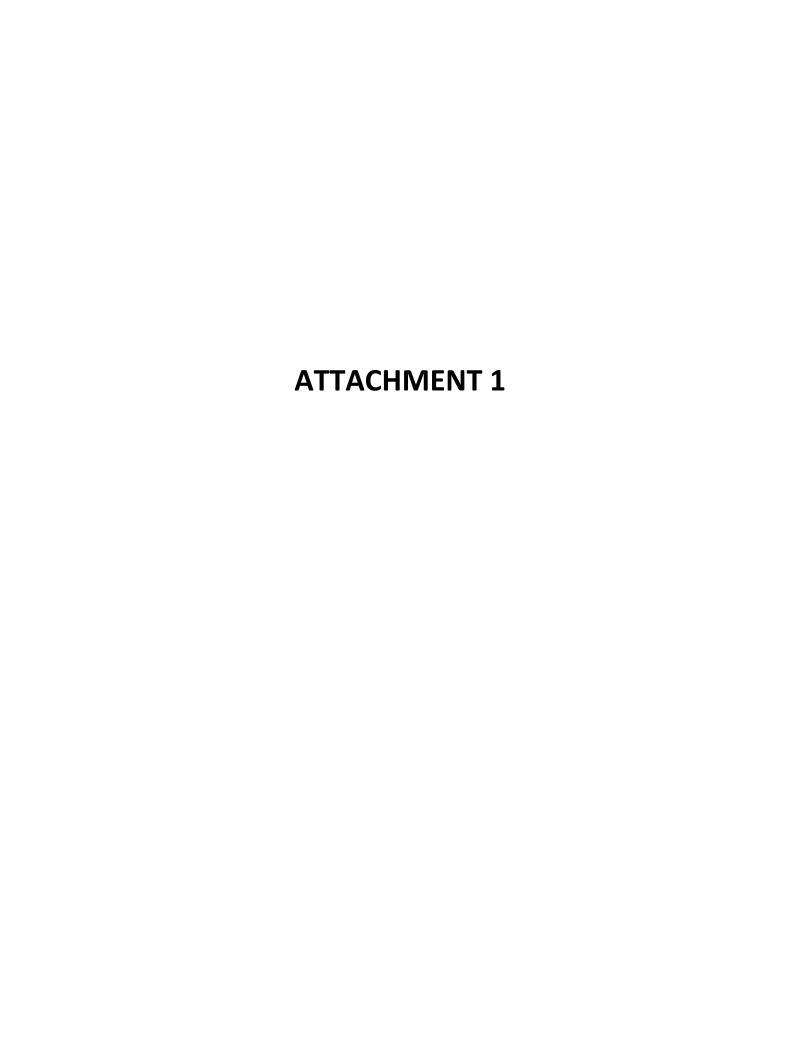
Lacy Revna, MS Jacob H. But

Environmental Scientist Vice President

LR/JHB:alm

ATTACHMENTS:

Attachment 1 Environmental Conditions Review Presentation


Attachment 2 Pre-Site Investigation Public Meeting Audio Recording

Attachment 3 Meeting Attendees

Attachment 4 Public Meeting Notice Documents

Attachment 5 Notice to Abutters

Environmental Conditions Review

756 & 770 LONSDALE AVENUE CENTRAL FALLS, RHODE ISLAND MARCH 22, 2023

Regulatory Framework

- RIGL Chapter 23-19.14 (The Industrial Property Remediation and Reuse Act)
 - Section 23-19.14-5 (Environmental Equity and Public Participation)
- Applies to the Construction of New School Buildings (either public, private, or charter) Upon Contaminated Sites

Due Diligence Review

- Historical Research Key Findings:
 - Prior to the current development, the northern portion of the Site was developed with a residential/commercial style structure and the southern portion of the Site was vacant.
 - It appears that between approximately 1952 and 1962 the Site and surrounding area was filled to create the existing topography. An additional commercial style structure appeared to have been constructed on the southern portion of the property in 1962. The northern building was demolished circa 2011, and the southern building was added onto circa 2019, at which time the Site appeared to be in its current configuration.

Due Diligence Review

1939 2021

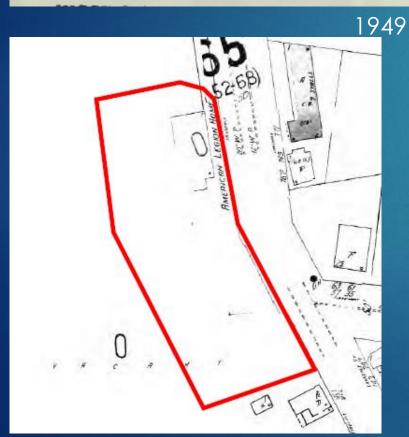
LONSDALE AV (CF)-Contd

726 Ustas Andrew

729 No Return

734 Vacant

738 Monastesse Gerard J @ 724-2759 PARK ENDS


743 Gonsalves Juvilino J ⊚ 724-0198

CLAREMONT ENDS

756 Mil-Ga Cleansers Inc 725-0348

768 Stanton James Post No 5 (Am Legion)

762-9579

Due Diligence Review

- Historical Research Key Findings:
 - City directory listings and historical Sanborn Fire Insurance Maps indicate that the former northern Site structure was occupied by the American Legion between at least 1938-2005.
 - City directory listings indicate that the southern Site structure was occupied by Mil-Gat Cleansers between at least 1957-1971. The structure was listed as vacant in 1974, and has been listed as a butcher/meat market since 1979 through present.

Current Site Investigation Data

- Soil Evaluation:
 - Subsurface soil samples have been analyzed and select polycyclic aromatic hydrocarbons (PAHs), arsenic, lead, and total petroleum hydrocarbon (TPH) were detected in excess of RIDEM Criteria.
- Groundwater Evaluation:
 - Groundwater samples were collected from various monitoring wells throughout the Site and submitted for laboratory analysis. A target compound was not detected in excess of any applicable RIDEM Objectives.

Takeaways From the Current Data

- Soil impacts are likely related to the historical filling;
- Groundwater does not appear to be an impacted media; and,
- The main risk associated with the identified contaminants is direct soil contact.

- Based upon the current data, the conceptual remedial design for the site includes the following:
 - ▶ 1. Site-Wide Capping Placement of a sitewide cap would be conducted to eliminate direct soil contact.
 - Preemptive Vapor Intrusion Control Measures – Although not believed to be a risk based upon current data, any new structure will be equipped with a passive sub-slab depressurization system (designed to be converted to an active system, if required in the future) along with placement of a vapor barrier.
 - ▶ 3. Placement of Institutional Control Filing of an Environmental Land Use Restriction (ELUR) and Soil Management Plan (SMP) to ensure the cap and sub-slab system are continually inspected and the results would be reported to RIDEM annually.

Conceptual Remedial Approach

Next Steps

- Complete the public comment period;
- Prepare and submit to RIDEM a Site Investigation Report documenting the assessment results provided herein, along with a preliminary design of the conceptual remedial alternative.
- Public comments should be directed to:

Joanna Pawlina–Environmental Scientist

RIDEM – Office of Land Revitalization and Sustainable Materials Management

235 Promenade Street, Providence, Rhode Island

Joanna.Pawlina@dem.ri.gov

(401) 222-2797 ext. 2777117

On March 22, 2023, Lacy Reyna of SAGE Environmental, Inc. presented the Environmental Conditions Review (**Attachment 1**) during a Public Meeting held at Central Falls Department of Public Works, 1280 High Street, Central Falls, Rhode Island. The presentation provided an overview of the Site Investigation to-date and the next steps in the Rhode Island Department of Environmental Management's community involvement process. The meeting began at 4:35 pm and concluded at 4:53 pm.

An audio recording of the presentation is linked below.

https://sage-enviro.box.com/s/9a4hzaax1gvwo440b2scfbqvtzneo7ez

SIGN-IN SHEET PUBLIC MEETING

Environmental Conditions Review – 756 & 770 Lonsdale Avenue, Central Fall, RI

Location: Public Works Meeting Room, 1280 High Street, Central Falls RI

Start Time: March 22nd, 2023 4:30 PM

	Name (Print)	Affiliation	Email Address
	BEICH SCHECHTER.	CFSD	3 eschechteroper n.n.c
	Jim Vandermillen	Central Falls Planning Dept.	Jeschechteroper n. n. c jvandermillen & centralfalls
	Racher Simpson	MEDEM	rachel. Simpson @dem. vi.g
	Joanna Pawlina	RIDEM	rachel. Simpson@dem.vi.go Joanna. pawlina @dem. ri.gov Lreyna a Sage-en vivo. com
	lacy Regna.	SAGE	Lreyna a Sage-envivo. com
	J		
			_
-			
			,

NOTICE OF A PUBLIC MEETING

SAGE Environmental, Inc., on behalf of the City of Central Falls is hereby providing Notice of a Public Meeting per RIGL Chapter 23-19.14 (The Industrial Property Remediation and Reuse Act/School Siting Law of 2013), more specifically Sections 23-19.14-4 (Objectives of Environmental Clean-Up) and 23-19.14-5 (Environmental Equity and Public Participation).

The purpose of this meeting is to discuss the environmental investigations associated with the reuse of 756 and 770 Lonsdale Avenue, located in Central Falls, as a school.

The record for the public meeting shall be open for a period of not less than ten (10) and not more than twenty (20) business days after the meeting for the receipt of public comment and will close at 4:30 PM on April 6, 2023. Public comments relative to the environmental investigation of the proposed project must be submitted in writing to: Ms. Joanna Pawlina, RI Department of Environmental Management — Office of Land Revitalization & Sustainable Materials Management, 235 Promenade Street, Providence, RI 02908. For more information regarding this notice, please contact Joanna Pawlina by telephone at (401) 222-2797 ext. 2777117, or by E-mail at Joanna.Pawlina@dem.ri.gov.

The meeting will be held in person on:

Date: March 22, 2023

Place:

Office of Planning and Economic Development at 1280 High Street, Central Falls, RI

Time: 4:30 pm

AVISO DE UNA REUNIÓN PÚBLICA

SAGE Environmental, Inc., en nombre de la Ciudad de Central Falls, proporciona por la presente un Aviso de una eting pública según el Capítulo 23-19.14 de RIGL (Ley de MeRemediación y Reutilización de la Propiedad Industrial / Ley de Ubicación Escolar de 2013), más específicamente las Secciones 23-19.14-4 (Objetivos de la limpieza ambiental) y 23-19.14-5 (Equidad ambiental y participación pública).

El propósito de esta reunión es discutir las investigaciones ambientales asociadas conla reutilización de 756 y 770 Lonsdale Avenue, ubicada en Central Falls, como escuela.

El registro de la reunión pública estará abierto por un período de no menos de diez (10) y no más de veinte (20) días hábiles después de la reunión para la recepción de comentarios públicos y se cerrará a las 4:30 PM del 6 de abril de 2023. Los comentarios públicos relativos a la investigación ambiental del proyecto propuesto deben enviarse por escrito a: Sra. Joanna Pawlina, Departamento de Gestión Ambiental de RI — Oficina de Revitalización de Tierras y Gestión de Materiales Sostenibles, 235 Promenade Street, Providence, RI 02908. Para obtener más información sobre este aviso, comuníquese con Joanna Pawlina por teléfono al (401) 222-2797 ext. 2777117, o por correo electrónico a Joanna.Pawlina@dem.ri.gov.

La reunión se llevará a cabo en persona en:

Fecha: marzo 22, 2023

Lugar:

Oficina de Planificación y Desarrollo Económico en 1280 High Street, Central Falls, RI

Hora: 16:30

Four easy ways to place your classified ad in print AND online for one low price:

- Online at www.pawtuckettimes.com
- E-mail classified@pawtuckettimes.com
- Call (401) 767-8503 Mon.-Fri. 9 a.m. 4:30 p.m.
- Fax (401) 767-8509

100 Legals

NOTICE OF MORTGAGEE'S SALE 20 Bayberry Road (Plat 50, Lot 108), 24 Bayberry Road (Plat 50, Lot 107), 26 Bayberry Road (Plat 50, Lot 106) and 28 Bayberry Road (Plat 50, Lot 24) Smithfield, RI 02917

sold, subject to all encumbrances, prior liens and such matters which may constitute valid liens or encumbrances after sale, at public auction on December 29, 2022 at 04:00 p.m. on the premises by virtue of the power of sale in said mortgage made by William A. Machala, dated October 4, 2001, and recorded in the Smithfield. Rhode Island Land Evidence Records in Book 300, Page 301, the conditions of said mortgage having been broken. \$5,000.00 in cash, certified or bank check required to bid. Other terms to be announced at the sale.

> **Brock & Scott, PLLC** 1080 Main Street, Suite 200 Pawtucket, RI 02860 Attorney for the present Holder of the Mortgage

AT THE ABOVE TIME AND PLACE, THE SALE WAS CONTINUED TO March 1, 2023 AND 12:00 PM, LOCAL TIME ON THE PREMISES.

> Brock & Scott, PLLC 1080 Main Street, Suite 200 Pawtucket, RI 02860 Attorney for the present Holder of the Mortgage

AT THE ABOVE TIME AND PLACE, THE SALE WAS CONTINUED TO April 6, 2023 AND 12:00 PM, LOCAL TIME ON THE PREMISES.

> Brock & Scott, PLLC 1080 Main Street, Suite 200 Pawtucket, RI 02860 Attorney for the present Holder of the Mortgage

STATE OF RHODE ISLAND PROBATE COURT OF THE **CITY OF PAWTUCKET**

The Probate Court of the City of Pawtucket here by gives notice of matters pending and for hearing in said Court in the City of Pawtucket. Court will be in session at 2:00 p.m. on the dates spec ified in notices below for hearing on said matters in the City Council Chambers, City Hall, 137 Roosevelt Avenue, 3rd Floor, Pawtucket, RI.

DALOMBA, STEVEN, estate.

hearing March 8, 2023.

JOHNSON, DONESHIA, minor respondent. Appointment of Guardian: for hearing March 8,

KELLEY, JOHN T., respondent.

Appointment of Guardian: for hearing March 8,

MORRISSETTE, DAVID P., estate.

Sale of real estate located in Pawtucket at 139 Pullen Avenue designated Lots 199 and 200 on The meeting will be held in person on:

VALLEY, APRIL ANN, change of name. Change of name to April Alejandra Trejo: for

BOUVIER, MELISSA, estate.

hearing March 8, 2023.

Jacqueline Bouvier of Pawtucket has qualified as Administratrix: creditors must file their claims in the office of the probate clerk within the time required by law beginning February 21, 2023.

DANESI, MICHAEL DENNIS

(alias Michael D. Danesi), estate. the office of the probate clerk within the time re-

quired by law beginning February 21, 2023.

DIPAOLA, JOHN S. (alias John Stephen DiPaola), estate.

the office of the probate clerk within the time required by law beginning February 21, 2023.

KAY, DAVID N. (alias David Nelson Kay),

Mark W. Kay of Lincoln has qualified as Administrator: creditors must file their claims in the of-

by law beginning February 21, 2023.

MCKAY, RAYMOND L., estate. office of the probate clerk within the time required by law beginning February 21, 2023.

MORRISSETTE, DAVID P., estate.

qualified as Administrator and has appointed Robert J. Ameen, Esq. of Pawtucket as his agent in Rhode Island: creditors must file their claims La reunión se llevará a cabo en persona en: in the office of the probate clerk within the time required by law beginning February 21, 2023.

ST. HILAIRE, BONNIE CHERYL, estate.

Mark Spooner of Mesquite, NV has qualified as Administrator and has appointed Rebecca E. Dupras, Esq. of North Providence as his agent in Rhode Island: creditors must file their claims in the office of the probate clerk within the time required by law beginning February 21, 2023.

100 Legals

Home | Automotive | Employment | Yard Sales | Items for Sale | Pets | & Much More...

LASSIFIEDS

SELL IT. FIND IT. BUY IT. FASTER IN THE TIMES.

Subscribers receive 20% off classified line ads & more! Subscribe today: 401-767-8522 or at pawtuckettimes.com

Vehicles

TRUCK THE EASY WAY. Call the classified team at The Times today. Tell more than 40,000 adult readers in the are about your vehicle. It's easy to do, just dial 401-365-1438 or visit us at www.-pautuelettimes com.

pawtuckettimes.com

Employment

200 Employment

Services

The Times does not knowingly accept advertisements in the Employment
classifications that are
not bona fide job offers.
Classification 200 is provided for Employment Information, Services and
Referrals. This newspaper does not knowingly
accept Employment ads

204 General Help

Wanted

be good at multitasking personnel skills. Training on site. 401K, vacation, holiday pay. Send resume to: Attn: Office Manager, PO Box 1151, Woonsockat BL02805

Real Estate-Rent

et, RI 02895.

100 Legals

137 ROOSEVELT AVENUE PAWTUCKET, RI 02860 A Draft Phase II Stormwater Annual Report, pre-

100 Legals

pared in accordance with the Rhode Island Pollution Discharge Elimination System (RIPDES) The premises described in the mortgage will be program general permit for facilities operated by regulated small MS4s, will be available for review at the Department of Public Works Office starting March 1st, 2023

CITY OF PAWTUCKET

RIPDES PERMIT NUMBER: RIR040024

For any questions contact: Dylan Zelazo, Director of Administration City of Pawtucket 137 Roosevelt Avenue, Pawtucket, RI 02860 (401) 728-0500, Extension 281 dpw@pawtucketri.com

The administrative record containing all documents is on file and may inspected by appointment at the Department of Public Works, 250 Armistice Boulevard, Pawtucket, RI 02860, between 8:30 a.m. and 4:30 p.m. Monday through Friday except holidays.

Notice should be taken that if the City of Pawtucket receives a request from twenty-five (25) people, a governmental agency or subdivision, or an Association having no less than twenty-five (25) members, in writing, on or before 4:00 PM March 7, 2023, a public hearing will be held at the following time:

March 8, 2021 @ 1-2 PM

Interested persons should contact the City of Pawtucket in advance at dpw@pawtucketri.com to receive virtual meeting details and to confirm if a meeting will be held at the time noted above.

NOTICE OF A PUBLIC MEETING

SAGE Environmental, Inc., on behalf of the City of Central Falls is hereby providing Notice of a Public Meeting per RIGL Chapter 23-19.14 (The Industrial Property Remediation and Reuse Act/School Siting Law of 2013), more specifical-Iv Sections 23-19.14-4 (Objectives of Environmental Clean-Up) and 23-19.14-5 (Environmenal Equity and Public Participation).

The purpose of this meeting is to discuss the environmental investigations associated with the reuse of 756 and 770 Lonsdale Avenue, located in Central Falls, as a school.

The record for the public meeting shall be open for a period of not less than ten (10) and not more than twenty (20) business days after the Petition to Compromise and Settle Claim: for meeting for the receipt of public comment and will close at 4:30 PM on April 7, 2023. Public comments relative to the environmental investigation of the proposed project must be submitted in writing to: Ms. Joanna Pawlina, RI Department of Environmental Management - Office of Land Revitalization & Sustainable Materials Management, 235 Promenade Street, Providence, RI 02908. For more information regarding this notice, please contact Joanna Pawlina by telephone at (401) 222-2797 ext. 2777117, or by E-mail at Joanna.Pawlina@dem.ri.gov.

Date: March 22, 2023

Place: Office of Planning and Economic Development at NORIEGA, JONATHAN B. 1280 High Street, Central Falls, RI

4:30 pm **AVISO DE UNA REUNIÓN PÚBLICA**

SAGE Environmental, Inc., en nombre de la Ciu-Christine A. Danesi of Rehoboth, MA has quali- dad de Central Falls, proporciona por la prefied as Administratrix and has appointed Robert sente un Aviso de una eting pública según el March 15, 2023.

J. Ameen, Esq. of Pawtucket to be her agent in Capítulo 23-19.14 de RIGL (Ley de MeReme-Rhode Island: creditors must file their claims in diación y Reutilización de la Propiedad Industrial WUNSCHEL, LINDSEY JANET, change of name. Ley de Ubicación Escolar de 2013), más específicamente las Secciones 23-19.14-4 (Objetivos de la limpieza ambiental) y 23-19.14-5 (Equidad ambiental y participación pública).

Kimberly V. Sousa of Pawtucket has qualified as El propósito de esta reunión es discutir las in Administratrix: creditors must file their claims in vestigaciones ambientales asociadas conla reutilización de 756 y 770 Lonsdale Avenue, ubicada within the time required by law beginning Februen Central Falls, como escuela.

El registro de la reunión pública estará abierto ROY, GERARD R., estate. por un período de no menos de diez (10) y no más de veinte (20) días hábiles después de la reunión para la recepción de comentarios públicos fice of the probate clerk within the time required $_{
m V}$ se cerrará a las 4:30 PM del 7 de abril de 2023. Los comentarios públicos relativos a la investigación ambiental del proyecto propuesto deben enviarse por escrito a: Sra. Joanna Pawlina, De-Steven Pandolfi of Pawtucket has qualified as partamento de Gestión Ambiental de RI Oficina SOUSA, ADELINO R. Executor: creditors must file their claims in the de Revitalización de Tierras y Gestión de Materiales Sostenibles, 235 Promenade Street, Providence, RI 02908. Para obtener más información sobre este aviso, comuníquese con Joanna the office of the probate clerk within the time re-Pawlina por teléfono al (401) 222-2797 ext. quired by law beginning February 28, 2023. Armand A. Morrissette of Encinitas, CA has 2777117, o por correo electrónico a Joanna.Pawlina@dem.ri.gov.

Fecha: marzo 22, 2023

Lugar: Oficina de Planificación y Desarrollo Económico en 1280 High Street, Central Falls, RI

Hora:

100 Legals

INFORMATION _egal Notices may be mailed to:

LEGAL NOTICE

The Times. P.O. Box 307, Pawtucket, RI 02860

(401) 767-8509 or Emailed to: classified@pawtuckettimes.com

Complete instructions

should include: Publication dates, Billing information and the Name and Phone number of individual to contact if necessary.

LEGAL NOTICES MUST BE RECEIVED 3 BUSINESS DAYS PRIOR TO **PUBLICATION**

For further information Call 365-1438 Monday thru Friday; 8:30 a.m. To 4:30 p.m.

105 Announcments

CREDIT FOR ERRORS

Each advertiser is asked to check his/her adver-tisement on the first day of publication and to report any error to the Times classified department (365-1438) as soon as pos-sible for correction.

No adjustment will be given for typographical errors, which do not change the meaning or lessen the value of the advertisement.

Credit will be allowed only to that portion of the advertisement where the error oc-curred. 301 Room - No

PAWTUCKET: Near center, laundry facilities, wall to wall carpets. \$100 & up 401-726-0995.

Board

100 Legals 100 Legals STATE OF RHODE ISLAND

PROBATE COURT OF THE

CITY OF PAWTUCKET

The Probate Court of the City of Pawtucket hereby gives notice of matters pending and for hearing in said Court in the City of Pawtucket. Court ified in notices below for hearing on said matters in the City Council Chambers, City Hall, 137

Roosevelt Avenue, 3rd Floor, Pawtucket, Rl.

(alias Jon Noriega), change of name.

Change of birth name from Jonnathan Benjamin Noriega to Jonathan Benjamin Noriega: for hearing March 15, 2023.

VALDEZ, ALINA,

adult adoption and change of name.

Adoption by Daniel Perez and change of name to Alina Crisalis Perez Delvillar: for hearing

Change of name to Lindsey James Wunschel: for hearing March 15, 2023.

JOHNSTON JR, RAYMOND HUGH., estate.

Raymond Hugh Johnston III of Pawtucket has qualified as Administrator: creditors must file their claims in the office of the probate clerk

David B. Chickering of Vineyard Haven, MA has qualified as Executor and has appointed Peter A. Hainley, Esq. of Cumberland as his agent in Rhode Island: creditors must file their claims in the office of the probate clerk within the time required by law beginning February 28, 2023.

(alias Adelino Sousa), estate. Joana D. Sousa of Pawtucket has qualified as Administratrix: creditors must file their claims in

SWIADER, VIOLA, estate.

Stephen Swiader of Smithfield has qualified as Executor: creditors must file their claims in the office of the probate clerk within the time required by law beginning February 28, 2023.

TETREAULT, LOIS J., estate.

David Nelson of North Dighton, MA has qualified as Administrator and has appointed Jillian K. Boughner of Pawtucket as his agent in Rhode Island: creditors must file their claims in the office of the probate clerk within the time required by law beginning February 28, 2023.

Gas and Electric

Water Heater Replacement Tankless Water Heaters.

· Gas and Oil Boiler Replacements Neat & Professional Workmanship • Ductless Mini Split AC Systems

AD TO RECEIVE (401) 724-4129

REBATE PROGRAM AVAILABLE

FOR ALL YOUR PLUMBING AND HEATING NEEDS

We Do Big or Small Jobs - FREE ESTIMATES

"There's More \$\$\$ In That Old Car, Truck, Van or Motorcycle That You Thought."

You'll fill up when you sell that old set of wheels through the Classifieds and this offer available only to subscribers.

5 LINES ONLY ad appears up to 60 days

Call one of our Classified **Customer Service Reps** The Call - 767-8503 or The Times - 365-1438

THE CALL THE TIMES

MAKE SURE **THEY'RE** IN THE RIGHT CAR SEAT

NHTSA.gov/TheRightSeat

** NHTSA account

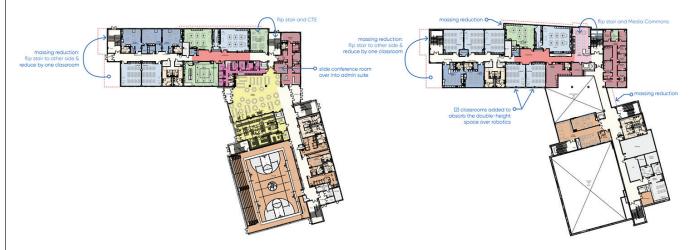
Don't miss a single issue, subscribe today! www.pawtuckettimes.com E-subscriptions available!

6

Stop & Shop celebrates healthy initiatives with Boys & Girls Club

Members of the **BOYS & GIRLS CLUB OF PAWTUCKET** celebrate completion of a new mural they painted with staff at Stop & Shop.

PAWTUCKET – Stop & Shop recently presented a \$75,000 donation to the Boys & Girls Club of Pawtucket to support youth programming focusing on overcoming health barriers, including food insecurity, nutrition education, and access to mental health care.


On Feb. 22, club members were treated to a reception in the club at 1 Moeller Place honoring the young talented artists who helped paint a mural alongside Stop & Shop associates in the club's dining space. Murals were also installed in the club's teen center, all designed to reflect Stop & Shop's and the club's shared commitment to providing access to nutritious food and promoting a health and active lifestyle for local youth, states a news release.

The Boys & Girls Club of Pawtucket directly impacts local children living in poverty and struggling to meet their basic daily needs of food, clothing, and shelter. Those are barriers to academic success, and those young people are at high risk of dropping out of school,

See **INITIATIVES**, Page 7

Central Falls School District

VE Updates I first and second floors

First and second floor layouts of the proposed new **CENTRAL FALLS HIGH SCHOOL**.

CFHS construction and renovation plans forge ahead

By LUZJENNIFER MARTINEZ

Valley Breeze Deputy Editor

luzjennifer@valleybreeze.com

CENTRAL FALLS – Plans for a reconstructed Central Falls High School and a brand new dual-language K-8 learning center, along with several other area school renovations, are moving ahead after getting the green light from city officials over the last several months.

Since reported by *The Breeze* last September, stages one, two, and three of the proposed major land development project submitted to the Rhode Island Department of Elementary and Secondary Education has gotten approval from the Central Falls Board of Trustees, and City Solicitor Matt Jerzyk also confirmed that the Planning Board has given its first round of approvals and will provide another round once plans are further developed.

The proposal has also been

approved by the City Council and School Building committee but is awaiting stage three approvals from the Rhode Island Department of Education

Meanwhile, RIDE agreed to fund the project in December, which is now projected to cost \$170 million.

Per RIDE, stages one and two of the project are part of the "necessity of school construction" application, which consists of an "identification of need" through a "letter of intent, facility assessment and projection preparations," and a "development of solution," which requires "schematic design development documentation that can be used to provide dependable cost estimates" for the project.

Stage three of the project is a design review, which is a requirement "for all projects that are part of a multi-year capital improvement plan that exceeds \$500,000, regardless of eligibility for housing aid"

"Geotechnical and Environmental testing are ongoing," said Jerzyk.
"The stage three submission to RIDE required much more detailed plans and drawings."

The Zoning Board will also be meeting tonight, March 8, to review and vote on the school construction project, to make sure it passes all zoning ordinances.

The plans to construct a high school at the site of the city-owned Higginson Avenue/Francis Corrigan Sports complex, convert Central Falls High School into a dual-language K-8 facility, and renovate Calcutt Elementary, Veterans Memorial Elementary, and Ella Risk Elementary schools, which are now slated for completion by December 2027.

In November 2022, Central Falls voters approved a question to provide \$250 million in bond funds "for the construction, renovation, and rehabilitation of the state's public schools."

NOTICE OF A PUBLIC MEETING

SAGE Environmental, Inc., on behalf of the City of Central Falls is hereby providing Notice of a Public Meeting per RIGL Chapter 23-19.14 (The Industrial Property Remediation and Reuse Act/School Siting Law of 2013), more specifically Sections 23-19.14-4 (Objectives of Environmental Clean-Up) and 23-19.14-5 (Environmental Equity and Public Participation).

The purpose of this meeting is to discuss the environmental investigations associated with the reuse of 756 and 770 Lonsdale Avenue, located in Central Falls, as a school.

The record for the public meeting shall be open for a period of not less than ten (10) and not more than twenty (20) business days after the meeting for the receipt of public comment and will close at 4:30 PM on April 7, 2023. Public comments relative to the environmental investigation of the proposed project must be submitted in writing to: Ms. Joanna Pawlina, RI Department of Environmental Management – Office of Land Revitalization & Sustainable Materials Management, 235 Promenade Street, Providence, RI 02908. For more information regarding this notice, please contact Joanna Pawlina by telephone at (401) 222-2797 ext. 2777117, or by E-mail at Joanna.Pawlina@dem.ri.gov.

The meeting will be held in person on:

Date: March 22, 2023

Place: Office of Planning and Economic Development at 1280 High Street, Central Falls, RI

Time: 4:30 pm

AVISO DE UNA REUNIÓN PÚBLICA

SAGE Environmental, Inc., en nombre de la Ciudad de Central Falls, proporciona por la presente un Aviso de una eting pública según el Capítulo 23-19.14 de RIGL (Ley de MeRemediación y Reutilización de la Propiedad Industrial / Ley de Ubicación Escolar de 2013), más específicamente las Secciones 23-19.14-4 (Objetivos de la limpieza ambiental) y 23-19.14-5 (Equidad ambiental y participación pública).

El propósito de esta reunión es discutir las investigaciones ambientales asociadas conla reutilización de 756 y 770 Lonsdale Avenue, ubicada en Central Falls, como escuela.


El registro de la reunión pública estará abierto por un período de no menos de diez (10) y no más de veinte (20) días hábiles después de la reunión para la recepción de comentarios públicos y se cerrará a las 4:30 PM del 7 de abril de 2023. Los comentarios públicos relativos a la investigación ambiental del proyecto propuesto deben enviarse por escrito a: Sra. Joanna Pawlina, Departamento de Gestión Ambiental de RI – Oficina de Revitalización de Tierras y Gestión de Materiales Sostenibles, 235 Promenade Street, Providence, RI 02908. Para obtener más información sobre este aviso, comuníquese con Joanna Pawlina por teléfono al (401) 222-2797 ext. 2777117, o por correo electrónico a Joanna.Pawlina@dem.ri.gov.

La reunión se llevará a cabo en persona en:

Fecha: marzo 22, 2023

Lugar: Oficina de Planificación y Desarrollo Económico en 1280 High Street, Central Falls, RI

Hora: 16:30

Joanna Pawlina, Environmental Scientist Rhode Island Department of Environmental Management Office of Land Revitalization & Sustainable Material Management 235 Promenade Street Providence, RI 02908

RE: International Meat Market 756 & 770 Lonsdale Avenue Central Falls, Rhode Island Plat Map 6 / Lots 26 & 203

Dear Ms. Pawlina:

Attached is the Public Notice document notifying abutters of the Site Investigation activities at the above-referenced property. A list of recipients notified via certified mail is provided in the following table.

Abutting Properties to 756 & 770 Lonsdale Avenue Central Falls, Rhode Island

Plat/Lot	Property Address	Owner/Occupant
9/173	738 Lonsdale Avenue	Beatrice Somuah
8/185	743 Lonsdale Avenue	Sandra Cano
8/186	61-63 Claremont Street	Gregorio Morales
8/200	767-771 Lonsdale Avenue	Estate of Roger Garant
9/207	776 Lonsdale Avenue	Renaissance Development Corp
9/50	10 Higginson Avenue	City of Central Falls

Should you have any questions, comments or require further information, please contact this office.

Sincerely,

SAGE Environmental, Inc.

Acob H. Butterworth, MS, LSP

Vice President

JHB:alm

Notification to Abutters International Meat Market 756 & 770 Lonsdale Avenue Central Falls, Rhode Island Plat Map 6 / Lots 26 & 203

January 26, 2023

In accordance with the Rhode Island Department of Environmental Management's (RIDEM's) <u>Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases</u> (the <u>Remediation Regulations</u>), **City of Central Falls** is providing notice to abutters of their intent to conduct a **Site Investigation** at the property addressed as **756 & 770 Lonsdale Avenue in Central Falls**, **Rhode Island**. The goal of this investigation is to determine if a release of hazardous materials has occurred on the property. The investigation will involve the sampling of environmental media (specifically soil, and groundwater) by **SAGE Environmental, Inc.** personnel. The property is further designated as Plat **6**, Lots **26 & 203** of the City of **Central Falls** Tax Assessor's plat maps. RIDEM has determined that conducting this investigation is in the public interest.

The investigation is scheduled to be conducted in **February 2023** and is expected to take approximately **three to four weeks**. The results of the investigation should be available by **March/April 2023**.

For more information regarding this notice or this investigation contact **Joanna Pawlina** at (401) 222-2797, extension **777117** or via email at **Joanna.Pawlina@dem.ri.gov**. To make arrangements to review Department records pertaining to this property location, contact **Angela Spadoni** at (401) 222-2797, extension **2777307** or via email at **Angela.Spadoni@dem.ri.gov**.

Notificación a Abutters Mercado Internacional de la Carne 756 y 770 Lonsdale Avenue Central Falls, Rhode Island Mapa Plat 6 / Lotes 26 y 203

enero 26, 2023

De acuerdo con las Reglas y Regulaciones del Departamento de Gestión Ambiental de Rhode Island (RIDEM) para la Investigación y Remediación de Emisiones de Materiales Peligrosos (las Regulaciones de Remediación), la Ciudad de Central Falls está notificando a los abutters de su intención de realizar una Investigación del Sitio en la propiedad dirigida como 756 y 770 Lonsdale Avenue en Central Falls, Rhode Island. El objetivo de esta investigación es determinar si se ha producido una liberación de materiales peligrosos en la propiedad. La investigación incluirá el muestreo de medios ambientales (específicamente suelo y aguas subterráneas) por parte de SAGE Environmental, Inc. personal. La propiedad se designa además como Plat 6, Lotes 26 y 203 de los mapas de la plataforma del Asesor de Impuestos de la Ciudad de Central Falls. RIDEM ha determinado que llevar a cabo esta investigación es de interés público.

La investigación está programada para febrero de **2023** y se espera que dure aproximadamente **de tres a cuatro semanas**. Los resultados de la investigación deberían estar disponibles para marzo/abril de **2023**.

Para obtener más información sobre este aviso o esta investigación, comuníquese con **Joanna Pawlina** al (401) 222-2797, extensión **777117** o por correo electrónico a **Joanna.Pawlina@dem.ri.gov**. Para hacer arreglos para revisar los registros del Departamento relacionados con la ubicación de esta propiedad, comuníquese con **Angela Spadoni** al (401) 222-2797, extensión **2777307** o por correo electrónico a **Angela.Spadoni@dem.ri.gov**.

Site-Specific Fact Sheet International Meat Market 756 & 770 Lonsdale Avenue Central Falls, Rhode Island Plat Map 6 / Lots 26 & 203

SAGE Environmental, Inc. (SAGE) has prepared the Site-Specific Fact Sheet in accordance with Rule 1.8.7(B)(i) of the Rhode Island Department of Environmental Management (RIDEM) Remediation Regulations.


In December 2022, SAGE

conducted a Phase I Environmental Site Assessment and Limited Subsurface Investigation (LSI) of the referenced property. The Site's historical utilization was identified as a dry-cleaning operation between 1957 to 1971. Additionally, an unknown heating source was utilized at the Site within a former structure. Finally, potential historical filling activities within the surrounding area had occurred between at least 1939 through 1972. Based on these findings, SAGE conducted a LSI. In summary, impacts have been identified at the Site and include:

- Laboratory analytical results for select soil samples collected from the Site identified a number of semi volatile organic compounds (SVOCs), arsenic, lead, and total petroleum hydrocarbons (TPH) in excess of the RIDEM Method 1 Residential Direct Exposure Criteria (R-DEC); and
- No groundwater impacts were identified above RIDEM GB Groundwater Objectives at the Site.

Should you have any questions, please feel free to contact SAGE Environmental, Inc. at (401) 723-9900 or RIDEM Office of Land Revitalization and Sustainable Materials Management Project Manager Joanna Pawlina at (401) 222-2797 x 2777117 or via email at Joanna.Pawlina@dem.ri.gov.

Hoja informativa específica del sitio Mercado Internacional de la Carne 756 y 770 Lonsdale Avenue Central Falls, Rhode Island Mapa Plat 6 / Lotes 26 y 203

SAGE Environmental, Inc. (SAGE) ha preparado la Hoja de Datos Específicos del Sitio de acuerdo con la Regla 1.8.7(B)(i) de las Regulaciones de Remediación del Departamento de Gestión Ambiental de Rhode Island (RIDEM).

En diciembre de 2022, SAGE realizó una Evaluación Ambiental del Sitio de Fase I e Investigación Limitada del Subsuelo (LSI) de la propiedad referenciada. La utilización histórica del sitio se identificó como una operación de limpieza en seco entre 1957 y 1971. Además, se utilizó una fuente de calor desconocida en el sitio dentro de una estructura anterior. Finalmente, las posibles actividades de relleno histórico dentro del área circundante habían ocurrido entre al menos 1939 y 1972. Sobre la base de estos hallazgos, SAGE realizó un LSI. En resumen, se han identificado impactos en el Sitio e incluyen:

- Los resultados analíticos de laboratorio para muestras de suelo seleccionadas recolectadas en el Sitio identificaron una serie de compuestos orgánicos semivolátiles (SVOC), arsénico, plomo e hidrocarburos totales de petróleo (TPH) que exceden los Criterios de Exposición Directa Residencial (R-DEC) del Método 1 de RIDEM; y
- 2. No se identificaron impactos en las aguas subterráneas por encima de los objetivos de agua subterránea de RIDEM GB en el sitio.

Si tiene alguna pregunta, no dude en comunicarse con SAGE Environmental, Inc. al (401) 723-9900 o con la Gerente de Proyectos de la Oficina de Revitalización de Tierras y Gestión de Materiales Sostenibles de RIDEM, Joanna Pawlina, al (401) 222-2797 x 2777117 o por correo electrónico a Joanna.Pawlina@dem.ri.gov.

The Rhode Island Department of Environmental Management's Site Remediation Program & Environmental Justice

DEM's SITE REMEDIATION PROGRAM

WHO WE ARE

The Rhode Island Department of Environmental Management (DEM) is the state agency responsible for preserving the quality of Rhode Island's environment. In 1995, Rhode Island passed the Industrial Property Remediation and Reuse Act (amended in 1997) and established a voluntary program for brownfields cleanup through DEM. This Act created the Office of Land Revitalization & Sustainable Material Management's (LRSMM) Site Remediation Program. The Program encourages and supports the redevelopment and reuse of contaminated properties throughout RI. The Program was established to provide fair, comprehensive, and consistent regulation of the investigation and remediation of hazardous waste, hazardous material, and petroleum releases. The State program is designed to determine if a site poses a threat to human health and the environment and efficiently determine a remedy that is effective but not overly burdensome to the parties involved.

PROGRAM PURPOSE

The purpose of the Site Remediation Program is to regulate and provide technical oversight for the investigation and remediation of releases of hazardous waste or hazardous material to the environment; to ensure that those investigations and remedial activities are conducted in a consistent manner that adequately protects human health and the environment; and to enforce regulations regarding the proper disposal of abandoned hazardous waste.

THE PROCESS

Cleaning a contaminated site requires investigation, planning, and action. The Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (https://rules.sos.ri.gov/regulations/part/250-140-30-1) define the specific documents that are needed, or may be needed as part of that process:

- Notification of Release
- Site Investigation Work Plan (SIWP)
- Public Notice of Investigation
- Site Investigation Report (SIR)
- Public Notice of Completed Site Investigation & Public Comment Period on Technical Feasibility of Proposed Remedy
- Remedial Action Work Plan (RAWP)
- Remedial Action
- Closure Report
- Environmental Land Usage Restriction (ELUR), if applicable

FOR MORE INFORMATION, PLEASE CONTACT:

OR

DEM Contact in Attached Letter

RIDEM/OLRSMM – Site Remediation 235 Promenade Street, Suite 380 Providence, RI 02908 Phone: 401-222-2797 Email: Provided in Letter Ashley L. Blauvelt, P.E., Environmental Engineer IV RIDEM/OLRSMM – Site Remediation 235 Promenade Street, Suite 380 Providence, RI 02908 Phone: 401-222-2797 x 2777126 Email: Ashley.blauvelt@dem.ri.gov

BROWNFIELDS

WHAT IS A BROWNFIELD

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.

DETERMING IF A SITE IS A BROWNFIELD OR IS CONTAMINATED

To determine if a site is a brownfield, a Phase I Environmental Site Assessment (ESA) should be conducted. This will determine the history of the property in which one is interested. The Phase I ESA will also determine any Recognized Environmental Concerns (RECs). If RECs are determined, a Phase II ESA, otherwise referred to as a site investigation, will be conducted. The Phase II ESA will determine whether contamination exists at a site.

TYPES OF CONTAMINANTS

- Metals
- Volatile Organic Compounds (VOCs)
- Semi-VOCs
 - Polycyclic Aromatic Hydrocarbons (PAHs)
- Polychlorinated Biphenyls (PCBs)
- Petroleum Hydrocarbons

EXAMPLES OF BROWNFIELDS

- Abandoned Mills
- Gasoline & Service Stations
- Manufacturing Companies
- Dry Cleaners
- Print Shops

- Commercial / Strip Malls
 - Hair & Nail Salons
 - Home Improvement / Paint Stores
- Doctor, Dentist, Veterinary Clinic
- Farms & Orchards

ADVANTAGES TO REDEVELOPING A BROWNFIELD

- Existing infrastructure
- Tax incentives
- Labor concentration
- Improve public health and safety
- Improve air and water quality
- Preserve historical landmarks and heritage architecture
- Beautify urban landscapes
- Reduce neighborhood blight
- Facilitate job growth

REDEVELOPMENT POSSIBILITIES

- Open Space / Green Space / Athletic Fields
- Affordable Housing
- Industrial/Commercial Space
- Mixed-Use Space
- So much more!

ENVIRONMENTAL JUSTICE

HOW IT STARTED

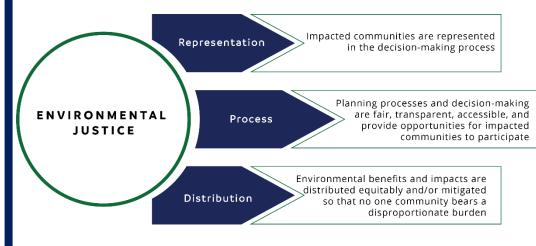
As a result of Rhode Island's industrial history and heritage, many properties in the State have been impacted by past activities. Impacts include environmental contamination by oil and hazardous chemicals that were used in these operations. Many of the impacted sites are in the urban centers of the State. In many cases, low income and minority populations live in the communities around the sites. These populations have been subject to many historical inequities. Addressing these inequities and providing a fair, effective process for future involvement in site remediation projects is a main premise of environmental justice.

WHAT IS ENVIRONMENTAL JUSTICE (EJ)

EJ is the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income, with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies.

WHAT IS AN EJ AREA

EJ focus areas are defined as United States Census block groups that are in the highest fifteen percent (15%) of all Census block groups in RI with respect to the percent population identified as racial minorities or the highest fifteen percent (15%) of RI census block groups with respect to percent population with income identified as being twice the federal poverty level or below (utilizing the most recent and readily available data from the United States Census).


IS MY PROPERTY IN AN EJ AREA

Check out DEM's ArcGIS map:

https://ridemgis.maps.arcgis.com/apps/webappviewer/index.html?id=87e104c8ad b449eb9f905e5f18020de5

HOW DEM ADDRESSES EJ

Reference RIGL §23-19.14-5 to learn more about environmental equity and public participation.

Source: https://deltacouncil.ca.gov/environmental-justice

El Programa de Rehabilitación de Terrenos y Justicia Ambiental

del Departamento de Gestión Ambiental de Rhode Island

PROGRAMA DE REHABILITACIÓN DE TERRENOS DEL DEM

QUIÉNES SOMOS

El Departamento de Gestión Ambiental de Rhode Island (DEM) es la agencia estatal responsable de preservar la calidad del medio ambiente de Rhode Island. En 1995, Rhode Island aprobó la Ley de Rehabilitación y Reutilización de la Propiedad Industrial (modificada en 1997) y estableció un programa voluntario de limpieza de terrenos edificados abandonados a través del DEM. Esta lev creó el Programa de Rehabilitación de Terrenos de la Oficina de Revitalización del Suelo y Gestión de Materiales Sostenibles (LRSMM). El programa fomenta y apoya la reutilización de propiedades contaminadas en todo RI. El Programa se estableció para proporcionar una regulación justa, exhaustiva y coherente de la investigación y rehabilitación de residuos peligrosos, materiales peligrosos y emisiones de petróleo. El programa estatal está diseñado para determinar si un sitio representa una amenaza para la salud humana y el medio ambiente, y para identificar una solución que sea eficaz pero que no sea excesivamente costosa para las partes involucradas.

OBJETIVO DEL PROGRAMA

El objetivo del Programa de Rehabilitación de Terrenos es regular y proporcionar supervisión técnica para la investigación y la rehabilitación de las liberaciones de residuos peligrosos o materiales peligrosos en el medio ambiente; asegurar que esas investigaciones y actividades de rehabilitación se lleven a cabo de una manera uniforme que proteja adecuadamente la salud humana y el medio ambiente; y hacer cumplir los reglamentos relativos a la eliminación adecuada de los residuos peligrosos abandonados.

EL PROCESO

La limpieza de un terreno contaminado requiere investigación, planificación y acción. Las normas y reglamentos para la investigación y rehabilitación de vertidos de materiales peligrosos (https://rules.sos.ri.gov/regulations/part/250-140-30-1) definen los documentos específicos que se necesitan o pueden necesitarse como parte de ese proceso:

- Notificación de divulgación
- Plan de trabajo de investigación del sitio (SIWP)
- Aviso público de la investigación
- Informe de investigación del sitio (SIR)
- Aviso público sobre la finalización de la investigación del terreno y período de comentarios públicos sobre la viabilidad técnica de la solución propuesta
- Plan de trabajo de la acción de rehabilitación (RAWP)
- Acción de rehabilitación
- Informe de finalización
- Restricción del uso del suelo para fines ambientales (ELUR), si corresponde

O BIEN

PARA OBTENER MAS INFORMACION, COMUNIQUESE CON:

Contacto del DEM en la carta adjunta

RIDEM/OLRSMM - Rehabilitación de sitios 235 Promenade Street, Suite 380 Providence, RI 02908 Teléfono: 401-222-2797 Correo electrónico: Proporcionado en la carta

Ashley L. Blauvelt, P.E., Ingeniera Ambiental IV RIDEM/OLRSMM -Rehabilitación de terrenos 235 Promenade Street, Suite 380 Providence, RI 02908 Teléfono: 401-222-2797 x 2777126 Correo electrónico: Ashley.blauvelt@dem.ri.gov

PROGRAMAS DE REHABILITACIÓN DE TERRENOS DEL DEM

QUÉ ES UN TERRENO EDIFICADO ABANDONADO

Los terrenos edificados abandonados son bienes inmuebles cuya ampliación, rehabilitación o reutilización puede complicarse por la presencia o posible presencia de una sustancia peligrosa o un material contaminante.

CÓMO DETERMINAR SI UN SITIO ES UN TERRENO EDIFICADO ABANDONADO O SI ESTÁ CONTAMINADO

Para determinar si un sitio es un terreno edificado abandonado, se debe realizar una Evaluación Ambiental del Sitio (ESA) de Fase I. Esto determinará la historia de la propiedad en la que se está interesado. La fase I de la ESA también determinará cualquier problema ambiental reconocido (REC). Si se determina la presencia de un REC, se llevará a cabo una ESA de fase II, también conocida como investigación del sitio. La fase II de la ESA determinará si el sitio está contaminado.

TIPOS DE CONTAMINANTES

- Metales
- Compuestos orgánicos volátiles (VOC)
- Semi-VOC
 - Hidrocarburos aromáticos policíclicos (PAH)
- Bifenilos policlorados (PCB)
- Hidrocarburos de petróleo

EJEMPLOS DE TERRENOS EDIFICADOS ABANDONADOS

- Molinos abandonados
- Gasolineras y estaciones de servicio
- Fábricas
- Tintorerías
- Imprentas

- Centros comerciales Salones de peluquería y manicura Tiendas de pintura y ferreterías
- · Clínicas médicas, dentales y veterinarias
- Granjas y huertos

VENTAJAS DE LA REURBANIZACIÓN DE UN TERRENO EDIFICADO ABANDONADO

- Infraestructura existente
- Incentivos fiscales
- Concentración de mano de obra
- Mejora de la salud y la seguridad públicas
- Mejora de la calidad del aire y del agua
- Preservación de los monumentos históricos y de la arquitectura patrimonial
- Embellecimiento de los paisajes urbanos
- Reducción del deterioro de los vecindarios
- Fomento del crecimiento del empleo

POSIBILIDADES DE REURBANIZACIÓN

- Espacios abiertos/espacios verdes/campos de deporte
- Viviendas asequibles
- Espacio industrial/comercial
- Espacio de uso mixto
- Y mucho más

JUSTICIA AMBIENTAL

DE QUÉ MANERA SE COMENZÓ

Como resultado de la historia y el patrimonio industrial de Rhode Island, muchas propiedades del estado han sido impactadas por actividades pasadas. Los impactos incluyen la contaminación ambiental por petróleo y productos químicos peligrosos que se utilizaron en estas operaciones. Muchos de los sitios afectados se encuentran en los centros urbanos del Estado. En muchos casos, hay comunidades de baios ingresos y grupos marginados que viven alrededor de estos sitios. Estas poblaciones han sufrido muchas desigualdades históricas. Una de las principales premisas de la justicia ambiental es abordar estas desigualdades y ofrecer un proceso justo y eficaz para la futura participación en los proyectos de rehabilitación de sitios.

QUÉ ES LA JUSTICIA AMBIENTAL (EJ)

La justicia ambiental es el trato justo y la participación significativa de todas las personas, independientemente de su raza, color, origen nacional o ingresos, con respecto al desarrollo, la aplicación y el cumplimiento de las leyes, reglamentos y políticas ambientales.

QUÉ ES UN ÁREA DE JUSTICIA AMBIENTAL

Las áreas de enfoque de justicia ambiental se definen como grupos de bloques del censo de los Estados Unidos que se encuentran en el quince por ciento (15%) más alto de todos los grupos de bloques del censo de RI con respecto al porcentaje de población identificada como minorías raciales o el quince por ciento (15%) más alto de los grupos de bloques del censo de RI con respecto al porcentaje de población con ingresos identificados como el doble del nivel federal de pobreza o por debajo de este (utilizando los datos más recientes y disponibles del censo de los Estados Unidos).

¿ESTÁ MI PROPIEDAD EN UN ÁREA DE JUSTICIA AMBIENTAL?

Consulte el mapa ArcGIS del DEM:

https://ridemgis.maps.arcgis.com/apps/webappviewer/index.html?id=87e104c8ad b449eb9f905e5f18020de5

CÓMO EL DEM ABORDA LA JUSTICIA AMBIENTAL

Consulte la Ley General de Rhode Island (RIGL) §23-19.14-5 para obtener más información sobre la equidad ambiental y la participación pública.

Fuente: https://deltacouncil.ca.gov/environmental-justice

Plat/Lot	Address	Owner	Owner Address
9/173	738 Lonsdale Avenue	Beatrice Somuah	738 Lonsdale Avenue, Central Falls, RI 02860
8/185	743 Lonsdale Avenue	Sandra Cano	302 Pullen Avenue, Pawtucket, RI 02861
8/186	61-63 Claremont Street	Gregorio Morales	61 Claremont Street, Central Falls, RI 02863
8/200	767-771 Lonsdale Avenue	Estate of Roger Garant	771 Lonsdale Avenue, Central Falls, RI 02863
9/207	776 Lonsdale Avenue	Renaissance Development Corp	35 Sockanosset Crossroad, Cranston, RI 02920
9/50	10 Higginson Avenue	City of Central Falls	508 Broad Street, Central Falls, RI 02863

ENVIRONMENTAL INVESTIGATION – REMEDIATION PROJECT INVESTIGACIÓN AMBIENTAL – PROYECTO DE REMEDIACIÓN

International Meat Market 756 & 770 Lonsdale Avenue Plat Map 6 / Lots 26 & 203 Central Falls, Rhode Island

FOR MORE INFORMATION, CONTACT: PARA OBTENER MÁS INFORMACIÓN, CONTACTO:

Joanna Pawlina, Environmental Scientist RI Department of Environmental Management Office of Land Revitalization and Sustainable Materials Management

Site Remediation & Brownfields 235 Promenade Street Providence, RI 02908

Phone: (401) 222-2797 x 2777117 Email: Joanna.Pawlina@dem.ri.gov Joanna Pawlina, científica ambiental Departamento de Gestión Ambiental de RI Oficina de Revitalización de Tierras y Gestión Sostenible de Materiales

Remediación del sitio y terrenos industriales abandonados 235 Promenade Street Providence, RI 02908

Teléfono: (401) 222-2797 x 2777117 Correo electrónico: Joanna.Pawlina@dem.ri.gov

OR

SAGE Environmental, Inc. 301 Friendship Street Providence, RI 02903 401-723-9900 www.SAGE-Enviro.com

Beatrice Somuah 738 Lonsdale Avenue Central Falls, RI 02860

RE: Site Investigation Activities
International Meat Market
756 & 770 Lonsdale Avenue
Plat Map 6 / Lots 26 & 203
Central Falls, Rhode Island

Dear Property Owner:

The attached Public Notice is being provided to inform you that Site Investigation activities at the referenced property will commence. This property neighbors your property, located at 738 Lonsdale Avenue in Central Falls, Rhode Island.

Should you have any questions or comments concerning this correspondence, please do not hesitate to contact this office at (401) 723-9900 or the designated contact at the Rhode Island Department of Environmental Management, Office of Land Revitalization & Sustainable Materials Management, stipulated in the Notice.

Sincerely,

SAGE Environmental, Inc.

Jacob H. Butterworth, MS, LSP

Jacob H. Butterworth

Vice President

Sandra Cano 302 Pullen Avenue Pawtucket, RI 02861

RE: Site Investigation Activities

International Meat Market 756 & 770 Lonsdale Avenue Plat Map 6 / Lots 26 & 203 Central Falls, Rhode Island

Dear Property Owner:

The attached Public Notice is being provided to inform you that Site Investigation activities at the referenced property will commence. This property neighbors your property, located at 743 Lonsdale Avenue in Central Falls, Rhode Island.

Should you have any questions or comments concerning this correspondence, please do not hesitate to contact this office at (401) 723-9900 or the designated contact at the Rhode Island Department of Environmental Management, Office of Land Revitalization & Sustainable Materials Management, stipulated in the Notice.

Sincerely,

SAGE Environmental, Inc.

Jacob H. Butterworth, MS, LSP

Jacob H. Butterworth

Vice President

Gregorio Morales 61 Claremont Street Central Falls, RI 02863

RE: Site Investigation Activities

International Meat Market 756 & 770 Lonsdale Avenue Plat Map 6 / Lots 26 & 203 Central Falls, Rhode Island

Dear Property Owner:

The attached Public Notice is being provided to inform you that Site Investigation activities at the referenced property will commence. This property neighbors your property, located at 61-63 Claremont Street in Central Falls, Rhode Island.

Should you have any questions or comments concerning this correspondence, please do not hesitate to contact this office at (401) 723-9900 or the designated contact at the Rhode Island Department of Environmental Management, Office of Land Revitalization & Sustainable Materials Management, stipulated in the Notice.

Sincerely,

SAGE Environmental, Inc.

Jacob H. Butterworth, MS, LSP

Jacob H. Butterworth

Vice President

Estate of Roger Garant 771 Lonsdale Avenue Central Falls, RI 02863

RE: Site Investigation Activities

International Meat Market 756 & 770 Lonsdale Avenue Plat Map 6 / Lots 26 & 203 Central Falls, Rhode Island

Dear Property Owner:

The attached Public Notice is being provided to inform you that Site Investigation activities at the referenced property will commence. This property neighbors your property, located at 767-771 Lonsdale Avenue in Central Falls, Rhode Island.

Should you have any questions or comments concerning this correspondence, please do not hesitate to contact this office at (401) 723-9900 or the designated contact at the Rhode Island Department of Environmental Management, Office of Land Revitalization & Sustainable Materials Management, stipulated in the Notice.

Sincerely,

SAGE Environmental, Inc.

Jacob H. Butterworth, MS, LSP

Jacob H. Butterworth

Vice President

Renaissance Development Corp 35 Sockanosset Crossroad Cranston, RI 02920

RE: Site Investigation Activities

International Meat Market 756 & 770 Lonsdale Avenue Plat Map 6 / Lots 26 & 203 Central Falls, Rhode Island

Dear Property Owner:

The attached Public Notice is being provided to inform you that Site Investigation activities at the referenced property will commence. This property neighbors your property, located at 776 Lonsdale Avenue in Central Falls, Rhode Island.

Should you have any questions or comments concerning this correspondence, please do not hesitate to contact this office at (401) 723-9900 or the designated contact at the Rhode Island Department of Environmental Management, Office of Land Revitalization & Sustainable Materials Management, stipulated in the Notice.

Sincerely,

SAGE Environmental, Inc.

Jacob H. Butterworth, MS, LSP

Jacob H. Butterworth

Vice President

City of Central Falls 508 Broad Street Central Falls, RI 02863

RE: Site Investigation Activities
International Meat Market
756 & 770 Lonsdale Avenue
Plat Map 6 / Lots 26 & 203

Central Falls, Rhode Island

Dear Property Owner:

The attached Public Notice is being provided to inform you that Site Investigation activities at the referenced property will commence. This property neighbors your property, located at 10 Higginson Avenue in Central Falls, Rhode Island.

Should you have any questions or comments concerning this correspondence, please do not hesitate to contact this office at (401) 723-9900 or the designated contact at the Rhode Island Department of Environmental Management, Office of Land Revitalization & Sustainable Materials Management, stipulated in the Notice.

Sincerely,

SAGE Environmental, Inc.

Jacob H. Butterworth, MS, LSP

Jacob H. Butterworth

Vice President

January 5, 2023

Rhode Island Department of Environmental Management (RIDEM) Office of Land Revitalization and Sustainable Materials Management Site Remediation Program

Sent Via Email: DEM.OWMSiteRemNor@dem.ri.gov & ashley.blauvelt@dem.ri.gov

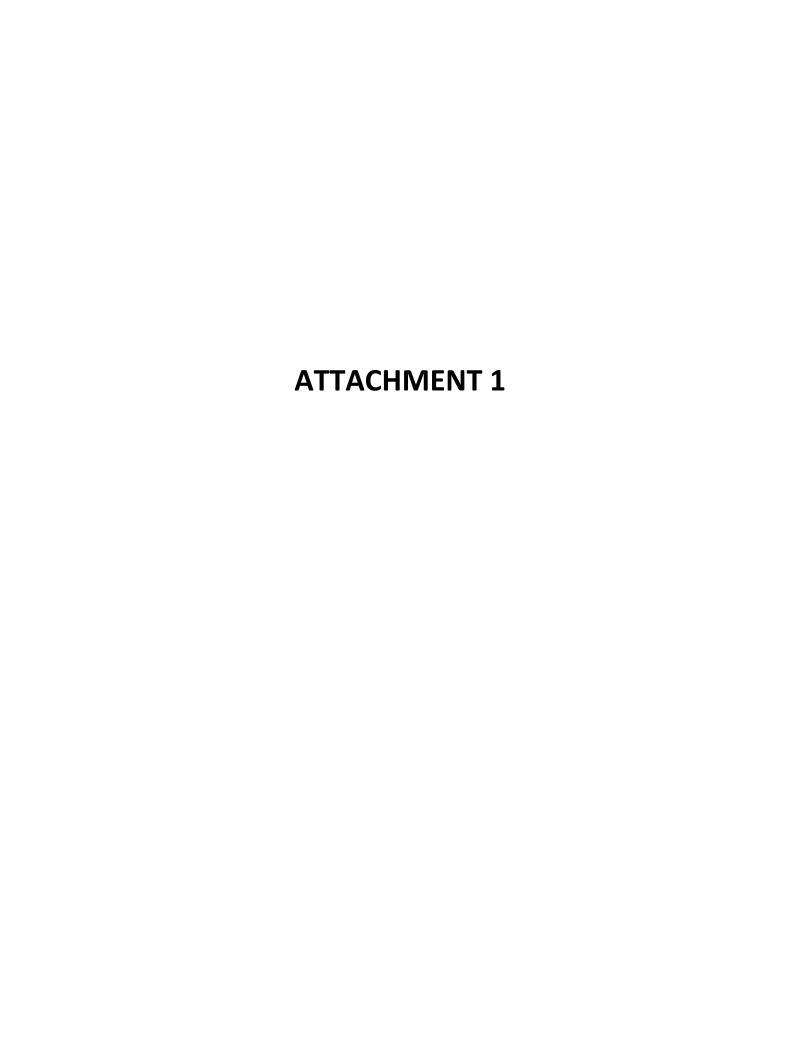
RE: Release Notification
756 & 770 Lonsdale Avenue
Central Falls, RI 02863
SAGE Project No. S4350

SAGE Environmental, Inc. (SAGE) on behalf of the City of Central Falls, owner of the above-referenced location (hereafter, "Site") is submitting the attached Hazardous Material Release Notification Form (RNF) and its corresponding attachments. The RNF has been provided as **Attachment 1**.

SAGE has conducted a subsurface investigation for the planned purposes of Site reuse as a school. As such, sampling of soils and groundwater has been conducted across the current meat market facility. These results are more fully described in the documents included in **Attachment 2**. However, in summary, impacts have been identified at the Site and include:

- Laboratory analytical results for select soil samples collected from the Site identified a number of semi volatile organic compounds (SVOCs), arsenic, lead, and total petroleum hydrocarbons (TPH) in excess of the RIDEM Method 1 Residential Direct Exposure Criteria (R-DEC); and
- No groundwater impacts were identified above RIDEM GB Groundwater Objectives at the Site.

At this time, SAGE intends to complete the necessary Site Investigation Report (SIR) with associated public notice requirements. SAGE anticipates the proposed remedial approach will include Site-wide capping that is to be conducted in conjunction with the redevelopment of the Site. Currently, plans for the Site redevelopment are underway and will be submitted to the RIDEM upon finalization. At this time, it is the opinion of SAGE that the Safe School Siting Act is applicable to the Site and will conduct public involvement as required.


Note that the Site reuse/redevelopment is also associated with the westerly adjacent parcel addressed as 10 Higginson Avenue (RIDEM File No. SR-04-2061), which has undergone investigation and public notice requirements. The Site Investigation Report (SIR) has also been submitted for this parcel. While the two parcels are anticipated to be a part of the same redevelopment, it is SAGE's understanding that the remedial efforts and associated documentation will be separate RIDEM reporting requirements.

Should you have any questions or concerns, please do not hesitate to contact either of the undersigned.

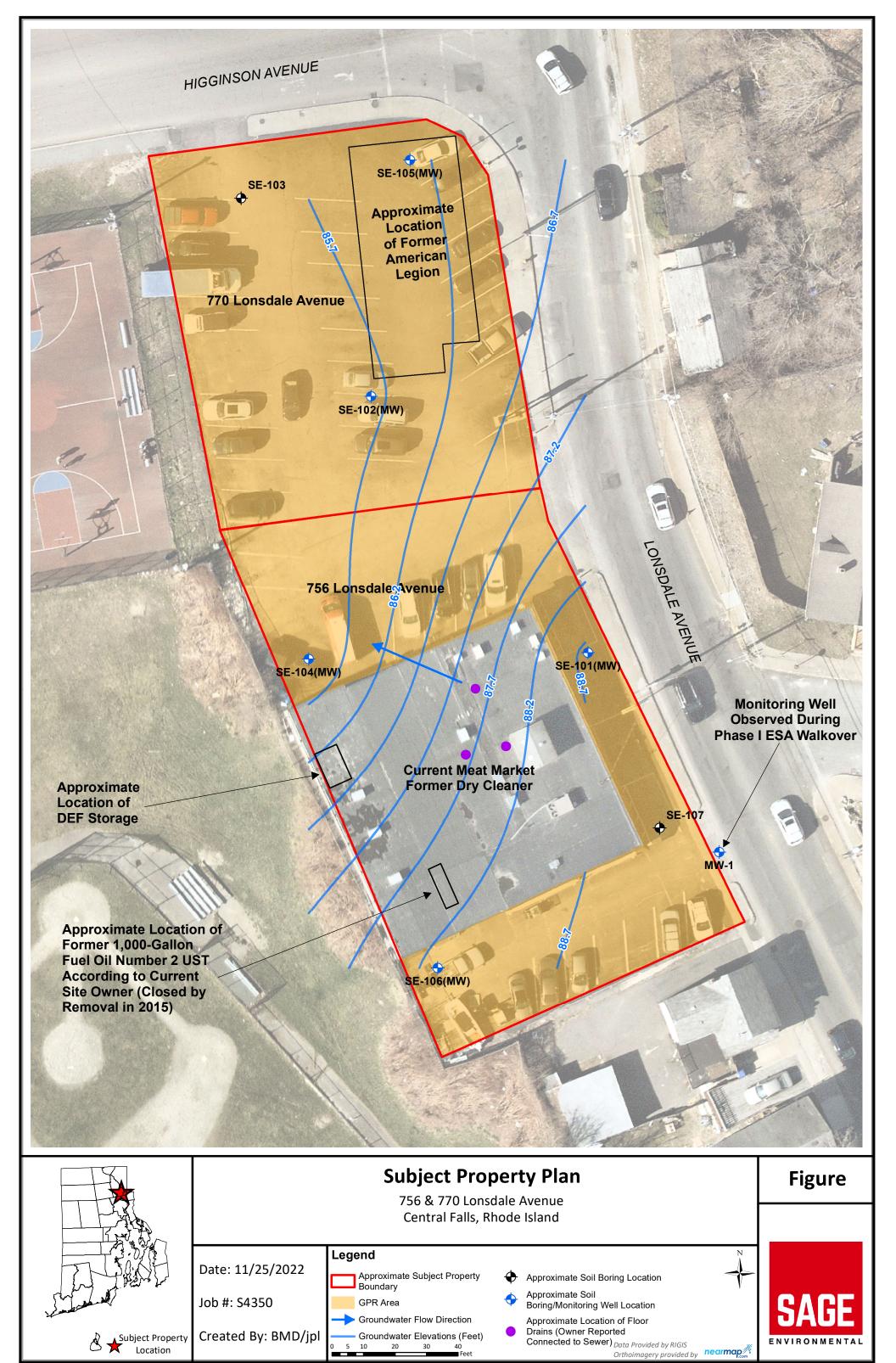
Sincerely,	
SAGE Environmental, Inc.	
Lacy Reyna, MS	Jacob H. Butterworth, MS, LSP
Environmental Scientist	Vice President

Attachment 1 OLRSM – Site Remediation Section Hazardous Material Release Notification Form

Attachment 2 Site Plan, Data Tables, and Laboratory Analytical Reports

Office of Land Revitalization & Sustainable Materials Management Site Remediation Section

HAZARDOUS MATERIAL RELEASE NOTIFICATION FORM


THIS FORM IS NOT TO BE USED TO REPORT AN IMMINENT HAZARD

l .	Notifier Information:
	Name: Lacy Reyna, SAGE Environmental, Inc.
	Address: 301 Friendship Street, Providence, RI 02903
	Phone: 401-723-9900
	Email: LReyna@sage-enviro.com
	Status:
	If Environmental Professional is selected, please supply the follow information for your client below:
	Name: City of Central Falls, RI - Contact: Thomas E. Deller, AICP - Director of the Department of Planning and Economic Development
	Address: 1280 High Street, Central Falls, RI 02863
	Phone: 401-616-2481
	Email: tdeller@centralfallsri.us
	Status: X Owner
2.	Property Information:
	Name of Site: International Meat Market
	Site Address: 756 & 770 Lonsdale Avenue
	Plat/Lot Numbers: Assessor's Plat 9, Lots 26 & 203
	Approximate Acreage of Property: 0.68 of an acre
	Latitude/Longitude: 41.886393, -71.401781
	Site Land Usage Type: Residential Industrial/Commercial
	Location of Release (Attach site sketch as necessary):
	Impacts isolated to soil - VOC detections in groundwater were below the GB Groundwater Objectives. Site plan ar data are attached hereto.
3.	Release Information:
	Date of Discovery: October 2022

Source: Historical Filling Activities

	Release Media: Soil		
	Hazardous Materials and Concer	ntrations (Attach certificates of	analysis as necessary):
	Information attached.		
	Extent of Contamination: Contained to Site.		
	Approximate acreage of Contam	inated Area: 0.68 of an acre	
4.	Resource Information:		
	Site Land Usage:	X Industrial/Commercial	Residential
	Adjacent Land Usage:	X Industrial/Commercial	X Residential
	Site Groundwater Class:	☐ GA/GAA	⋈ GB
	Adjacent Groundwater Class: (if different than site groundwater classif	GA/GAA Gation within 500 feet)	▼ GB
	Nearest Surface Water or Wetlar	nd: Less Than 500 Feet	Greater Than 500 Feet
	Potential for adverse impact	?	X No
5.	Potentially Responsible Parties:		
	Name: City of Central Falls, RI		
	Address: 1280 High Street, Centi	ral Falls, RI 02863	
	Status: X Owner C	Operator	
	Name:		
	Address:		
	Status: Owner C	Operator	
6.	Measures taken or proposed to be	taken in response to Release:	
	Future actions include site-wide cap depressurization system.	pping, vapor barrier placement	a, and installation/operation of a passive sub-slab
	Check all that apply: X S	Site Investigation Short	-Term/Emergency
	F	EXPRESS Policy Dig &	k Haul Policy
7.	Other significant remarks about R	elease (Will a background det	termination be made?)
	The Site is anticipated for redevelor Environmental Justice Area.	oment as a school along with t	he westerly adjacent parcel. The Site is also in an
	1 0		01/06/2022
	Signature: <u>Lacy Reyna</u>	Date	. 01/06/2023
	Title: Environmental Scientist		

Summary of Soil Analytical Results 756 & 770 Lonsdale Avenue, Central Falls, RI

Sample ID (Depth (Feet))/Date	SE-101 (MW) 0-2	SE-102 (MW) 10-13	SE-103 2-3	SE-103 10-11	SE-104 (MW) 0-2	SE-104 (MW) 10-12	SE-105 (MW) 0-1	SE-105 (MW) 10-14	SE-106 (MW) 0-2	SE-106 (MW) 10-11	SE-107 15-17	RIDEM Method 1	RIDEM Method 1
	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	Residential	GB Leachability
	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Direct Exposure Criteria	Criteria
Analyte	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Birect Exposure criteria	Circeita
Semivolatile organic compounds (mg/kg)													
Acenaphthene	<0.133	NA	<1.4	<1.53	0.856	1.08	<0.687	NA	<0.695	<0.138	NA	43	NE
Acenaphthylene	<0.133	NA	<1.4	<1.53	0.738	<0.779	<0.687	NA	<0.695	<0.138	NA	23	NE
Anthracene	<0.133	NA	<1.4	1.7	2.79	2.62	<0.687	NA	<0.695	<0.138	NA	35	NE
Benzo(a)anthracene	<0.133	NA	<1.4	5.88	6.19	6.07	<0.687	NA	<0.695	<0.138	NA	0.9	NE
Benzo(a)pyrene	0.167	NA	<1.4	5.47	6.5	5.09	<0.687	NA	< 0.695	<0.138	NA	0.4	NE
Benzo(b)fluoranthene	0.246	NA	<1.4	6.69	7.88	6.11	<0.687	NA	0.802	<0.138	NA	0.9	NE
Benzo(g,h,i)perylene	0.17	NA	<1.4	4.27	5.45	3.18	<0.687	NA	<0.695	<0.138	NA	0.8	NE
Benzo(k)fluoranthene	<0.133	NA	<1.4	2.42	3	2.04	<0.687	NA	<0.695	<0.138	NA	0.9	NE
Chrysene	0.154	NA	<1.4	5.76	6.21	7.03	<0.687	NA	<0.695	<0.138	NA	0.4	NE
Dibenz(a,h)anthracene	<0.133	NA	<1.4	<1.53	1.12	<0.779	<0.687	NA	<0.695	<0.138	NA	0.4	NE
Dibenzofuran	<0.133	NA	<1.4	<1.53	<0.695	1.02	<0.687	NA	<0.695	<0.138	NA	NE	NE
Fluoranthene	0.171	NA	<1.4	9.99	11.1	13.2	0.783	NA	0.945	<0.138	NA	20	NE
Fluorene	<0.133	NA	<1.4	<1.53	0.891	0.998	<0.687	NA	<0.695	<0.138	NA	28	NE
Indeno(1,2,3-cd)pyrene	0.146	NA	<1.4	3.98	5.21	2.99	<0.687	NA	<0.695	<0.138	NA	0.9	NE
Naphthalene	<0.133	NA	<1.4	<1.53	1.38	1.08	<0.687	NA	<0.695	<0.138	NA	54	NE
Phenanthrene	<0.133	NA	<1.4	5.71	7.71	16.3	<0.687	NA	<0.695	<0.138	NA	40	NE
Pyrene	0.235	NA	<1.4	11.8	12.7	18	0.955	NA	1.1	<0.138	NA	13	NE
Total Metals (mg/kg)													
Antimony	<0.75	NA	<0.74	<0.82	<0.75	2.76	<0.72	NA	1.44	<0.78	NA	10	NE
Arsenic	2.27	NA	4.64	10.4	2.29	11.8	3.41	NA	2.26	<1.18	NA	7	NE
Cadmium	0.65	NA	1.25	6	<0.57	11.2	0.96	NA	0.93	<0.59	NA	39	NE
Chromium	6.62	NA	13.3	49.6	8.03	98.3	11	NA	6.35	2.34	NA	NE	NE
Copper	10.5	NA	21.1	302	11.8	198	13	NA	30	3.59	NA	3100	NE
Lead	58.3	NA	29	325	41.2	417	23.1	NA	86.9	3.44	NA	150	NE
Nickel	5.92	NA	8.45	38.3	5.11	74.1	10.1	NA	5.66	2.22	NA	1000	NE
Zinc	39	NA	43.1	490	63.2	324	38.4	NA	62.4	8.1	NA	6000	NE
Mercury	<0.164	NA	0.162	<0.181	0.524	<0.177	<0.172	NA	0.182	<0.162	NA	23	NE
Total Petroleum Hydrocarbons (mg/kg)	Total Petroleum Hydrocarbons (mg/kg)												
Total Petroleum Hydrocarbons	31	<31	1060	954	65	232	75	<31	135	38	<31	500	2500
Volatile Organic Compounds (mg/kg)	< RL	< RL	< RL	< RL	< RL	< RL	< RL	< RL	< RL	NA	< RL	Various	Various

Cases where a reporting limit is not sufficiently low for evaluating compliance with one or more of the limits provided.

Cells with this color indicate: Cases where the analyte was detected but is within the limits provided.

Cells with this color indicate: Cases where the analyte concentration violates one or more of the limits provided. (The violated limits are colored as well.)

<x: Indicates analyte concentration not detected at or above specified laboratory reporting limit (x)

NE: Standard not established for this substance

NA: Not analyzed.

Summary of Groundwater Analytical Results 756 & 770 Lonsdale Avenue, Central Falls, RI

Sample ID/Date	SE-101 (MW) 10/28/2022 Sample	SE-102 (MW) 10/28/2022 Sample	SE-104 (MW) 10/28/2022 Sample	SE-105 (MW) 10/28/2022 Sample	SE-106 (MW) 10/28/2022 Sample	RIDEM Method 1 GB Groundwater
Analyte	Result	Result	Result	Result	Result	Objectives
Volatile Organic Compounds (ug/l)						
trans-1,2-Dichloroethene	<1	<1	3	<1	<1	2800
cis-1,2-Dichloroethene	<1	<1	29	<1	<1	2400
Tetrachloroethene	30	<1	<1	<1	<1	150

Cells with this color indicate: Cases where the analyte was detected but is within the limits provided.

<x: Indicates analyte concentration not detected at or above specified laboratory reporting limit (x)

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 2J21011 Client Project: S4350 - 756 & 770 Lonsdale Ave

Report Date: 07-November-2022

Prepared for:

Cathy Racine SAGE Environmental 172 Armistice Blvd Pawtucket, RI 02860

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 10/21/22. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 2J21011. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
2J21011-01	SE-101 (MW) 0-2	Soil	10/20/2022	10/21/2022
2J21011-02	SE-102 (MW) 10-13	Soil	10/20/2022	10/21/2022
2J21011-03	SE-103 2-3	Soil	10/20/2022	10/21/2022
2J21011-04	SE-103 10-11	Soil	10/20/2022	10/21/2022
2J21011-05	SE-104 (MW) 0-2	Soil	10/20/2022	10/21/2022
2J21011-06	SE-104 (MW) 10-12	Soil	10/20/2022	10/21/2022
2J21011-07	SE-105 (MW) 0-1	Soil	10/20/2022	10/21/2022
2J21011-08	SE-105 (MW) 10-14	Soil	10/20/2022	10/21/2022
2J21011-09	SE-106 (MW) 0-2	Soil	10/20/2022	10/21/2022
2J21011-10	SE-106 (MW) 10-11	Soil	10/20/2022	10/21/2022
2J21011-11	SE-107 15-17	Soil	10/20/2022	10/21/2022

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

SE-101 (MW) 0-2 (Lab Number: 2J21011-01)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-102 (MW) 10-13 (Lab Number: 2J21011-02)

<u>Analysis</u>	<u>Method</u>
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C

SE-103 10-11 (Lab Number: 2J21011-04)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-103 2-3 (Lab Number: 2J21011-03)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C

Request for Analysis (continued)

SE-103 2-3 (Lab Number: 2J21011-03) (continued)

<u>Analysis</u>	<u>Method</u>
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-104 (MW) 0-2 (Lab Number: 2J21011-05)

Analysis	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-104 (MW) 10-12 (Lab Number: 2J21011-06)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

Request for Analysis (continued)

SE-105 (MW) 0-1 (Lab Number: 2J21011-07)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-105 (MW) 10-14 (Lab Number: 2J21011-08)

AnalysisMethodTotal Petroleum HydrocarbonsEPA-8100-modVolatile Organic CompoundsEPA 8260C

SE-106 (MW) 0-2 (Lab Number: 2J21011-09)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

Request for Analysis (continued)

SE-106 (MW) 10-11 (Lab Number: 2J21011-10)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Zinc	EPA 6010C

SE-107 15-17 (Lab Number: 2J21011-11)

<u>Analysis</u>	<u>Method</u>
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C

Method References

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: Total Metals

Sample: SE-101 (MW) 0-2 Lab Number: 2J21011-01 (Soil)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	ND		0.75	mg/kg	10/24/22	10/27/22	
Arsenic	2.27		1.13	mg/kg	10/24/22	10/27/22	
Beryllium	ND		0.37	mg/kg	10/24/22	10/27/22	
Cadmium	0.65		0.57	mg/kg	10/24/22	10/27/22	
Chromium	6.62		0.57	mg/kg	10/24/22	10/27/22	
Copper	10.5		2.27	mg/kg	10/24/22	10/27/22	
Lead	58.3		0.57	mg/kg	10/24/22	10/27/22	
Mercury	ND		0.164	mg/kg	10/28/22	10/28/22	
Nickel	5.92		0.57	mg/kg	10/24/22	10/27/22	
Selenium	ND		1.13	mg/kg	10/24/22	10/27/22	
Silver	ND		1.13	mg/kg	10/24/22	10/27/22	
Zinc	39.0		2.3	mg/kg	10/24/22	10/27/22	
Thallium	ND		0.37	mg/kg	10/24/22	10/27/22	

Results: Total Metals

Sample: SE-103 2-3 Lab Number: 2J21011-03 (Soil)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Antimony	ND		0.74	mg/kg	10/24/22	10/27/22
Arsenic	4.64		1.12	mg/kg	10/24/22	10/27/22
Beryllium	ND		0.37	mg/kg	10/24/22	10/27/22
Cadmium	1.25		0.56	mg/kg	10/24/22	10/27/22
Chromium	13.3		0.56	mg/kg	10/24/22	10/27/22
Copper	21.1		2.24	mg/kg	10/24/22	10/27/22
Lead	29.0		0.56	mg/kg	10/24/22	10/27/22
Mercury	0.162		0.156	mg/kg	10/28/22	10/28/22
Nickel	8.45		0.56	mg/kg	10/24/22	10/27/22
Selenium	ND		1.12	mg/kg	10/24/22	10/27/22
Silver	ND		1.12	mg/kg	10/24/22	10/27/22
Zinc	43.1		2.2	mg/kg	10/24/22	10/27/22
Thallium	ND		0.37	mg/kg	10/24/22	10/27/22

Results: Total Metals

Sample: SE-103 10-11 Lab Number: 2J21011-04 (Soil)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Antimony	ND		0.82	mg/kg	10/24/22	10/27/22
Arsenic	10.4		1.24	mg/kg	10/24/22	10/27/22
Beryllium	ND		0.41	mg/kg	10/24/22	10/27/22
Cadmium	6.00		0.62	mg/kg	10/24/22	10/27/22
Chromium	49.6		0.62	mg/kg	10/24/22	10/27/22
Copper	302		2.47	mg/kg	10/24/22	10/27/22
Lead	325		0.62	mg/kg	10/24/22	10/27/22
Mercury	ND		0.181	mg/kg	10/28/22	10/28/22
Nickel	38.3		0.62	mg/kg	10/24/22	10/27/22
Selenium	ND		1.24	mg/kg	10/24/22	10/27/22
Silver	ND		1.24	mg/kg	10/24/22	10/27/22
Zinc	490		2.5	mg/kg	10/24/22	10/27/22
Thallium	ND		0.41	mg/kg	10/24/22	10/27/22

Results: Total Metals

Sample: SE-104 (MW) 0-2 Lab Number: 2J21011-05 (Soil)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	ND		0.75	mg/kg	10/24/22	10/27/22	
Arsenic	2.29		1.13	mg/kg	10/24/22	10/27/22	
Beryllium	ND		0.37	mg/kg	10/24/22	10/27/22	
Cadmium	ND		0.57	mg/kg	10/24/22	10/27/22	
Chromium	8.03		0.57	mg/kg	10/24/22	10/27/22	
Copper	11.8		2.26	mg/kg	10/24/22	10/27/22	
Lead	41.2		0.57	mg/kg	10/24/22	10/27/22	
Mercury	0.524		0.160	mg/kg	10/28/22	10/28/22	
Nickel	5.11		0.57	mg/kg	10/24/22	10/27/22	
Selenium	ND		1.13	mg/kg	10/24/22	10/27/22	
Silver	ND		1.13	mg/kg	10/24/22	10/27/22	
Zinc	63.2		2.3	mg/kg	10/24/22	10/27/22	
Thallium	ND		0.37	mg/kg	10/24/22	10/27/22	

Results: Total Metals

Sample: SE-104 (MW) 10-12 Lab Number: 2J21011-06 (Soil)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	2.76		0.86	mg/kg	10/24/22	10/27/22	
Arsenic	11.8		1.31	mg/kg	10/24/22	10/27/22	
Beryllium	ND		0.43	mg/kg	10/24/22	10/27/22	
Cadmium	11.2		0.65	mg/kg	10/24/22	10/27/22	
Chromium	98.3		0.65	mg/kg	10/24/22	10/27/22	
Copper	198		2.62	mg/kg	10/24/22	10/27/22	
Lead	417		0.65	mg/kg	10/24/22	10/27/22	
Mercury	ND		0.177	mg/kg	10/28/22	10/28/22	
Nickel	74.1		0.65	mg/kg	10/24/22	10/27/22	
Selenium	ND		1.31	mg/kg	10/24/22	10/27/22	
Silver	ND		1.31	mg/kg	10/24/22	10/27/22	
Zinc	324		2.6	mg/kg	10/24/22	10/27/22	
Thallium	ND		0.43	mg/kg	10/24/22	10/27/22	

Results: Total Metals

Sample: SE-105 (MW) 0-1 Lab Number: 2J21011-07 (Soil)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	ND		0.72	mg/kg	10/24/22	10/27/22	
Arsenic	3.41		1.09	mg/kg	10/24/22	10/27/22	
Beryllium	ND		0.36	mg/kg	10/24/22	10/27/22	
Cadmium	0.96		0.55	mg/kg	10/24/22	10/27/22	
Chromium	11.0		0.55	mg/kg	10/24/22	10/27/22	
Copper	13.0		2.18	mg/kg	10/24/22	10/27/22	
Lead	23.1		0.55	mg/kg	10/24/22	10/27/22	
Mercury	ND		0.172	mg/kg	10/28/22	10/28/22	
Nickel	10.1		0.55	mg/kg	10/24/22	10/27/22	
Selenium	ND		1.09	mg/kg	10/24/22	10/27/22	
Silver	ND		1.09	mg/kg	10/24/22	10/27/22	
Zinc	38.4		2.2	mg/kg	10/24/22	10/27/22	
Thallium	ND		0.36	mg/kg	10/24/22	10/27/22	

Results: Total Metals

Sample: SE-106 (MW) 0-2 Lab Number: 2J21011-09 (Soil)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	1.44		0.76	mg/kg	10/24/22	10/28/22	
Arsenic	2.26		1.16	mg/kg	10/24/22	10/28/22	
Beryllium	ND		0.38	mg/kg	10/24/22	10/28/22	
Cadmium	0.93		0.58	mg/kg	10/24/22	10/28/22	
Chromium	6.35		0.58	mg/kg	10/24/22	10/28/22	
Copper	30.0		2.32	mg/kg	10/24/22	10/28/22	
Lead	86.9		0.58	mg/kg	10/24/22	10/28/22	
Mercury	0.182		0.160	mg/kg	10/28/22	10/28/22	
Nickel	5.66		0.58	mg/kg	10/24/22	10/28/22	
Selenium	ND		1.16	mg/kg	10/24/22	10/28/22	
Silver	ND		1.16	mg/kg	10/24/22	10/28/22	
Zinc	62.4		2.3	mg/kg	10/24/22	10/28/22	
Thallium	ND		0.38	mg/kg	10/24/22	10/28/22	

Results: Total Metals

Sample: SE-106 (MW) 10-11 Lab Number: 2J21011-10 (Soil)

Reporting							
Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
ND		0.78	mg/kg	10/24/22	10/28/22		
ND		1.18	mg/kg	10/24/22	10/28/22		
ND		0.39	mg/kg	10/24/22	10/28/22		
ND		0.59	mg/kg	10/24/22	10/28/22		
2.34		0.59	mg/kg	10/24/22	10/28/22		
3.59		2.36	mg/kg	10/24/22	10/28/22		
3.44		0.59	mg/kg	10/24/22	10/28/22		
ND		0.162	mg/kg	10/28/22	10/28/22		
2.22		0.59	mg/kg	10/24/22	10/28/22		
ND		1.18	mg/kg	10/24/22	10/28/22		
ND		1.18	mg/kg	10/24/22	10/28/22		
8.1		2.4	mg/kg	10/24/22	10/28/22		
ND		0.39	mg/kg	10/24/22	10/28/22		
	ND ND ND ND 2.34 3.59 3.44 ND 2.22 ND ND	ND ND ND ND 2.34 3.59 3.44 ND 2.22 ND ND	Result Qual Limit ND 0.78 ND 1.18 ND 0.39 ND 0.59 2.34 0.59 3.59 2.36 3.44 0.59 ND 0.162 2.22 0.59 ND 1.18 ND 1.18 ND 1.18 8.1 2.4	Result Qual Limit Units ND 0.78 mg/kg ND 1.18 mg/kg ND 0.39 mg/kg ND 0.59 mg/kg 2.34 0.59 mg/kg 3.59 2.36 mg/kg ND 0.59 mg/kg ND 0.162 mg/kg ND 1.18 mg/kg ND 1.18 mg/kg ND 1.18 mg/kg 8.1 2.4 mg/kg	Result Qual Limit Units Date Prepared ND 0.78 mg/kg 10/24/22 ND 1.18 mg/kg 10/24/22 ND 0.39 mg/kg 10/24/22 ND 0.59 mg/kg 10/24/22 2.34 0.59 mg/kg 10/24/22 3.59 2.36 mg/kg 10/24/22 ND 0.162 mg/kg 10/24/22 ND 0.162 mg/kg 10/28/22 ND 1.18 mg/kg 10/24/22 ND 1.18 mg/kg 10/24/22 ND 1.18 mg/kg 10/24/22 ND 1.18 mg/kg 10/24/22 ND 1.18 mg/kg 10/24/22		

Sample: SE-101 (MW) 0-2 Lab Number: 2J21011-01 (Soil)

Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed		
Acetone	ND	5	ug/kg	10/25/22	10/25/22		
Benzene	ND	5	ug/kg	10/25/22	10/25/22		
Bromobenzene	ND	5	ug/kg	10/25/22	10/25/22		
Bromochloromethane	ND	5	ug/kg	10/25/22	10/25/22		
Bromodichloromethane	ND	5	ug/kg	10/25/22	10/25/22		
Bromoform	ND	5	ug/kg	10/25/22	10/25/22		
Bromomethane	ND	5	ug/kg	10/25/22	10/25/22		
2-Butanone	ND	5	ug/kg	10/25/22	10/25/22		
ert-Butyl alcohol	ND	5	ug/kg	10/25/22	10/25/22		
sec-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22		
n-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22		
tert-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22		
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/25/22	10/25/22		
Carbon Disulfide	ND	5	ug/kg	10/25/22	10/25/22		
Carbon Tetrachloride	ND	5	ug/kg	10/25/22	10/25/22		
Chlorobenzene	ND	5	ug/kg	10/25/22	10/25/22		
Chloroethane	ND	5	ug/kg	10/25/22	10/25/22		
Chloroform	ND ND	6	ug/kg ug/kg	10/25/22	10/25/22		
Chloromethane	ND ND	5	ug/kg ug/kg	10/25/22	10/25/22		
-Chlorotoluene	ND ND	5	ug/kg ug/kg	10/25/22	10/25/22		
-Chlorotoluene	ND	5					
	ND ND	5	ug/kg	10/25/22	10/25/22 10/25/22		
,2-Dibromo-3-chloropropane (DBCP)			ug/kg	10/25/22			
oibromochloromethane	ND	5	ug/kg	10/25/22	10/25/22		
,2-Dibromoethane (EDB)	ND	5	ug/kg	10/25/22	10/25/22		
bibromomethane	ND	5	ug/kg	10/25/22	10/25/22		
1,2-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22		
1,3-Dichlorobenzene	ND	5	ug/kg 	10/25/22	10/25/22		
1,4-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22		
1,1-Dichloroethane	ND	5	ug/kg	10/25/22	10/25/22		
1,2-Dichloroethane	ND	5	ug/kg	10/25/22	10/25/22		
trans-1,2-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22		
cis-1,2-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22		
1,1-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22		
1,2-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22		
2,2-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22		
cis-1,3-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22		
trans-1,3-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22		
1,1-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22		
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/25/22	10/25/22		
Diethyl ether	ND	5	ug/kg	10/25/22	10/25/22		
,4-Dioxane	ND	94	ug/kg	10/25/22	10/25/22		
Ethylbenzene	ND	5	ug/kg	10/25/22	10/25/22		
Hexachlorobutadiene	ND	5	ug/kg	10/25/22	10/25/22		
2-Hexanone	ND	5	ug/kg	10/25/22	10/25/22		
Isopropylbenzene	ND	5	ug/kg	10/25/22	10/25/22		
p-Isopropyltoluene	ND	5	ug/kg	10/25/22	10/25/22		
Methylene Chloride	ND	47	ug/kg	10/25/22	10/25/22		
4-Methyl-2-pentanone	ND	5	ug/kg	10/25/22	10/25 Pag		

Sample: SE-101 (MW) 0-2 (Continued)

Lab Number: 2J21011-01 (Soil)

		Reporting			
Analyte	Result Qua	l Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	5	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Styrene	ND	5	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	5	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	5	ug/kg	10/25/22	10/25/22
Toluene	ND	5	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	5	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	5	ug/kg	10/25/22	10/25/22
o-Xylene	ND	5	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	9	ug/kg	10/25/22	10/25/22
Total xylenes	ND	5	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	5	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	5	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	5	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	5	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	5	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	:s		
4-Bromofluorobenzene	94.1%	<i>70-13</i>	30	10/25/22	10/25/22
1,2-Dichloroethane-d4	106%	70-13	80	10/25/22	10/25/22
Toluene-d8	102%	70-13	80	10/25/22	10/25/22

Sample: SE-102 (MW) 10-13 Lab Number: 2J21011-02 (Soil)

Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed		
acetone	ND	7	ug/kg	10/25/22	10/25/22		
Benzene	ND	7	ug/kg	10/25/22	10/25/22		
Bromobenzene	ND	7	ug/kg	10/25/22	10/25/22		
Bromochloromethane	ND	7	ug/kg	10/25/22	10/25/22		
Bromodichloromethane	ND	7	ug/kg	10/25/22	10/25/22		
Bromoform	ND	7	ug/kg	10/25/22	10/25/22		
Bromomethane	ND	7	ug/kg	10/25/22	10/25/22		
2-Butanone	ND	7	ug/kg	10/25/22	10/25/22		
tert-Butyl alcohol	ND	7	ug/kg	10/25/22	10/25/22		
sec-Butylbenzene	ND	7	ug/kg	10/25/22	10/25/22		
n-Butylbenzene	ND	7	ug/kg	10/25/22	10/25/22		
tert-Butylbenzene	ND	7	ug/kg	10/25/22	10/25/22		
Methyl t-butyl ether (MTBE)	ND	7	ug/kg	10/25/22	10/25/22		
Carbon Disulfide	ND	7	ug/kg	10/25/22	10/25/22		
Carbon Tetrachloride	ND	7	ug/kg	10/25/22	10/25/22		
Chlorobenzene	ND	7	ug/kg	10/25/22	10/25/22		
Chloroethane	ND	7	ug/kg	10/25/22	10/25/22		
Chloroform	ND	8	ug/kg	10/25/22	10/25/22		
Chloromethane	ND	7	ug/kg	10/25/22	10/25/22		
I-Chlorotoluene	ND	7	ug/kg	10/25/22	10/25/22		
-Chlorotoluene	ND	7	ug/kg	10/25/22	10/25/22		
,2-Dibromo-3-chloropropane (DBCP)	ND	7	ug/kg	10/25/22	10/25/22		
Dibromochloromethane	ND	7	ug/kg	10/25/22	10/25/22		
,2-Dibromoethane (EDB)	ND ND	7	ug/kg	10/25/22	10/25/22		
ibromomethane	ND ND	7	ug/kg ug/kg	10/25/22	10/25/22		
	ND ND	7	ug/kg ug/kg	10/25/22			
,2-Dichlorobenzene					10/25/22		
.,3-Dichlorobenzene	ND	7	ug/kg	10/25/22	10/25/22		
,4-Dichlorobenzene	ND	7	ug/kg	10/25/22	10/25/22		
I,1-Dichloroethane	ND	7	ug/kg	10/25/22	10/25/22		
L,2-Dichloroethane	ND	7	ug/kg	10/25/22	10/25/22		
rans-1,2-Dichloroethene	ND	7	ug/kg	10/25/22	10/25/22		
is-1,2-Dichloroethene	ND	7	ug/kg	10/25/22	10/25/22		
1,1-Dichloroethene	ND	7	ug/kg	10/25/22	10/25/22		
.,2-Dichloropropane	ND	7	ug/kg	10/25/22	10/25/22		
,2-Dichloropropane	ND	7	ug/kg	10/25/22	10/25/22		
is-1,3-Dichloropropene	ND	7	ug/kg	10/25/22	10/25/22		
rans-1,3-Dichloropropene	ND	7	ug/kg	10/25/22	10/25/22		
,1-Dichloropropene	ND	7	ug/kg	10/25/22	10/25/22		
.,3-Dichloropropene (cis + trans)	ND	7	ug/kg 	10/25/22	10/25/22		
iethyl ether	ND	7	ug/kg 	10/25/22	10/25/22		
,4-Dioxane	ND	132	ug/kg	10/25/22	10/25/22		
thylbenzene	ND	7	ug/kg	10/25/22	10/25/22		
Hexachlorobutadiene	ND	7	ug/kg	10/25/22	10/25/22		
2-Hexanone	ND	7	ug/kg	10/25/22	10/25/22		
Isopropylbenzene	ND	7	ug/kg	10/25/22	10/25/22		
p-Isopropyltoluene	ND	7	ug/kg	10/25/22	10/25/22		
Methylene Chloride	ND	66	ug/kg	10/25/22	10/25/22		
4-Methyl-2-pentanone	ND	7	ug/kg	10/25/22	10/2 5 P a		

Sample: SE-102 (MW) 10-13 (Continued)

Lab Number: 2J21011-02 (Soil)

Reporting						
Analyte	Result Qual	Limit	Units	Date Prepared	Date Analyzed	
Naphthalene	ND	7	ug/kg	10/25/22	10/25/22	
n-Propylbenzene	ND	7	ug/kg	10/25/22	10/25/22	
Styrene	ND	7	ug/kg	10/25/22	10/25/22	
1,1,1,2-Tetrachloroethane	ND	7	ug/kg	10/25/22	10/25/22	
Tetrachloroethene	ND	7	ug/kg	10/25/22	10/25/22	
Tetrahydrofuran	ND	7	ug/kg	10/25/22	10/25/22	
Toluene	ND	7	ug/kg	10/25/22	10/25/22	
1,2,4-Trichlorobenzene	ND	7	ug/kg	10/25/22	10/25/22	
1,2,3-Trichlorobenzene	ND	7	ug/kg	10/25/22	10/25/22	
1,1,2-Trichloroethane	ND	7	ug/kg	10/25/22	10/25/22	
1,1,1-Trichloroethane	ND	7	ug/kg	10/25/22	10/25/22	
Trichloroethene	ND	7	ug/kg	10/25/22	10/25/22	
1,2,3-Trichloropropane	ND	7	ug/kg	10/25/22	10/25/22	
1,3,5-Trimethylbenzene	ND	7	ug/kg	10/25/22	10/25/22	
1,2,4-Trimethylbenzene	ND	7	ug/kg	10/25/22	10/25/22	
Vinyl Chloride	ND	7	ug/kg	10/25/22	10/25/22	
o-Xylene	ND	7	ug/kg	10/25/22	10/25/22	
m&p-Xylene	ND	13	ug/kg	10/25/22	10/25/22	
Total xylenes	ND	7	ug/kg	10/25/22	10/25/22	
1,1,2,2-Tetrachloroethane	ND	7	ug/kg	10/25/22	10/25/22	
tert-Amyl methyl ether	ND	7	ug/kg	10/25/22	10/25/22	
1,3-Dichloropropane	ND	7	ug/kg	10/25/22	10/25/22	
Ethyl tert-butyl ether	ND	7	ug/kg	10/25/22	10/25/22	
Diisopropyl ether	ND	7	ug/kg	10/25/22	10/25/22	
Trichlorofluoromethane	ND	7	ug/kg	10/25/22	10/25/22	
Dichlorodifluoromethane	ND	7	ug/kg	10/25/22	10/25/22	
Surrogate(s)	Recovery%	Limit	ts			
4-Bromofluorobenzene	92.5%	70-13	30	10/25/22	10/25/22	
1,2-Dichloroethane-d4	105%	70-13	30	10/25/22	10/25/22	
Toluene-d8	101%	70-13	30	10/25/22	10/25/22	

Sample: SE-103 2-3 Lab Number: 2J21011-03 (Soil)

Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed		
Acetone	ND	6	ug/kg	10/25/22	10/25/22		
Benzene	ND	6	ug/kg	10/25/22	10/25/22		
Bromobenzene	ND	6	ug/kg	10/25/22	10/25/22		
Bromochloromethane	ND	6	ug/kg	10/25/22	10/25/22		
Bromodichloromethane	ND	6	ug/kg	10/25/22	10/25/22		
Bromoform	ND	6	ug/kg	10/25/22	10/25/22		
Bromomethane	ND	6	ug/kg	10/25/22	10/25/22		
2-Butanone	ND	6	ug/kg	10/25/22	10/25/22		
tert-Butyl alcohol	ND	6	ug/kg	10/25/22	10/25/22		
sec-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
n-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
tert-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
Methyl t-butyl ether (MTBE)	ND	6	ug/kg	10/25/22	10/25/22		
Carbon Disulfide	ND	6	ug/kg	10/25/22	10/25/22		
Carbon Tetrachloride	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
Chlorobenzene	ND	6	ug/kg	10/25/22	10/25/22		
Chloroethane	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
Chloroform	ND	7	ug/kg ug/kg	10/25/22	10/25/22		
Chloromethane	ND	6	ug/kg	10/25/22	10/25/22		
4-Chlorotoluene	ND	6	ug/kg	10/25/22	10/25/22		
2-Chlorotoluene	ND	6	ug/kg	10/25/22	10/25/22		
,2-Dibromo-3-chloropropane (DBCP)	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
Dibromochloromethane	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
L,2-Dibromoethane (EDB)	ND	6	ug/kg	10/25/22	10/25/22		
Dibromomethane (LDB)	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
1,2-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22		
1,3-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22		
.,4-Dichlorobenzene	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
1,1-Dichloroethane	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
1,1-Dichloroethane	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
trans-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22		
cis-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22		
1,1-Dichloroethene	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
1,2-Dichloropropane	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
2,2-Dichloropropane	ND ND	6	ug/kg ug/kg	10/25/22	10/25/22		
cis-1,3-Dichloropropene	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
rans-1,3-Dichloropropene	ND ND	6	ug/kg ug/kg	10/25/22	10/25/22		
1,1-Dichloropropene	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
1,1-Dichloropropene (cis + trans)	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
Diethyl ether	ND	6	ug/kg	10/25/22	10/25/22		
1,4-Dioxane	ND ND	114	ug/kg ug/kg	10/25/22	10/25/22		
thylbenzene	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
Hexachlorobutadiene	ND ND	6	ug/kg ug/kg	10/25/22	10/25/22		
2-Hexanone	ND	6	ug/kg ug/kg	10/25/22	10/25/22		
Isopropylbenzene	ND ND	6	ug/kg ug/kg	10/25/22	10/25/22		
p-Isopropyltoluene	ND ND	6	ug/kg ug/kg	10/25/22	10/25/22		
Methylene Chloride	ND	57	ug/kg	10/25/22	10/25/22		
4-Methyl-2-pentanone	ND	6	ug/kg ug/kg	10/25/22	10/25/22 10/25 Pa		

Sample: SE-103 2-3 (Continued)

Lab Number: 2J21011-03 (Soil)

		Reporting			
Analyte	Result Qu	ıal Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	6	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Styrene	ND	6	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	6	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	6	ug/kg	10/25/22	10/25/22
Toluene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	6	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	6	ug/kg	10/25/22	10/25/22
o-Xylene	ND	6	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	11	ug/kg	10/25/22	10/25/22
Total xylenes	ND	6	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	6	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	6	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	6	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	ts		
4-Bromofluorobenzene	92.0%	70-13	30	10/25/22	10/25/22
1,2-Dichloroethane-d4	113%	70-13	30	10/25/22	10/25/22
Toluene-d8	102%	70-13	30	10/25/22	10/25/22

Sample: SE-103 10-11 Lab Number: 2J21011-04 (Soil)

cetone	ND				
enzene		6	ug/kg	10/25/22	10/25/22
	ND	6	ug/kg	10/25/22	10/25/22
romobenzene	ND	6	ug/kg	10/25/22	10/25/22
romochloromethane	ND	6	ug/kg	10/25/22	10/25/22
romodichloromethane	ND	6	ug/kg	10/25/22	10/25/22
romoform	ND	6	ug/kg	10/25/22	10/25/22
romomethane	ND	6	ug/kg	10/25/22	10/25/22
-Butanone	ND	6	ug/kg	10/25/22	10/25/22
ert-Butyl alcohol	ND	6	ug/kg	10/25/22	10/25/22
ec-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22
-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22
ert-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22
lethyl t-butyl ether (MTBE)	ND	6	ug/kg ug/kg	10/25/22	10/25/22
arbon Disulfide	ND	6	ug/kg ug/kg	10/25/22	10/25/22
arbon Tetrachloride	ND	6	ug/kg ug/kg	10/25/22	10/25/22
hlorobenzene	ND	6	ug/kg ug/kg	10/25/22	10/25/22
hloroethane	ND	6	ug/kg ug/kg	10/25/22	10/25/22
hloroform	ND ND	7	ug/kg ug/kg	10/25/22	10/25/22
hloromethane	ND	6	ug/kg ug/kg	10/25/22	10/25/22
-Chlorotoluene	ND ND	6	ug/kg ug/kg	10/25/22	10/25/22
-Chlorotoluene	ND ND	6	ug/kg ug/kg	10/25/22	10/25/22
.2-Dibromo-3-chloropropane (DBCP)	ND ND	6	ug/kg ug/kg	10/25/22	10/25/22
ibromochloromethane	ND ND	6			
,2-Dibromoethane (EDB)	ND ND	6	ug/kg	10/25/22	10/25/22 10/25/22
ibromoethane (EDB)	ND ND		ug/kg	10/25/22	
		6	ug/kg	10/25/22	10/25/22
,2-Dichlorobenzene	ND ND	6	ug/kg	10/25/22	10/25/22
,3-Dichlorobenzene	ND ND	6	ug/kg	10/25/22	10/25/22
,4-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1-Dichloroethane	ND	6	ug/kg	10/25/22	10/25/22
,2-Dichloroethane	ND	6	ug/kg	10/25/22	10/25/22
ans-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22
s-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22
,1-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22
,2-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
,2-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
s-1,3-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22
ans-1,3-Dichloropropene	ND	6	ug/kg 	10/25/22	10/25/22
,1-Dichloropropene	ND	6	ug/kg 	10/25/22	10/25/22
,3-Dichloropropene (cis + trans)	ND	6	ug/kg 	10/25/22	10/25/22
iethyl ether	ND	6	ug/kg	10/25/22	10/25/22
,4-Dioxane	ND	115	ug/kg	10/25/22	10/25/22
thylbenzene	ND	6	ug/kg	10/25/22	10/25/22
exachlorobutadiene	ND	6	ug/kg	10/25/22	10/25/22
-Hexanone	ND	6	ug/kg	10/25/22	10/25/22
sopropylbenzene	ND	6	ug/kg	10/25/22	10/25/22
-Isopropyltoluene	ND	6	ug/kg	10/25/22	10/25/22
ethylene Chloride	ND	57	ug/kg	10/25/22	10/25/22 10/2 5 P a

Sample: SE-103 10-11 (Continued)

Lab Number: 2J21011-04 (Soil)

	Reporting				
Analyte	Result Qua	al Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	6	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Styrene	ND	6	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	6	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	6	ug/kg	10/25/22	10/25/22
Toluene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	6	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	6	ug/kg	10/25/22	10/25/22
o-Xylene	ND	6	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	11	ug/kg	10/25/22	10/25/22
Total xylenes	ND	6	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	6	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	6	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	6	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	ts		
4-Bromofluorobenzene	95.5%	<i>70-13</i>	30	10/25/22	10/25/22
1,2-Dichloroethane-d4	118%	70-13	30	10/25/22	10/25/22
Toluene-d8	102%	70-13	30	10/25/22	10/25/22

Sample: SE-104 (MW) 0-2 Lab Number: 2J21011-05 (Soil)

		Repo	orting		
Analyte	Result	Qual Li	mit Units	Date Prepared	Date Analyzed
Acetone	ND	!	5 ug/kg	10/26/22	10/26/22
Benzene	ND	!	ug/kg	10/26/22	10/26/22
Bromobenzene	ND	!	ug/kg	10/26/22	10/26/22
Bromochloromethane	ND	!	ug/kg	10/26/22	10/26/22
Bromodichloromethane	ND	!	ug/kg	10/26/22	10/26/22
Bromoform	ND	!	ug/kg	10/26/22	10/26/22
Bromomethane	ND	!	ug/kg	10/26/22	10/26/22
2-Butanone	ND	!	ug/kg	10/26/22	10/26/22
tert-Butyl alcohol	ND	!	ug/kg	10/26/22	10/26/22
sec-Butylbenzene	ND	!	ug/kg	10/26/22	10/26/22
n-Butylbenzene	ND	!	ug/kg	10/26/22	10/26/22
tert-Butylbenzene	ND	!	ug/kg	10/26/22	10/26/22
Methyl t-butyl ether (MTBE)	ND	!	ug/kg	10/26/22	10/26/22
Carbon Disulfide	ND	!	5 ug/kg	10/26/22	10/26/22
Carbon Tetrachloride	ND	!	5 ug/kg	10/26/22	10/26/22
Chlorobenzene	ND	!	5 ug/kg	10/26/22	10/26/22
Chloroethane	ND	!	ug/kg	10/26/22	10/26/22
Chloroform	ND	!	5 ug/kg	10/26/22	10/26/22
Chloromethane	ND	!	ug/kg	10/26/22	10/26/22
4-Chlorotoluene	ND	!	ug/kg	10/26/22	10/26/22
2-Chlorotoluene	ND	!	ug/kg	10/26/22	10/26/22
.,2-Dibromo-3-chloropropane (DBCP)	ND	!	ug/kg	10/26/22	10/26/22
Dibromochloromethane	ND	!	ug/kg	10/26/22	10/26/22
,2-Dibromoethane (EDB)	ND	!	ug/kg	10/26/22	10/26/22
Dibromomethane	ND	!	ug/kg	10/26/22	10/26/22
1,2-Dichlorobenzene	ND	!	ug/kg	10/26/22	10/26/22
.,3-Dichlorobenzene	ND	!	ug/kg	10/26/22	10/26/22
1,4-Dichlorobenzene	ND	!	ug/kg	10/26/22	10/26/22
1,1-Dichloroethane	ND	!	ug/kg	10/26/22	10/26/22
1,2-Dichloroethane	ND	!	ug/kg	10/26/22	10/26/22
trans-1,2-Dichloroethene	ND	!	ug/kg	10/26/22	10/26/22
cis-1,2-Dichloroethene	ND	!	ug/kg	10/26/22	10/26/22
1,1-Dichloroethene	ND	!	ug/kg	10/26/22	10/26/22
1,2-Dichloropropane	ND	!	ug/kg	10/26/22	10/26/22
2,2-Dichloropropane	ND	!	ug/kg	10/26/22	10/26/22
cis-1,3-Dichloropropene	ND	!	ug/kg	10/26/22	10/26/22
rans-1,3-Dichloropropene	ND	!	ug/kg	10/26/22	10/26/22
1,1-Dichloropropene	ND	!	ug/kg	10/26/22	10/26/22
1,3-Dichloropropene (cis + trans)	ND	!	ug/kg	10/26/22	10/26/22
Diethyl ether	ND	!	ug/kg	10/26/22	10/26/22
1,4-Dioxane	ND	10)2 ug/kg	10/26/22	10/26/22
Ethylbenzene	ND	!	ug/kg	10/26/22	10/26/22
Hexachlorobutadiene	ND	!	ug/kg	10/26/22	10/26/22
2-Hexanone	ND	!	ug/kg	10/26/22	10/26/22
Isopropylbenzene	ND	!	5 ug/kg	10/26/22	10/26/22
p-Isopropyltoluene	ND	!	ug/kg	10/26/22	10/26/22
Methylene Chloride	ND		7 ug/kg	10/26/22	10/26/22
4-Methyl-2-pentanone	ND	!	ug/kg	10/26/22	10/2 6 P a

Sample: SE-104 (MW) 0-2 (Continued)

Lab Number: 2J21011-05 (Soil)

	Reporting					
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed	
Naphthalene	ND	5	ug/kg	10/26/22	10/26/22	
n-Propylbenzene	ND	5	ug/kg	10/26/22	10/26/22	
Styrene	ND	5	ug/kg	10/26/22	10/26/22	
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/26/22	10/26/22	
Tetrachloroethene	ND	5	ug/kg	10/26/22	10/26/22	
Tetrahydrofuran	ND	5	ug/kg	10/26/22	10/26/22	
Toluene	ND	5	ug/kg	10/26/22	10/26/22	
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/26/22	10/26/22	
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/26/22	10/26/22	
1,1,2-Trichloroethane	ND	5	ug/kg	10/26/22	10/26/22	
1,1,1-Trichloroethane	ND	5	ug/kg	10/26/22	10/26/22	
Trichloroethene	ND	5	ug/kg	10/26/22	10/26/22	
1,2,3-Trichloropropane	ND	5	ug/kg	10/26/22	10/26/22	
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/26/22	10/26/22	
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/26/22	10/26/22	
Vinyl Chloride	ND	5	ug/kg	10/26/22	10/26/22	
o-Xylene	ND	5	ug/kg	10/26/22	10/26/22	
m&p-Xylene	ND	10	ug/kg	10/26/22	10/26/22	
Total xylenes	ND	5	ug/kg	10/26/22	10/26/22	
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/26/22	10/26/22	
tert-Amyl methyl ether	ND	5	ug/kg	10/26/22	10/26/22	
1,3-Dichloropropane	ND	5	ug/kg	10/26/22	10/26/22	
Ethyl tert-butyl ether	ND	5	ug/kg	10/26/22	10/26/22	
Diisopropyl ether	ND	5	ug/kg	10/26/22	10/26/22	
Trichlorofluoromethane	ND	5	ug/kg	10/26/22	10/26/22	
Dichlorodifluoromethane	ND	5	ug/kg	10/26/22	10/26/22	
Surrogate(s)	Recovery%	Limit	cs			
4-Bromofluorobenzene	91.1%	70-13	30	10/26/22	10/26/22	
1,2-Dichloroethane-d4	100%	70-13	80	10/26/22	10/26/22	
Toluene-d8	93.2%	70-13	30	10/26/22	10/26/22	

Sample: SE-104 (MW) 10-12 Lab Number: 2J21011-06 (Soil)

Reporting							
Analyte	Result	Qual Lim	it Units	Date Prepared	Date Analyzed		
Acetone	ND	6	ug/kg	10/25/22	10/25/22		
Benzene	ND	6	ug/kg	10/25/22	10/25/22		
Bromobenzene	ND	6	ug/kg	10/25/22	10/25/22		
Bromochloromethane	ND	6	ug/kg	10/25/22	10/25/22		
Bromodichloromethane	ND	6	ug/kg	10/25/22	10/25/22		
Bromoform	ND	6	ug/kg	10/25/22	10/25/22		
Bromomethane	ND	6	ug/kg	10/25/22	10/25/22		
2-Butanone	ND	6	ug/kg	10/25/22	10/25/22		
tert-Butyl alcohol	ND	6	ug/kg	10/25/22	10/25/22		
sec-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
n-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
tert-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
Methyl t-butyl ether (MTBE)	ND	6	ug/kg	10/25/22	10/25/22		
Carbon Disulfide	ND	6	ug/kg	10/25/22	10/25/22		
Carbon Tetrachloride	ND	6	ug/kg	10/25/22	10/25/22		
Chlorobenzene	ND	6	ug/kg	10/25/22	10/25/22		
Chloroethane	ND	6	ug/kg	10/25/22	10/25/22		
Chloroform	ND	7	ug/kg	10/25/22	10/25/22		
Chloromethane	ND	6	ug/kg	10/25/22	10/25/22		
4-Chlorotoluene	ND	6	ug/kg	10/25/22	10/25/22		
2-Chlorotoluene	ND	6	ug/kg	10/25/22	10/25/22		
1,2-Dibromo-3-chloropropane (DBCP)	ND	6	ug/kg	10/25/22	10/25/22		
Dibromochloromethane	ND	6	ug/kg	10/25/22	10/25/22		
.,2-Dibromoethane (EDB)	ND	6	ug/kg	10/25/22	10/25/22		
Dibromomethane	ND	6	ug/kg	10/25/22	10/25/22		
1,2-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22		
1,3-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22		
1,4-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22		
1,1-Dichloroethane	ND	6	ug/kg	10/25/22	10/25/22		
1,2-Dichloroethane	ND	6	ug/kg	10/25/22	10/25/22		
trans-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22		
cis-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22		
1,1-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22		
1,2-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22		
2,2-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22		
is-1,3-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22		
rans-1,3-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22		
1,1-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22		
1,3-Dichloropropene (cis + trans)	ND	6	ug/kg	10/25/22	10/25/22		
Diethyl ether	ND	6	ug/kg	10/25/22	10/25/22		
1,4-Dioxane	ND	125	ug/kg	10/25/22	10/25/22		
Ethylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
Hexachlorobutadiene	ND	6	ug/kg	10/25/22	10/25/22		
2-Hexanone	ND	6	ug/kg	10/25/22	10/25/22		
Isopropylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
p-Isopropyltoluene	ND	6	ug/kg	10/25/22	10/25/22		
Methylene Chloride	ND	62	ug/kg	10/25/22	10/25/22		
4-Methyl-2-pentanone	ND	6	ug/kg	10/25/22	10/25 P a		

Sample: SE-104 (MW) 10-12 (Continued)

Lab Number: 2J21011-06 (Soil)

		Reporting			
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	6	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Styrene	ND	6	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	6	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	6	ug/kg	10/25/22	10/25/22
Toluene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	6	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	6	ug/kg	10/25/22	10/25/22
o-Xylene	ND	6	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	12	ug/kg	10/25/22	10/25/22
Total xylenes	ND	6	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	6	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	6	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	6	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	ts		
4-Bromofluorobenzene	96.2%	<i>70-13</i>	30	10/25/22	10/25/22
1,2-Dichloroethane-d4	114%	70-13	30	10/25/22	10/25/22
Toluene-d8	104%	70-13	30	10/25/22	10/25/22

Sample: SE-105 (MW) 0-1 Lab Number: 2J21011-07 (Soil)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/kg	10/25/22	10/25/22
Benzene	ND	5	ug/kg	10/25/22	10/25/22
Bromobenzene	ND	5	ug/kg	10/25/22	10/25/22
Bromochloromethane	ND	5	ug/kg	10/25/22	10/25/22
Bromodichloromethane	ND	5	ug/kg	10/25/22	10/25/22
Bromoform	ND	5	ug/kg	10/25/22	10/25/22
Bromomethane	ND	5	ug/kg	10/25/22	10/25/22
2-Butanone	ND	5	ug/kg	10/25/22	10/25/22
tert-Butyl alcohol	ND	5	ug/kg	10/25/22	10/25/22
sec-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22
n-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22
tert-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/25/22	10/25/22
Carbon Disulfide	ND	5	ug/kg	10/25/22	10/25/22
Carbon Tetrachloride	ND	5	ug/kg	10/25/22	10/25/22
Chlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
Chloroethane	ND	5	ug/kg	10/25/22	10/25/22
Chloroform	ND	6	ug/kg	10/25/22	10/25/22
Chloromethane	ND	5	ug/kg	10/25/22	10/25/22
4-Chlorotoluene	ND	5	ug/kg	10/25/22	10/25/22
2-Chlorotoluene	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg	10/25/22	10/25/22
Dibromochloromethane	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dibromoethane (EDB)	ND	5	ug/kg	10/25/22	10/25/22
Dibromomethane	ND	5	ug/kg	10/25/22	10/25/22
.,2-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,3-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,4-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
,1-Dichloroethane	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dichloroethane	ND	5	ug/kg	10/25/22	10/25/22
rans-1,2-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22
cis-1,2-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,1-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
2,2-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
cis-1,3-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22
rans-1,3-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22
1,1-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/25/22	10/25/22
Diethyl ether	ND	5	ug/kg	10/25/22	10/25/22
,4-Dioxane	ND	99	ug/kg	10/25/22	10/25/22
Ethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Hexachlorobutadiene	ND	5	ug/kg	10/25/22	10/25/22
2-Hexanone	ND	5	ug/kg	10/25/22	10/25/22
Isopropylbenzene	ND	5	ug/kg	10/25/22	10/25/22
p-Isopropyltoluene	ND	5	ug/kg	10/25/22	10/25/22
Methylene Chloride	ND	49	ug/kg	10/25/22	10/25/22
4-Methyl-2-pentanone	ND	5	ug/kg	10/25/22	10/25 Pa

Sample: SE-105 (MW) 0-1 (Continued)

Lab Number: 2J21011-07 (Soil)

		Reporting			
Analyte	Result Q	ual Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	5	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Styrene	ND	5	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	5	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	5	ug/kg	10/25/22	10/25/22
Toluene	ND	5	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	5	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	5	ug/kg	10/25/22	10/25/22
o-Xylene	ND	5	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	10	ug/kg	10/25/22	10/25/22
Total xylenes	ND	5	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	5	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	5	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	5	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	5	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	5	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	:s		
4-Bromofluorobenzene	92.8%	<i>70-13</i>	30	10/25/22	10/25/22
1,2-Dichloroethane-d4	112%	70-13	80	10/25/22	10/25/22
Toluene-d8	101%	70-13	80	10/25/22	10/25/22

Sample: SE-105 (MW) 10-14 Lab Number: 2J21011-08 (Soil)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/kg	10/25/22	10/25/22
Benzene	ND	5	ug/kg	10/25/22	10/25/22
Bromobenzene	ND	5	ug/kg	10/25/22	10/25/22
Bromochloromethane	ND	5	ug/kg	10/25/22	10/25/22
Bromodichloromethane	ND	5	ug/kg	10/25/22	10/25/22
Bromoform	ND	5	ug/kg	10/25/22	10/25/22
Bromomethane	ND	5	ug/kg	10/25/22	10/25/22
2-Butanone	ND	5	ug/kg	10/25/22	10/25/22
tert-Butyl alcohol	ND	5	ug/kg	10/25/22	10/25/22
sec-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22
n-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22
tert-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/25/22	10/25/22
Carbon Disulfide	ND	5	ug/kg	10/25/22	10/25/22
Carbon Tetrachloride	ND	5	ug/kg	10/25/22	10/25/22
Chlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
Chloroethane	ND	5	ug/kg	10/25/22	10/25/22
Chloroform	ND	6	ug/kg	10/25/22	10/25/22
Chloromethane	ND	5	ug/kg	10/25/22	10/25/22
4-Chlorotoluene	ND	5	ug/kg	10/25/22	10/25/22
2-Chlorotoluene	ND	5	ug/kg	10/25/22	10/25/22
,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg	10/25/22	10/25/22
Dibromochloromethane	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dibromoethane (EDB)	ND	5	ug/kg	10/25/22	10/25/22
Dibromomethane	ND	5	ug/kg	10/25/22	10/25/22
,2-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
,3-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,4-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,1-Dichloroethane	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dichloroethane	ND	5	ug/kg	10/25/22	10/25/22
rans-1,2-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22
is-1,2-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,1-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
2,2-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
is-1,3-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22
rans-1,3-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22
,1-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22
,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/25/22	10/25/22
Diethyl ether	ND	5	ug/kg	10/25/22	10/25/22
,4-Dioxane	ND	108	ug/kg	10/25/22	10/25/22
thylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Hexachlorobutadiene	ND	5	ug/kg	10/25/22	10/25/22
2-Hexanone	ND	5	ug/kg	10/25/22	10/25/22
sopropylbenzene	ND	5	ug/kg	10/25/22	10/25/22
p-Isopropyltoluene	ND	5	ug/kg	10/25/22	10/25/22
Methylene Chloride	ND	54	ug/kg	10/25/22	10/25/22
4-Methyl-2-pentanone	ND	5	ug/kg	10/25/22	10/25 Pa

Sample: SE-105 (MW) 10-14 (Continued)

Lab Number: 2J21011-08 (Soil)

		Reporting				
Analyte	Result Qua	al Limit	Units	Date Prepared	Date Analyzed	
Naphthalene	ND	5	ug/kg	10/25/22	10/25/22	
n-Propylbenzene	ND	5	ug/kg	10/25/22	10/25/22	
Styrene	ND	5	ug/kg	10/25/22	10/25/22	
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22	
Tetrachloroethene	ND	5	ug/kg	10/25/22	10/25/22	
Tetrahydrofuran	ND	5	ug/kg	10/25/22	10/25/22	
Toluene	ND	5	ug/kg	10/25/22	10/25/22	
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22	
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22	
1,1,2-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22	
1,1,1-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22	
Trichloroethene	ND	5	ug/kg	10/25/22	10/25/22	
1,2,3-Trichloropropane	ND	5	ug/kg	10/25/22	10/25/22	
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22	
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22	
Vinyl Chloride	ND	5	ug/kg	10/25/22	10/25/22	
o-Xylene	ND	5	ug/kg	10/25/22	10/25/22	
m&p-Xylene	ND	11	ug/kg	10/25/22	10/25/22	
Total xylenes	ND	5	ug/kg	10/25/22	10/25/22	
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22	
tert-Amyl methyl ether	ND	5	ug/kg	10/25/22	10/25/22	
1,3-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22	
Ethyl tert-butyl ether	ND	5	ug/kg	10/25/22	10/25/22	
Diisopropyl ether	ND	5	ug/kg	10/25/22	10/25/22	
Trichlorofluoromethane	ND	5	ug/kg	10/25/22	10/25/22	
Dichlorodifluoromethane	ND	5	ug/kg	10/25/22	10/25/22	
Surrogate(s)	Recovery%	Limit	ts			
4-Bromofluorobenzene	94.8%	<i>70-13</i>	30	10/25/22	10/25/22	
1,2-Dichloroethane-d4	114%	70-13	30	10/25/22	10/25/22	
Toluene-d8	102%	70-13	30	10/25/22	10/25/22	

Sample: SE-106 (MW) 0-2 Lab Number: 2J21011-09 (Soil)

Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed		
Acetone	ND	6	ug/kg	10/25/22	10/25/22		
Benzene	ND	6	ug/kg	10/25/22	10/25/22		
Bromobenzene	ND	6	ug/kg	10/25/22	10/25/22		
Bromochloromethane	ND	6	ug/kg	10/25/22	10/25/22		
Bromodichloromethane	ND	6	ug/kg	10/25/22	10/25/22		
Bromoform	ND	6	ug/kg	10/25/22	10/25/22		
Bromomethane	ND	6	ug/kg	10/25/22	10/25/22		
2-Butanone	ND	6	ug/kg	10/25/22	10/25/22		
tert-Butyl alcohol	ND	6	ug/kg	10/25/22	10/25/22		
sec-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
n-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
tert-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
Methyl t-butyl ether (MTBE)	ND	6	ug/kg	10/25/22	10/25/22		
Carbon Disulfide	ND	6	ug/kg	10/25/22	10/25/22		
Carbon Tetrachloride	ND	6	ug/kg	10/25/22	10/25/22		
Chlorobenzene	ND	6	ug/kg	10/25/22	10/25/22		
Chloroethane	ND	6	ug/kg	10/25/22	10/25/22		
Chloroform	ND	7	ug/kg	10/25/22	10/25/22		
Chloromethane	ND	6	ug/kg	10/25/22	10/25/22		
-Chlorotoluene	ND	6	ug/kg	10/25/22	10/25/22		
2-Chlorotoluene	ND	6	ug/kg	10/25/22	10/25/22		
,2-Dibromo-3-chloropropane (DBCP)	ND	6	ug/kg	10/25/22	10/25/22		
Dibromochloromethane	ND	6	ug/kg	10/25/22	10/25/22		
,2-Dibromoethane (EDB)	ND	6	ug/kg	10/25/22	10/25/22		
Dibromomethane	ND	6	ug/kg	10/25/22	10/25/22		
,2-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22		
,3-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22		
,4-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22		
,1-Dichloroethane	ND	6	ug/kg	10/25/22	10/25/22		
,2-Dichloroethane	ND	6	ug/kg	10/25/22	10/25/22		
rans-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22		
is-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22		
1,1-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22		
L,2-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22		
2,2-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22		
is-1,3-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22		
rans-1,3-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22		
,1-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22		
,3-Dichloropropene (cis + trans)	ND	6	ug/kg	10/25/22	10/25/22		
viethyl ether	ND	6	ug/kg	10/25/22	10/25/22		
,4-Dioxane	ND	116	ug/kg	10/25/22	10/25/22		
: Ethylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
lexachlorobutadiene	ND	6	ug/kg	10/25/22	10/25/22		
2-Hexanone	ND	6	ug/kg	10/25/22	10/25/22		
Sopropylbenzene	ND	6	ug/kg	10/25/22	10/25/22		
p-Isopropyltoluene	ND	6	ug/kg	10/25/22	10/25/22		
Methylene Chloride	ND	58	ug/kg	10/25/22	10/25/22		
4-Methyl-2-pentanone	ND	6	ug/kg	10/25/22	10/25 Pa		

Sample: SE-106 (MW) 0-2 (Continued)

Lab Number: 2J21011-09 (Soil)

		Reporting			
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	6	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Styrene	ND	6	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	6	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	6	ug/kg	10/25/22	10/25/22
Toluene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	6	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	6	ug/kg	10/25/22	10/25/22
o-Xylene	ND	6	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	12	ug/kg	10/25/22	10/25/22
Total xylenes	ND	6	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	6	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	6	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	6	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	:s		
4-Bromofluorobenzene	93.5%	<i>70-13</i>	30	10/25/22	10/25/22
1,2-Dichloroethane-d4	104%	70-13	80	10/25/22	10/25/22
Toluene-d8	100%	70-13	80	10/25/22	10/25/22

Sample: SE-107 15-17 Lab Number: 2J21011-11 (Soil)

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		5	ug/kg	10/25/22	10/25/22
Benzene	ND		5	ug/kg	10/25/22	10/25/22
Bromobenzene	ND		5	ug/kg	10/25/22	10/25/22
Bromochloromethane	ND		5	ug/kg	10/25/22	10/25/22
Bromodichloromethane	ND		5	ug/kg	10/25/22	10/25/22
Bromoform	ND		5	ug/kg	10/25/22	10/25/22
Bromomethane	ND		5	ug/kg	10/25/22	10/25/22
2-Butanone	ND		5	ug/kg	10/25/22	10/25/22
ert-Butyl alcohol	ND		5	ug/kg	10/25/22	10/25/22
sec-Butylbenzene	ND		5	ug/kg	10/25/22	10/25/22
n-Butylbenzene	ND		5	ug/kg	10/25/22	10/25/22
ert-Butylbenzene	ND		5	ug/kg	10/25/22	10/25/22
Methyl t-butyl ether (MTBE)	ND		5	ug/kg ug/kg	10/25/22	10/25/22
Carbon Disulfide	ND		5	ug/kg ug/kg	10/25/22	10/25/22
Carbon Tetrachloride	ND		5	ug/kg ug/kg	10/25/22	10/25/22
Chlorobenzene	ND		5	ug/kg ug/kg	10/25/22	10/25/22
Chloroethane	ND		5	ug/kg	10/25/22	10/25/22
Chloroform	ND		6	ug/kg ug/kg	10/25/22	10/25/22
Chloromethane	ND		5	ug/kg	10/25/22	10/25/22
ł-Chlorotoluene	ND		5	ug/kg	10/25/22	10/25/22
2-Chlorotoluene	ND		5	ug/kg	10/25/22	10/25/22
,2-Dibromo-3-chloropropane (DBCP)	ND		5	ug/kg	10/25/22	10/25/22
Dibromochloromethane	ND		5	ug/kg	10/25/22	10/25/22
,2-Dibromoethane (EDB)	ND		5	ug/kg	10/25/22	10/25/22
Dibromomethane	ND		5	ug/kg	10/25/22	10/25/22
L,2-Dichlorobenzene	ND		5	ug/kg	10/25/22	10/25/22
.,3-Dichlorobenzene	ND		5	ug/kg	10/25/22	10/25/22
1,4-Dichlorobenzene	ND		5	ug/kg	10/25/22	10/25/22
,1-Dichloroethane	ND		5	ug/kg	10/25/22	10/25/22
1,2-Dichloroethane	ND		5	ug/kg	10/25/22	10/25/22
rans-1,2-Dichloroethene	ND		5	ug/kg	10/25/22	10/25/22
cis-1,2-Dichloroethene	ND		5	ug/kg	10/25/22	10/25/22
1,1-Dichloroethene	ND		5	ug/kg	10/25/22	10/25/22
1,2-Dichloropropane	ND		5	ug/kg	10/25/22	10/25/22
2,2-Dichloropropane	ND		5	ug/kg	10/25/22	10/25/22
cis-1,3-Dichloropropene	ND		5	ug/kg	10/25/22	10/25/22
rans-1,3-Dichloropropene	ND		5	ug/kg	10/25/22	10/25/22
1,1-Dichloropropene	ND		5	ug/kg	10/25/22	10/25/22
,3-Dichloropropene (cis + trans)	ND		5	ug/kg	10/25/22	10/25/22
Diethyl ether	ND		5	ug/kg	10/25/22	10/25/22
,4-Dioxane	ND		96	ug/kg	10/25/22	10/25/22
thylbenzene	ND		5	ug/kg	10/25/22	10/25/22
Hexachlorobutadiene	ND		5	ug/kg	10/25/22	10/25/22
2-Hexanone	ND		5	ug/kg	10/25/22	10/25/22
sopropylbenzene	ND		5	ug/kg	10/25/22	10/25/22
o-Isopropyltoluene	ND		5	ug/kg	10/25/22	10/25/22
Methylene Chloride	ND		48	ug/kg	10/25/22	10/25/22
I-Methyl-2-pentanone	ND		5	ug/kg	10/25/22	10/2 5 Pa

Sample: SE-107 15-17 (Continued)

Lab Number: 2J21011-11 (Soil)

Reporting									
Analyte	Result Q	ual Limit	Units	Date Prepared	Date Analyzed				
Naphthalene	ND	5	ug/kg	10/25/22	10/25/22				
n-Propylbenzene	ND	5	ug/kg	10/25/22	10/25/22				
Styrene	ND	5	ug/kg	10/25/22	10/25/22				
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22				
Tetrachloroethene	ND	5	ug/kg	10/25/22	10/25/22				
Tetrahydrofuran	ND	5	ug/kg	10/25/22	10/25/22				
Toluene	ND	5	ug/kg	10/25/22	10/25/22				
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22				
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22				
1,1,2-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22				
1,1,1-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22				
Trichloroethene	ND	5	ug/kg	10/25/22	10/25/22				
1,2,3-Trichloropropane	ND	5	ug/kg	10/25/22	10/25/22				
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22				
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22				
Vinyl Chloride	ND	5	ug/kg	10/25/22	10/25/22				
o-Xylene	ND	5	ug/kg	10/25/22	10/25/22				
m&p-Xylene	ND	10	ug/kg	10/25/22	10/25/22				
Total xylenes	ND	5	ug/kg	10/25/22	10/25/22				
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22				
tert-Amyl methyl ether	ND	5	ug/kg	10/25/22	10/25/22				
1,3-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22				
Ethyl tert-butyl ether	ND	5	ug/kg	10/25/22	10/25/22				
Diisopropyl ether	ND	5	ug/kg	10/25/22	10/25/22				
Trichlorofluoromethane	ND	5	ug/kg	10/25/22	10/25/22				
Dichlorodifluoromethane	ND	5	ug/kg	10/25/22	10/25/22				
Surrogate(s)	Recovery%	Limit	ts						
4-Bromofluorobenzene	92.3%	<i>70-13</i>	30	10/25/22	10/25/22				
1,2-Dichloroethane-d4	111%	<i>70-13</i>	30	10/25/22	10/25/22				
Toluene-d8	99.5%	<i>70-13</i>	30	10/25/22	10/25/22				

Sample: SE-101 (MW) 0-2 Lab Number: 2J21011-01 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		133	ug/kg	11/02/22	11/04/22			
Acenaphthene	ND		133	ug/kg	11/02/22	11/04/22			
Acenaphthylene	ND		133	ug/kg	11/02/22	11/04/22			
Anthracene	ND		133	ug/kg	11/02/22	11/04/22			
Benzo(a)anthracene	ND		133	ug/kg	11/02/22	11/04/22			
Benzo(a)pyrene	167		133	ug/kg	11/02/22	11/04/22			
Benzo(b)fluoranthene	246		133	ug/kg	11/02/22	11/04/22			
Benzo(g,h,i)perylene	170		133	ug/kg	11/02/22	11/04/22			
Benzo(k)fluoranthene	ND		133	ug/kg	11/02/22	11/04/22			
Chrysene	154		133	ug/kg	11/02/22	11/04/22			
Dibenz(a,h)anthracene	ND		133	ug/kg	11/02/22	11/04/22			
Dibenzofuran	ND		133	ug/kg	11/02/22	11/04/22			
Fluoranthene	171		133	ug/kg	11/02/22	11/04/22			
Fluorene	ND		133	ug/kg	11/02/22	11/04/22			
Indeno(1,2,3-cd)pyrene	146		133	ug/kg	11/02/22	11/04/22			
Naphthalene	ND		133	ug/kg	11/02/22	11/04/22			
Phenanthrene	ND		133	ug/kg	11/02/22	11/04/22			
Pyrene	235		133	ug/kg	11/02/22	11/04/22			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	69.6%		30-12	6	11/02/22	11/04/22			
p-Terphenyl-d14	103%		47-13	0	11/02/22	11/04/22			
2-Fluorobiphenyl	85.9%		34-13	0	11/02/22	11/04/22			

Results: Semivolatile organic compounds

Sample: SE-103 2-3 Lab Number: 2J21011-03 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		1400	ug/kg	11/02/22	11/05/22			
Acenaphthene	ND		1400	ug/kg	11/02/22	11/05/22			
Acenaphthylene	ND		1400	ug/kg	11/02/22	11/05/22			
Anthracene	ND		1400	ug/kg	11/02/22	11/05/22			
Benzo(a)anthracene	ND		1400	ug/kg	11/02/22	11/05/22			
Benzo(a)pyrene	ND		1400	ug/kg	11/02/22	11/05/22			
Benzo(b)fluoranthene	ND		1400	ug/kg	11/02/22	11/05/22			
Benzo(g,h,i)perylene	ND		1400	ug/kg	11/02/22	11/05/22			
Benzo(k)fluoranthene	ND		1400	ug/kg	11/02/22	11/05/22			
Chrysene	ND		1400	ug/kg	11/02/22	11/05/22			
Dibenz(a,h)anthracene	ND		1400	ug/kg	11/02/22	11/05/22			
Dibenzofuran	ND		1400	ug/kg	11/02/22	11/05/22			
Fluoranthene	ND		1400	ug/kg	11/02/22	11/05/22			
Fluorene	ND		1400	ug/kg	11/02/22	11/05/22			
Indeno(1,2,3-cd)pyrene	ND		1400	ug/kg	11/02/22	11/05/22			
Naphthalene	ND		1400	ug/kg	11/02/22	11/05/22			
Phenanthrene	ND		1400	ug/kg	11/02/22	11/05/22			
Pyrene	ND		1400	ug/kg	11/02/22	11/05/22			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	68.0%		30-12	6	11/02/22	11/05/22			
p-Terphenyl-d14	87.4%		47-13	0	11/02/22	11/05/22			
2-Fluorobiphenyl	79.6%		34-13	0	11/02/22	11/05/22			

Sample: SE-103 10-11 Lab Number: 2J21011-04 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
2-Methylnaphthalene	ND		1530	ug/kg	11/02/22	11/05/22				
Acenaphthene	ND		1530	ug/kg	11/02/22	11/05/22				
Acenaphthylene	ND		1530	ug/kg	11/02/22	11/05/22				
Anthracene	1700		1530	ug/kg	11/02/22	11/05/22				
Benzo(a)anthracene	5880		1530	ug/kg	11/02/22	11/05/22				
Benzo(a)pyrene	5470		1530	ug/kg	11/02/22	11/05/22				
Benzo(b)fluoranthene	6690		1530	ug/kg	11/02/22	11/05/22				
Benzo(g,h,i)perylene	4270		1530	ug/kg	11/02/22	11/05/22				
Benzo(k)fluoranthene	2420		1530	ug/kg	11/02/22	11/05/22				
Chrysene	5760		1530	ug/kg	11/02/22	11/05/22				
Dibenz(a,h)anthracene	ND		1530	ug/kg	11/02/22	11/05/22				
Dibenzofuran	ND		1530	ug/kg	11/02/22	11/05/22				
Fluoranthene	9990		1530	ug/kg	11/02/22	11/05/22				
Fluorene	ND		1530	ug/kg	11/02/22	11/05/22				
Indeno(1,2,3-cd)pyrene	3980		1530	ug/kg	11/02/22	11/05/22				
Naphthalene	ND		1530	ug/kg	11/02/22	11/05/22				
Phenanthrene	5710		1530	ug/kg	11/02/22	11/05/22				
Pyrene	11800		1530	ug/kg	11/02/22	11/05/22				
Surrogate(s)	Recovery%		Limits							
Nitrobenzene-d5	71.6%		30-12	6	11/02/22	11/05/22				
p-Terphenyl-d14	84.2%		47-13	0	11/02/22	11/05/22				
2-Fluorobiphenyl	81.8%		34-13	0	11/02/22	11/05/22				

Sample: SE-104 (MW) 0-2 Lab Number: 2J21011-05 (Soil)

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyze
2-Methylnaphthalene	ND		695	ug/kg	11/02/22	11/04/22
Acenaphthene	856		695	ug/kg	11/02/22	11/04/22
Acenaphthylene	738		695	ug/kg	11/02/22	11/04/22
Anthracene	2790		695	ug/kg	11/02/22	11/04/22
Benzo(a)anthracene	6190		695	ug/kg	11/02/22	11/04/22
Benzo(a)pyrene	6500		695	ug/kg	11/02/22	11/04/22
Benzo(b)fluoranthene	7880		695	ug/kg	11/02/22	11/04/22
Benzo(g,h,i)perylene	5450		695	ug/kg	11/02/22	11/04/22
Benzo(k)fluoranthene	3000		695	ug/kg	11/02/22	11/04/22
Chrysene	6210		695	ug/kg	11/02/22	11/04/22
Dibenz(a,h)anthracene	1120		695	ug/kg	11/02/22	11/04/22
Dibenzofuran	ND		695	ug/kg	11/02/22	11/04/22
Fluoranthene	11100		695	ug/kg	11/02/22	11/04/22
Fluorene	891		695	ug/kg	11/02/22	11/04/22
Indeno(1,2,3-cd)pyrene	5210		695	ug/kg	11/02/22	11/04/22
Naphthalene	1380		695	ug/kg	11/02/22	11/04/22
Phenanthrene	7710		695	ug/kg	11/02/22	11/04/22
Pyrene	12700		695	ug/kg	11/02/22	11/04/22
Surrogate(s)	Recovery%		Limits			
Nitrobenzene-d5	70.2%		30-120	5	11/02/22	11/04/22
p-Terphenyl-d14	92.0%		47-130	0	11/02/22	11/04/22
2-Fluorobiphenyl	83.6%		34-130	9	11/02/22	11/04/22

Sample: SE-104 (MW) 10-12 Lab Number: 2J21011-06 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
2-Methylnaphthalene	ND		779	ug/kg	11/02/22	11/04/22				
Acenaphthene	1080		779	ug/kg	11/02/22	11/04/22				
Acenaphthylene	ND		779	ug/kg	11/02/22	11/04/22				
Anthracene	2620		779	ug/kg	11/02/22	11/04/22				
Benzo(a)anthracene	6070		779	ug/kg	11/02/22	11/04/22				
Benzo(a)pyrene	5090		779	ug/kg	11/02/22	11/04/22				
Benzo(b)fluoranthene	6110		779	ug/kg	11/02/22	11/04/22				
Benzo(g,h,i)perylene	3180		779	ug/kg	11/02/22	11/04/22				
Benzo(k)fluoranthene	2040		779	ug/kg	11/02/22	11/04/22				
Chrysene	7030		779	ug/kg	11/02/22	11/04/22				
Dibenz(a,h)anthracene	ND		779	ug/kg	11/02/22	11/04/22				
Dibenzofuran	1020		779	ug/kg	11/02/22	11/04/22				
Fluoranthene	13200		779	ug/kg	11/02/22	11/04/22				
Fluorene	998		779	ug/kg	11/02/22	11/04/22				
Indeno(1,2,3-cd)pyrene	2990		779	ug/kg	11/02/22	11/04/22				
Naphthalene	1080		779	ug/kg	11/02/22	11/04/22				
Phenanthrene	16300		779	ug/kg	11/02/22	11/04/22				
Pyrene	18000		779	ug/kg	11/02/22	11/04/22				
Surrogate(s)	Recovery%		Limits							
Nitrobenzene-d5	71.7%		30-12	6	11/02/22	11/04/22				
p-Terphenyl-d14	105%		47-13	0	11/02/22	11/04/22				
2-Fluorobiphenyl	89.1%		34-13	0	11/02/22	11/04/22				

Sample: SE-105 (MW) 0-1 Lab Number: 2J21011-07 (Soil)

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
2-Methylnaphthalene	ND		687	ug/kg	11/02/22	11/04/22
Acenaphthene	ND		687	ug/kg	11/02/22	11/04/22
Acenaphthylene	ND		687	ug/kg	11/02/22	11/04/22
Anthracene	ND		687	ug/kg	11/02/22	11/04/22
Benzo(a)anthracene	ND		687	ug/kg	11/02/22	11/04/22
Benzo(a)pyrene	ND		687	ug/kg	11/02/22	11/04/22
Benzo(b)fluoranthene	ND		687	ug/kg	11/02/22	11/04/22
Benzo(g,h,i)perylene	ND		687	ug/kg	11/02/22	11/04/22
Benzo(k)fluoranthene	ND		687	ug/kg	11/02/22	11/04/22
Chrysene	ND		687	ug/kg	11/02/22	11/04/22
Dibenz(a,h)anthracene	ND		687	ug/kg	11/02/22	11/04/22
Dibenzofuran	ND		687	ug/kg	11/02/22	11/04/22
Fluoranthene	783		687	ug/kg	11/02/22	11/04/22
Fluorene	ND		687	ug/kg	11/02/22	11/04/22
Indeno(1,2,3-cd)pyrene	ND		687	ug/kg	11/02/22	11/04/22
Naphthalene	ND		687	ug/kg	11/02/22	11/04/22
Phenanthrene	ND		687	ug/kg	11/02/22	11/04/22
Pyrene	955		687	ug/kg	11/02/22	11/04/22
Surrogate(s)	Recovery%		Limits			
Nitrobenzene-d5	84.2%		30-120	5	11/02/22	11/04/22
p-Terphenyl-d14	116%		47-130	9	11/02/22	11/04/22
2-Fluorobiphenyl	99.0%		34-130	9	11/02/22	11/04/22

Sample: SE-106 (MW) 0-2 Lab Number: 2J21011-09 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
2-Methylnaphthalene	ND		695	ug/kg	11/02/22	11/04/22				
Acenaphthene	ND		695	ug/kg	11/02/22	11/04/22				
Acenaphthylene	ND		695	ug/kg	11/02/22	11/04/22				
Anthracene	ND		695	ug/kg	11/02/22	11/04/22				
Benzo(a)anthracene	ND		695	ug/kg	11/02/22	11/04/22				
Benzo(a)pyrene	ND		695	ug/kg	11/02/22	11/04/22				
Benzo(b)fluoranthene	802		695	ug/kg	11/02/22	11/04/22				
Benzo(g,h,i)perylene	ND		695	ug/kg	11/02/22	11/04/22				
Benzo(k)fluoranthene	ND		695	ug/kg	11/02/22	11/04/22				
Chrysene	ND		695	ug/kg	11/02/22	11/04/22				
Dibenz(a,h)anthracene	ND		695	ug/kg	11/02/22	11/04/22				
Dibenzofuran	ND		695	ug/kg	11/02/22	11/04/22				
Fluoranthene	945		695	ug/kg	11/02/22	11/04/22				
Fluorene	ND		695	ug/kg	11/02/22	11/04/22				
Indeno(1,2,3-cd)pyrene	ND		695	ug/kg	11/02/22	11/04/22				
Naphthalene	ND		695	ug/kg	11/02/22	11/04/22				
Phenanthrene	ND		695	ug/kg	11/02/22	11/04/22				
Pyrene	1100		695	ug/kg	11/02/22	11/04/22				
Surrogate(s)	Recovery%		Limits							
Nitrobenzene-d5	78.4%		30-12	6	11/02/22	11/04/22				
p-Terphenyl-d14	110%		47-13	0	11/02/22	11/04/22				
2-Fluorobiphenyl	92.2%		34-13	0	11/02/22	11/04/22				

Sample: SE-106 (MW) 10-11 Lab Number: 2J21011-10 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		138	ug/kg	11/02/22	11/04/22			
Acenaphthene	ND		138	ug/kg	11/02/22	11/04/22			
Acenaphthylene	ND		138	ug/kg	11/02/22	11/04/22			
Anthracene	ND		138	ug/kg	11/02/22	11/04/22			
Benzo(a)anthracene	ND		138	ug/kg	11/02/22	11/04/22			
Benzo(a)pyrene	ND		138	ug/kg	11/02/22	11/04/22			
Benzo(b)fluoranthene	ND		138	ug/kg	11/02/22	11/04/22			
Benzo(g,h,i)perylene	ND		138	ug/kg	11/02/22	11/04/22			
Benzo(k)fluoranthene	ND		138	ug/kg	11/02/22	11/04/22			
Chrysene	ND		138	ug/kg	11/02/22	11/04/22			
Dibenz(a,h)anthracene	ND		138	ug/kg	11/02/22	11/04/22			
Dibenzofuran	ND		138	ug/kg	11/02/22	11/04/22			
Fluoranthene	ND		138	ug/kg	11/02/22	11/04/22			
Fluorene	ND		138	ug/kg	11/02/22	11/04/22			
Indeno(1,2,3-cd)pyrene	ND		138	ug/kg	11/02/22	11/04/22			
Naphthalene	ND		138	ug/kg	11/02/22	11/04/22			
Phenanthrene	ND		138	ug/kg	11/02/22	11/04/22			
Pyrene	ND		138	ug/kg	11/02/22	11/04/22			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	68.3%		30-126		11/02/22	11/04/22			
p-Terphenyl-d14	105%		47-13	0	11/02/22	11/04/22			
2-Fluorobiphenyl	80.8%		34-13	0	11/02/22	11/04/22			

Results: Total Petroleum Hydrocarbons

Sample: SE-101 (MW) 0-2 Lab Number: 2J21011-01 (Soil)

Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	31		26	mg/kg	10/28/22	11/01/22
Surrogate(s)	Recovery%	Recovery%		:S		
Chlorooctadecane	80.4%		50-13	30	10/28/22	11/01/22

Results: Total Petroleum Hydrocarbons

Sample: SE-102 (MW) 10-13 Lab Number: 2J21011-02 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Total Petroleum Hydrocarbons	ND		31	mg/kg	10/28/22	10/31/22			
Surrogate(s)	Recovery%	Recovery%		:S					
Chlorooctadecane	74.8%		<i>50-13</i>	30	10/28/22	10/31/22			

Results: Total Petroleum Hydrocarbons

Sample: SE-103 2-3 Lab Number: 2J21011-03 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Total Petroleum Hydrocarbons	1060		145	mg/kg	10/28/22	10/31/22		
Surrogate(s)	Recovery%	Recovery%		ts				
Chlorooctadecane	81.5%		50-13	30	10/28/22	10/31/22		

Results: Total Petroleum Hydrocarbons

Sample: SE-103 10-11 Lab Number: 2J21011-04 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	954		63	mg/kg	10/28/22	11/02/22
Surrogate(s)	Recovery%		Limit	:S		
Chlorooctadecane	95.4%		50-13	30	10/28/22	11/02/22

Results: Total Petroleum Hydrocarbons

Sample: SE-104 (MW) 0-2 Lab Number: 2J21011-05 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	65		29	mg/kg	10/28/22	10/31/22
Surrogate(s)	Recovery%		Limit	:S		
Chlorooctadecane	59.0%		50-13	30	10/28/22	10/31/22

Results: Total Petroleum Hydrocarbons

Sample: SE-104 (MW) 10-12 Lab Number: 2J21011-06 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	232		32	mg/kg	10/28/22	11/01/22
Surrogate(s)	Recovery%		Limit	:S		
Chlorooctadecane	70.4%		50-13	30	10/28/22	11/01/22

Results: Total Petroleum Hydrocarbons

Sample: SE-105 (MW) 0-1 Lab Number: 2J21011-07 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	75		28	mg/kg	10/28/22	11/01/22
Surrogate(s)	Recovery%		Limit	ts		
Chlorooctadecane	82.1%		50-13	30	10/28/22	11/01/22

Results: Total Petroleum Hydrocarbons

Sample: SE-105 (MW) 10-14 Lab Number: 2J21011-08 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	ND		31	mg/kg	10/28/22	10/31/22
Surrogate(s)	Recovery%		Limit	ts		
Chlorooctadecane	78.3%		50-13	30	10/28/22	10/31/22

Results: Total Petroleum Hydrocarbons

Sample: SE-106 (MW) 0-2 Lab Number: 2J21011-09 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	135		28	mg/kg	10/28/22	10/31/22
Surrogate(s)	Recovery%		Limit	:S		
Chlorooctadecane	80.7%		50-13	30	10/28/22	10/31/22

Results: Total Petroleum Hydrocarbons

Sample: SE-106 (MW) 10-11 Lab Number: 2J21011-10 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	38		27	mg/kg	10/28/22	11/01/22
Surrogate(s)	Recovery%		Limit	ts		
Chlorooctadecane	75.6%		50-13	30	10/28/22	11/01/22

Results: Total Petroleum Hydrocarbons

Sample: SE-107 15-17 Lab Number: 2J21011-11 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	ND		31	mg/kg	10/28/22	11/01/22
Surrogate(s)	Recovery%		Limit	ts		
Chlorooctadecane	67.0%		50-13	30	10/28/22	11/01/22

Quality Control

Total Metals

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
·		-								
Batch: B2J1194 - Metals Di	gestion Soils									
Blank (B2J1194-BLK1)					repared: 10/2	4/22 Analyze	d: 10/27/22			
Antimony	ND		0.66	mg/kg						
Zinc	ND		2.0	mg/kg						
Selenium	ND		1.00	mg/kg						
Lead	ND		0.50	mg/kg						
Nickel	ND		0.50	mg/kg						
Copper	ND		2.00	mg/kg						
Chromium	ND		0.50	mg/kg						
Cadmium	ND		0.50	mg/kg						
Beryllium	ND		0.33	mg/kg						
Arsenic	ND		1.00	mg/kg						
Silver	ND		1.00	mg/kg						
Thallium	ND		0.33	mg/kg						
LCS (B2J1194-BS1)				Pr	epared: 10/2	4/22 Analyze	d: 10/27/22			
Antimony	114		0.66	mg/kg	100		114	85-115		
Nickel	107		0.50	mg/kg	100		107	85-112		
Copper	101		2.00	mg/kg	100		101	85-115		
Selenium	22.0		1.00	mg/kg	20.0		110	85-115		
Lead	105		0.50	mg/kg	100		105	85-115		
Arsenic	22.2		1.00	mg/kg	20.0		111	85-115		
Silver	43.0		1.00	mg/kg	40.0		107	85-115		
Beryllium	22.0		0.33	mg/kg	20.0		110	85-115		
Cadmium	110		0.50	mg/kg	100		110	85-115		
Chromium	108		0.50	mg/kg	100		108	85-115		
Zinc	111		2.0	mg/kg	100		111	85-115		
Thallium	96.7		0.33	mg/kg	100		96.7	85-115		

			-	Control						
Total Metals (Continued)										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2J1487 - Metals Co	ld-Vapor Mercui	rv								
Blank (B2J1487-BLK1)	•	•			Prepared 8	& Analyzed: 1	0/28/22			
Mercury	ND		0.140	mg/kg						
LCS (B2J1487-BS1)					Prepared 8	& Analyzed: 1	0/28/22			
Mercury	0.521		0.140	mg/kg	0.500		104	93-114		

Volatile Organic Compounds

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RP Lim
Batch: B2J1299 - EPA 5035									
Blank (B2J1299-BLK1)				Prepared	& Analyzed: 1	0/25/22			
Acetone	ND	5	ug/kg	opa. ca	o. /u. / 20u. 2	0, 20, 22			
Benzene	ND	5	ug/kg						
Bromobenzene	ND	5	ug/kg						
Bromochloromethane	ND	5	ug/kg						
Bromodichloromethane	ND	5	ug/kg						
Bromoform	ND ND	5	ug/kg						
			ug/kg ug/kg						
Bromomethane	ND	5							
2-Butanone	ND	5	ug/kg						
tert-Butyl alcohol	ND	5	ug/kg						
sec-Butylbenzene	ND	5	ug/kg						
n-Butylbenzene	ND	5	ug/kg						
tert-Butylbenzene	ND	5	ug/kg						
Methyl t-butyl ether (MTBE)	ND	5	ug/kg						
Carbon Disulfide	ND	5	ug/kg						
Carbon Tetrachloride	ND	5	ug/kg						
Chlorobenzene	ND	5	ug/kg						
Chloroethane	ND	5	ug/kg						
Chloroform	ND	6	ug/kg						
Chloromethane	ND	5	ug/kg						
4-Chlorotoluene	ND	5	ug/kg						
2-Chlorotoluene	ND	5	ug/kg						
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg						
Dibromochloromethane	ND	5	ug/kg						
1,2-Dibromoethane (EDB)	ND	5	ug/kg						
Dibromomethane	ND	5	ug/kg						
1,2-Dichlorobenzene	ND	5	ug/kg						
		5	ug/kg						
1,3-Dichlorobenzene	ND								
1,4-Dichlorobenzene	ND	5	ug/kg						
1,1-Dichloroethane	ND	5	ug/kg						
1,2-Dichloroethane	ND	5	ug/kg						
trans-1,2-Dichloroethene	ND	5	ug/kg						
cis-1,2-Dichloroethene	ND	5	ug/kg						
1,1-Dichloroethene	ND	5	ug/kg						
1,2-Dichloropropane	ND	5	ug/kg						
2,2-Dichloropropane	ND	5	ug/kg						
cis-1,3-Dichloropropene	ND	5	ug/kg						
trans-1,3-Dichloropropene	ND	5	ug/kg						
1,1-Dichloropropene	ND	5	ug/kg						
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg						
Diethyl ether	ND	5	ug/kg						
1,4-Dioxane	ND	100	ug/kg						
Ethylbenzene	ND	5	ug/kg						
Hexachlorobutadiene	ND	5	ug/kg						
2-Hexanone	ND	5	ug/kg						
Isopropylbenzene	ND	5	ug/kg						
p-Isopropyltoluene	ND	5	ug/kg						
Methylene Chloride	ND	50	ug/kg						
4-Methyl-2-pentanone	ND ND	5	ug/kg ug/kg						
Naphthalene	ND ND	5 5	ug/kg ug/kg						
		5	ug/kg ug/kg						
n-Propylbenzene	ND								
Styrene	ND	5	ug/kg						
1,1,1,2-Tetrachloroethane	ND	5	ug/kg						
Tetrachloroethene	ND	5	ug/kg						
Tetrahydrofuran	ND	5	ug/kg						
Toluene	ND	5	ug/kg						
1,2,4-Trichlorobenzene	ND	5	ug/kg						
1,2,3-Trichlorobenzene	ND	5	ug/kg					Page	

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch: B2J1299 - EPA 5035 (Co	ontinued)									
Blank (B2J1299-BLK1)	•				Prepared 8	& Analyzed: 1	0/25/22			
1,1,2-Trichloroethane	ND		5	ug/kg	•	,				
1,1,1-Trichloroethane	ND		5	ug/kg						
Trichloroethene	ND		5	ug/kg						
1,2,3-Trichloropropane	ND		5	ug/kg						
1,3,5-Trimethylbenzene	ND		5	ug/kg						
1,2,4-Trimethylbenzene	ND		5	ug/kg						
Vinyl Chloride	ND		5	ug/kg						
o-Xylene	ND		5	ug/kg						
m&p-Xylene	ND		10	ug/kg						
Total xylenes	ND		5	ug/kg						
1,1,2,2-Tetrachloroethane	ND		5	ug/kg						
tert-Amyl methyl ether	ND		5	ug/kg						
1,3-Dichloropropane	ND		5	ug/kg						
Ethyl tert-butyl ether	ND		5	ug/kg						
Diisopropyl ether	ND		5	ug/kg						
Trichlorofluoromethane	ND		5	ug/kg						
Dichlorodifluoromethane	ND		5	ug/kg						
Surrogate: 4-Bromofluorobenzene			46.6	ug/kg	50.0		93.1	70-130		
Surrogate: 1,2-Dichloroethane-d4			54.5	ug/kg	50.0		109	70-130		
Surrogate: Toluene-d8			50.5	ug/kg	50.0		101	70-130		
LCS (B2J1299-BS1)					Prepared 8	& Analyzed: 1	0/25/22			
Acetone	58			ug/kg	50.0		116	60-140		
Benzene	47			ug/kg	50.0		93.4	70-130		
Bromobenzene	55			ug/kg	50.0		110	70-130		
Bromochloromethane	52			ug/kg	50.0		105	70-130		
Bromodichloromethane	43			ug/kg	50.0		85.9	70-130		
Bromoform	57			ug/kg	50.0		113	70-130		
Bromomethane	41			ug/kg	50.0		81.8	60-140		
2-Butanone	56			ug/kg	50.0		112	60-140		
tert-Butyl alcohol	43			ug/kg	50.0		86.7	70-130		
sec-Butylbenzene	52			ug/kg	50.0		103	70-130		
n-Butylbenzene	47			ug/kg	50.0		93.5	70-130		
tert-Butylbenzene	52			ug/kg	50.0		103	70-130		
Methyl t-butyl ether (MTBE)	40			ug/kg	50.0		79.8	70-130		
Carbon Disulfide	37			ug/kg	50.0		74.6	50-150		
Carbon Tetrachloride	47			ug/kg	50.0		93.7	70-130		
Chlorobenzene	47			ug/kg	50.0		94.8	70-130		
Chloroethane	36			ug/kg	50.0		71.9	60-140		
Chloroform	46			ug/kg	50.0		91.8	70-130		
Chloromethane	41			ug/kg	50.0		82.7	60-140		
4-Chlorotoluene	47			ug/kg	50.0		93.9	70-130		
2-Chlorotoluene	47			ug/kg	50.0		93.9	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	40			ug/kg	50.0		80.1	70-130		
Dibromochloromethane	55			ug/kg	50.0		110	70-130		
1,2-Dibromoethane (EDB)	53			ug/kg	50.0		107	70-130		
Dibromomethane	47			ug/kg	50.0		93.9	60-140		
1,2-Dichlorobenzene	50			ug/kg	50.0		99.7	70-130		
1,3-Dichlorobenzene	56			ug/kg	50.0		113	70-130		
1,4-Dichlorobenzene	50			ug/kg	50.0		101	70-130		
1,1-Dichloroethane	42			ug/kg	50.0		84.1	70-130 70-130		
1,2-Dichloroethane	41			ug/kg	50.0		82.9	70-130 70-130		
trans-1,2-Dichloroethene	42			ug/kg	50.0		84.4	70-130		
cis-1,2-Dichloroethene	48			ug/kg ug/kg	50.0		95.9	70-130 70-130		
1,1-Dichloroethene	42			ug/kg ug/kg	50.0		83.2	70-130 70-130		
1,2-Dichloropropane	42			ug/kg ug/kg	50.0		83.2 80.7	70-130 70-130		
	40						ALL /			

Page 58 of 70

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limi
atch: B2J1299 - EPA 5035 (C	Continued)									
LCS (B2J1299-BS1)	_				Prepared 8	& Analyzed: 10	0/25/22			
cis-1,3-Dichloropropene	44			ug/kg	50.0		87.8	70-130		
trans-1,3-Dichloropropene	45			ug/kg	50.0		89.4	70-130		
1,1-Dichloropropene	54			ug/kg	50.0		108	70-130		
Diethyl ether	44			ug/kg	50.0		88.5	60-140		
1,4-Dioxane	297			ug/kg	250		119	0-200		
Ethylbenzene	45			ug/kg	50.0		89.1	70-130		
Hexachlorobutadiene	58			ug/kg	50.0		115	70-130		
2-Hexanone	53			ug/kg	50.0		106	70-130		
Isopropylbenzene	49			ug/kg	50.0		98.7	70-130		
p-Isopropyltoluene	53			ug/kg	50.0		107	70-130		
Methylene Chloride	56			ug/kg	50.0		112	60-140		
4-Methyl-2-pentanone	39			ug/kg	50.0		78.9	70-130		
Naphthalene	51			ug/kg	50.0		102	70-130		
n-Propylbenzene	49			ug/kg	50.0		98.0	70-130		
Styrene	48			ug/kg	50.0		96.9	70-130		
1,1,1,2-Tetrachloroethane	47			ug/kg	50.0		93.2	70-130		
Tetrachloroethene	58			ug/kg	50.0		116	70-130		
Tetrahydrofuran	46			ug/kg	50.0		91.1	50-150		
Toluene	50			ug/kg	50.0		101	70-130		
1,2,4-Trichlorobenzene	60			ug/kg	50.0		120	70-130		
1,2,3-Trichlorobenzene	57			ug/kg	50.0		114	70-130		
1,1,2-Trichloroethane	47			ug/kg	50.0		94.5	70-130		
1,1,1-Trichloroethane	43			ug/kg	50.0		86.9	70-130		
Trichloroethene	48			ug/kg	50.0		95.8	70-130		
1,2,3-Trichloropropane	42			ug/kg	50.0		83.6	70-130		
1,3,5-Trimethylbenzene	49			ug/kg	50.0		98.6	70-130		
1,2,4-Trimethylbenzene	50			ug/kg	50.0		99.4	70-130		
Vinyl Chloride	39			ug/kg	50.0		77.1	60-140		
o-Xylene	48			ug/kg	50.0		96.2	70-130		
m&p-Xylene	96			ug/kg	100		96.2	70-130		
1,1,2,2-Tetrachloroethane	45			ug/kg	50.0		90.6	70-130		
tert-Amyl methyl ether	42			ug/kg	50.0		84.2	70-130		
1,3-Dichloropropane	44			ug/kg	50.0		89.0	70-130		
Ethyl tert-butyl ether	43			ug/kg	50.0		85.6	70-130		
Trichlorofluoromethane	40			ug/kg	50.0		80.7	70-130		
Dichlorodifluoromethane	45			ug/kg ug/kg	50.0		89.2	60-140		
Surrogate: 4-Bromofluorobenzene			46.5	ug/kg	50.0		93.1	70-130		
Surrogate: 1,2-Dichloroethane-d4			49.8	ug/kg	<i>50.0</i>		99.5	70-130 70-130		
Surrogate: Toluene-d8			49.0 51.2	ug/kg ug/kg	50.0 50.0		99.3 102	70-130 70-130		

Volatile Organic Compounds (Continued)

Analyte	Result Qua	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Limi
atch: B2J1299 - EPA 5035 (Co	ntinued)							
CS Dup (B2J1299-BSD1)			•	& Analyzed: 10/	-			
Acetone	50	ug/kg	50.0		100	60-140	14.6	30
Benzene	51	ug/kg	50.0		101	70-130	8.03	20
Bromobenzene	59	ug/kg	50.0		119	70-130	7.74	20
Bromochloromethane	58	ug/kg	50.0		116	70-130	10.5	20
Bromodichloromethane	46	ug/kg	50.0		92.0	70-130	6.95	20
Bromoform	60	ug/kg	50.0		120	70-130	5.54	20
Bromomethane	49	ug/kg	50.0		98.3	60-140	18.4	30
2-Butanone	57	ug/kg	50.0		115	60-140	2.75	30
ert-Butyl alcohol	43	ug/kg	50.0		86.6	70-130	0.0924	20
ec-Butylbenzene	56	ug/kg	50.0		113	70-130	8.44	20
n-Butylbenzene	54	ug/kg	50.0		107	70-130	13.9	20
ert-Butylbenzene	56	ug/kg	50.0		111	70-130	7.18	20
Methyl t-butyl ether (MTBE)	40	ug/kg	50.0		80.5	70-130	0.823	20
Carbon Disulfide	41	ug/kg	50.0		81.2	50-150	8.40	40
Carbon Tetrachloride	51	ug/kg	50.0		102	70-130	8.99	20
Chlorobenzene	52	ug/kg	50.0		103	70-130	8.52	20
Chloroethane	40	ug/kg	50.0		80.1	60-140	10.8	30
Chloroform	48	ug/kg	50.0		95.8	70-130	4.24	20
Chloromethane	44	ug/kg	50.0		88.4	60-140	6.57	30
I-Chlorotoluene	50	ug/kg	50.0		100	70-130	6.75	20
2-Chlorotoluene	50	ug/kg	50.0		100	70-130	6.75	20
1,2-Dibromo-3-chloropropane (DBCP)	40	ug/kg	50.0		81.0	70-130	1.12	20
Dibromochloromethane	58	ug/kg	50.0		117	70-130	6.18	20
.,2-Dibromoethane (EDB)	56	ug/kg	50.0		111	70-130	3.83	20
Dibromomethane	49	ug/kg	50.0		97.6	60-140	3.86	30
	54	ug/kg						
L,2-Dichlorobenzene	5 4 56	ug/kg	50.0		108	70-130	8.08	20
L,3-Dichlorobenzene	55	ug/kg	50.0		111	70-130	1.34	20
L,4-Dichlorobenzene	55 45	ug/kg	50.0		109	70-130	8.26	20
1,1-Dichloroethane			50.0		90.0	70-130	6.75	20
1,2-Dichloroethane	40	ug/kg	50.0		80.2	70-130	3.31	20
rans-1,2-Dichloroethene	46	ug/kg	50.0		92.5	70-130	9.18	20
cis-1,2-Dichloroethene	51	ug/kg	50.0		102	70-130	5.79	20
,1-Dichloroethene	44	ug/kg	50.0		88.9	70-130	6.60	20
,2-Dichloropropane	44	ug/kg	50.0		88.4	70-130	9.08	20
2,2-Dichloropropane	44	ug/kg	50.0		87.5	70-130	7.64	20
cis-1,3-Dichloropropene	48	ug/kg	50.0		95.1	70-130	7.90	20
rans-1,3-Dichloropropene	48	ug/kg	50.0		96.3	70-130	7.41	20
,1-Dichloropropene	56	ug/kg	50.0		112	70-130	3.36	20
Diethyl ether	48	ug/kg	50.0		95.5	60-140	7.59	30
,4-Dioxane	214	ug/kg	250		85.5	0-200	32.5	50
Ethylbenzene	48	ug/kg	50.0		96.2	70-130	7.62	20
Hexachlorobutadiene	56	ug/kg	50.0		113	70-130	2.10	20
2-Hexanone	54	ug/kg	50.0		107	70-130	1.31	20
sopropylbenzene	53	ug/kg	50.0		107	70-130	7.97	20
o-Isopropyltoluene	57	ug/kg	50.0		115	70-130	7.41	20
Methylene Chloride	59	ug/kg	50.0		118	60-140	5.15	30
- I-Methyl-2-pentanone	39	ug/kg	50.0		78.6	70-130	0.483	20
Naphthalene	53	ug/kg	50.0		106	70-130	4.43	20
n-Propylbenzene	52	ug/kg	50.0		105	70-130	6.78	20
Styrene	52	ug/kg	50.0		104	70-130	7.43	20
1,1,1,2-Tetrachloroethane	51	ug/kg	50.0		101	70-130	8.09	20
Fetrachloroethene	57	ug/kg	50.0		113	70-130	2.93	20
Fetrahydrofuran	44	ug/kg	50.0		88.8	50-150	2.56	4(
		ug/kg						
Foluene	55		50.0		110	70-130	9.06	20
,2,4-Trichlorobenzene	60 58	ug/kg ug/kg	50.0 50.0		119 116	70-130 70-130	0.385 1.67	20
1,2,3-Trichlorobenzene								20

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2J1299 - EPA 5035 (C	Continued)									
LCS Dup (B2J1299-BSD1)					Prepared 8	& Analyzed: 10	0/25/22			
1,1,1-Trichloroethane	47			ug/kg	50.0		94.2	70-130	8.02	20
Trichloroethene	52			ug/kg	50.0		104	70-130	8.36	20
1,2,3-Trichloropropane	43			ug/kg	50.0		85.0	70-130	1.71	20
1,3,5-Trimethylbenzene	53			ug/kg	50.0		106	70-130	7.27	20
1,2,4-Trimethylbenzene	54			ug/kg	50.0		107	70-130	7.44	20
Vinyl Chloride	42			ug/kg	50.0		84.2	60-140	8.85	30
o-Xylene	52			ug/kg	50.0		104	70-130	7.93	20
m&p-Xylene	103			ug/kg	100		103	70-130	6.99	20
1,1,2,2-Tetrachloroethane	47			ug/kg	50.0		93.5	70-130	3.13	20
tert-Amyl methyl ether	40			ug/kg	50.0		81.0	70-130	3.87	20
1,3-Dichloropropane	48			ug/kg	50.0		95.6	70-130	7.21	20
Ethyl tert-butyl ether	40			ug/kg	50.0		80.1	70-130	6.71	20
Trichlorofluoromethane	43			ug/kg	50.0		85.7	70-130	5.91	20
Dichlorodifluoromethane	48			ug/kg	50.0		97.0	60-140	8.36	30
Surrogate: 4-Bromofluorobenzene			46.6	ug/kg	50.0		93.3	70-130		
Surrogate: 1,2-Dichloroethane-d4			49.3	ug/kg	50.0		98.6	70-130		
Surrogate: Toluene-d8			51.0	ug/kg	50.0		102	70-130		

Batch: B2J1325 - EPA 5035

		_	_	_	_	_	_
Blank (B2	113	25-	·BLK1)				
			,				

Diam (D201020 D21112)			
Acetone	ND	5	ug/kg
Benzene	ND	5	ug/kg
Bromobenzene	ND	5	ug/kg
Bromochloromethane	ND	5	ug/kg
Bromodichloromethane	ND	5	ug/kg
Bromoform	ND	5	ug/kg
Bromomethane	ND	5	ug/kg
2-Butanone	ND	5	ug/kg
tert-Butyl alcohol	ND	5	ug/kg
sec-Butylbenzene	ND	5	ug/kg
n-Butylbenzene	ND	5	ug/kg
tert-Butylbenzene	ND	5	ug/kg
Methyl t-butyl ether (MTBE)	ND	5	ug/kg
Carbon Disulfide	ND	5	ug/kg
Carbon Tetrachloride	ND	5	ug/kg
Chlorobenzene	ND	5	ug/kg
Chloroethane	ND	5	ug/kg
Chloroform	ND	5	ug/kg
Chloromethane	ND	5	ug/kg
4-Chlorotoluene	ND	5	ug/kg
2-Chlorotoluene	ND	5	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg
Dibromochloromethane	ND	5	ug/kg
1,2-Dibromoethane (EDB)	ND	5	ug/kg
Dibromomethane	ND	5	ug/kg
1,2-Dichlorobenzene	ND	5	ug/kg
1,3-Dichlorobenzene	ND	5	ug/kg
1,4-Dichlorobenzene	ND	5	ug/kg
1,1-Dichloroethane	ND	5	ug/kg
1,2-Dichloroethane	ND	5	ug/kg
trans-1,2-Dichloroethene	ND	5	ug/kg
cis-1,2-Dichloroethene	ND	5	ug/kg
1,1-Dichloroethene	ND	5	ug/kg
1,2-Dichloropropane	ND	5	ug/kg
2,2-Dichloropropane	ND	5	ug/kg
cis-1,3-Dichloropropene	ND	5	ug/kg
trans-1,3-Dichloropropene	ND	5	ug/kg

Prepared & Analyzed: 10/26/22

Page 61 of 70

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2J1325 - EPA 5035 (C	Continued)									
Blank (B2J1325-BLK1)	,				Prepared 8	& Analyzed: 10	0/26/22			
1,1-Dichloropropene	ND		5	ug/kg		,	-,,			
1,3-Dichloropropene (cis + trans)	ND		5	ug/kg						
Diethyl ether	ND		5	ug/kg						
1,4-Dioxane	ND		100	ug/kg						
Ethylbenzene	ND		5	ug/kg						
Hexachlorobutadiene	ND		5	ug/kg						
2-Hexanone	ND		5	ug/kg						
Isopropylbenzene	ND		5	ug/kg						
p-Isopropyltoluene	ND		5	ug/kg						
Methylene Chloride	ND		7	ug/kg						
4-Methyl-2-pentanone	ND		5	ug/kg						
Naphthalene	ND		5	ug/kg						
n-Propylbenzene	ND		5	ug/kg						
Styrene	ND		5	ug/kg						
1,1,1,2-Tetrachloroethane	ND		5	ug/kg						
Tetrachloroethene	ND		5	ug/kg						
Tetrahydrofuran	ND		5	ug/kg						
Toluene	ND		5	ug/kg						
1,2,4-Trichlorobenzene	ND		5	ug/kg						
1,2,3-Trichlorobenzene	ND		5	ug/kg						
1,1,2-Trichloroethane	ND		5	ug/kg						
1,1,1-Trichloroethane	ND		5	ug/kg						
Trichloroethene	ND		5	ug/kg						
1,2,3-Trichloropropane	ND		5	ug/kg						
1,3,5-Trimethylbenzene	ND		5	ug/kg						
1,2,4-Trimethylbenzene	ND		5	ug/kg						
Vinyl Chloride	ND		5	ug/kg						
o-Xylene	ND		5	ug/kg						
m&p-Xylene	ND		10	ug/kg						
Total xylenes	ND		5	ug/kg						
1,1,2,2-Tetrachloroethane	ND		5	ug/kg						
tert-Amyl methyl ether	ND		5	ug/kg						
1,3-Dichloropropane	ND		5	ug/kg						
Ethyl tert-butyl ether	ND		5	ug/kg						
Diisopropyl ether	ND		5	ug/kg						
Trichlorofluoromethane	ND		5	ug/kg						
Dichlorodifluoromethane	ND		5	ug/kg						
Surrogate: 4-Bromofluorobenzene			45.3	ug/kg	50.0		90.6	70-130		
Surrogate: 1,2-Dichloroethane-d4			47.4	ug/kg	50.0		94.7	70-130		
Surrogate: Toluene-d8			47.2	ug/kg	50.0		94.5	70-130		

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
Batch: B2J1325 - EPA 5035 (Co	ontinued)									
LCS (B2J1325-BS1)	ueu j				Prenared S	& Analyzed:	10/26/22			
Acetone	43			ug/kg	50.0	x Analyzcu.	86.9	60-140		
Benzene	55			ug/kg ug/kg	50.0		110	70-130		
Bromobenzene	60			ug/kg	50.0		119	70-130		
Bromochloromethane	55			ug/kg	50.0		109	70-130		
Bromodichloromethane	52			ug/kg	50.0		105	70-130		
Bromoform	54			ug/kg	50.0		108	70-130		
Bromomethane	55			ug/kg	50.0		111	60-140		
2-Butanone	50			ug/kg	50.0		99.3	60-140		
tert-Butyl alcohol	50			ug/kg	50.0		99.1	70-130		
sec-Butylbenzene	57			ug/kg	50.0		113	70-130		
n-Butylbenzene	60			ug/kg	50.0		120	70-130		
tert-Butylbenzene	59			ug/kg	50.0		119	70-130		
Methyl t-butyl ether (MTBE)	49			ug/kg	50.0		97.1	70-130		
Carbon Disulfide	60			ug/kg	50.0		119	50-150		
Carbon Tetrachloride	60			ug/kg	50.0		119	70-130		
Chlorobenzene	58			ug/kg ug/kg	50.0		116	70-130		
Chloroethane	58			ug/kg ug/kg	50.0		116	60-140		
Chloroform	51			ug/kg ug/kg	50.0		103	70-130		
Chloromethane	57			ug/kg	50.0		114	60-140		
4-Chlorotoluene	52			ug/kg	50.0		105	70-130		
2-Chlorotoluene	53			ug/kg	50.0		106	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	47			ug/kg	50.0		93.2	70-130		
Dibromochloromethane	48			ug/kg	50.0		96.8	70-130		
1,2-Dibromoethane (EDB)	49			ug/kg	50.0		98.3	70-130		
Dibromomethane	50			ug/kg ug/kg	50.0		99.9	60-140		
1,2-Dichlorobenzene	59			ug/kg	50.0		118	70-130		
1,3-Dichlorobenzene	57			ug/kg	50.0		114	70-130		
1,4-Dichlorobenzene	53			ug/kg	50.0		106	70-130		
1,1-Dichloroethane	53			ug/kg	50.0		107	70-130		
1,2-Dichloroethane	47			ug/kg	50.0		94.1	70-130		
trans-1,2-Dichloroethene	59			ug/kg ug/kg	50.0		118	70-130		
cis-1,2-Dichloroethene	56			ug/kg ug/kg	50.0		112	70-130		
1,1-Dichloroethene	60			ug/kg	50.0		119	70-130		
1,2-Dichloropropane	53			ug/kg	50.0		106	70-130		
2,2-Dichloropropane	58			ug/kg	50.0		116	70-130		
cis-1,3-Dichloropropene	53			ug/kg	50.0		106	70-130		
trans-1,3-Dichloropropene	47			ug/kg	50.0		94.7	70-130		
1,1-Dichloropropene	57			ug/kg	50.0		113	70-130		
Diethyl ether	50			ug/kg ug/kg	50.0		101	60-140		
1,4-Dioxane	211			ug/kg ug/kg	250		84.3	0-200		
Ethylbenzene	56			ug/kg ug/kg	50.0		113	70-130		
Hexachlorobutadiene	55			ug/kg ug/kg	50.0		110	70-130 70-130		
2-Hexanone	50			ug/kg ug/kg	50.0		99.1	70-130 70-130		
Isopropylbenzene	58			ug/kg ug/kg	50.0		99.1 117	70-130		
p-Isopropyltoluene	56 56			ug/kg ug/kg	50.0		117	70-130 70-130		
Methylene Chloride	50 57			ug/kg ug/kg	50.0		111	60-140		
,	57 44			ug/kg ug/kg	50.0		87.3	70-130		
4-Methyl-2-pentanone Naphthalene	44			ug/kg ug/kg	50.0		87.3 92.7	70-130 70-130		
n-Propylbenzene	46 58			ug/kg ug/kg	50.0		92.7 116	70-130 70-130		
	58 58			ug/kg ug/kg	50.0		116	70-130 70-130		
Styrene 1,1,1,2-Tetrachloroethane	58 58			ug/kg ug/kg	50.0		116	70-130 70-130		
				ug/kg ug/kg						
Tetrahydrafuran	59 44			ug/kg ug/kg	50.0		118	70-130		
Tetrahydrofuran					50.0		88.8	50-150		
Toluene	55 60			ug/kg	50.0		110	70-130		
1,2,4-Trichlorobenzene	60 E0			ug/kg	50.0		119	70-130		
1,2,3-Trichlorobenzene	50			ug/kg	50.0		99.2	70-130		

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
·		Quai	LIIIIL	Units	Levei	Result	%REC	LIMIUS	RPD	LIMIL
Batch: B2J1325 - EPA 5035 (Co	ontinued)				5 1		0/25/22			
LCS (B2J1325-BS1)				,	•	& Analyzed: 1				
1,1,1-Trichloroethane	57			ug/kg	50.0		115	70-130		
Trichloroethene	57			ug/kg	50.0		114	70-130		
1,2,3-Trichloropropane	50			ug/kg	50.0		100	70-130		
1,3,5-Trimethylbenzene	55			ug/kg	50.0		111	70-130		
1,2,4-Trimethylbenzene	55			ug/kg	50.0		110	70-130		
Vinyl Chloride	56			ug/kg	50.0		111	60-140		
o-Xylene	52			ug/kg	50.0		105	70-130		
m&p-Xylene	118			ug/kg	100		118	70-130		
1,1,2,2-Tetrachloroethane	54			ug/kg	50.0		108	70-130		
tert-Amyl methyl ether	53			ug/kg	50.0		106	70-130		
1,3-Dichloropropane	48			ug/kg	50.0		96.4	70-130		
Ethyl tert-butyl ether	53			ug/kg	50.0		107	70-130		
Trichlorofluoromethane	59			ug/kg	50.0		118	70-130		
Dichlorodifluoromethane	54			ug/kg	50.0		108	60-140		
Surrogate: 4-Bromofluorobenzene			46.3	ug/kg	50.0		92.6	70-130		
Surrogate: 1,2-Dichloroethane-d4			45.0	ug/kg	50.0		90.0	70-130		
Surrogate: Toluene-d8			45.8	ug/kg	50.0		91.5	70-130		
LCS Dup (B2J1325-BSD1)					Prepared 8	& Analyzed: 1	0/26/22			
Acetone	44			ug/kg	50.0		88.8	60-140	2.23	30
Benzene	53			ug/kg	50.0		105	70-130	4.14	20
Bromobenzene	59			ug/kg	50.0		119	70-130	0.354	20
Bromochloromethane	50			ug/kg	50.0		101	70-130	7.95	20
Bromodichloromethane	47			ug/kg	50.0		94.7	70-130	10.0	20
Bromoform	48			ug/kg	50.0		95.1	70-130	12.8	20
Bromomethane	51			ug/kg	50.0		103	60-140	7.58	30
2-Butanone	41			ug/kg	50.0		83.0	60-140	17.9	30
tert-Butyl alcohol	54			ug/kg	50.0		108	70-130	8.44	20
sec-Butylbenzene	53			ug/kg	50.0		106	70-130	6.84	20
n-Butylbenzene	55			ug/kg	50.0		111	70-130	7.80	20
tert-Butylbenzene	54			ug/kg	50.0		109	70-130	8.79	20
Methyl t-butyl ether (MTBE)	44			ug/kg	50.0		87.5	70-130	10.4	20
Carbon Disulfide	57			ug/kg	50.0		113	50-150	5.42	40
Carbon Tetrachloride	60			ug/kg	50.0		119	70-130	0.218	20
Chlorobenzene	57			ug/kg	50.0		114	70-130	1.62	20
Chloroethane	56			ug/kg	50.0		113	60-140	2.40	30
Chloroform	52			ug/kg	50.0		104	70-130	1.66	20
Chloromethane	55			ug/kg	50.0		109	60-140	4.08	30
4-Chlorotoluene	51			ug/kg	50.0		102	70-130	2.81	20
2-Chlorotoluene	55			ug/kg	50.0		109	70-130	3.38	20
1,2-Dibromo-3-chloropropane (DBCP)	40			ug/kg	50.0		80.8	70-130	14.2	20
Dibromochloromethane	44			ug/kg	50.0		87.9	70-130	9.64	20
1,2-Dibromoethane (EDB)	43			ug/kg	50.0		86.1	70-130	13.1	20
Dibromomethane	45			ug/kg	50.0		90.0	60-140	10.5	30
1,2-Dichlorobenzene	54			ug/kg	50.0		107	70-130	9.82	20
1,3-Dichlorobenzene	58			ug/kg	50.0		115	70-130	0.592	20
1,4-Dichlorobenzene	55			ug/kg	50.0		110	70-130	3.60	20
1,1-Dichloroethane	51			ug/kg	50.0		103	70-130	4.08	20
1,2-Dichloroethane	42			ug/kg ug/kg	50.0		84.3	70-130	11.0	20
trans-1,2-Dichloroethene	57			ug/kg ug/kg	50.0		113	70-130	3.62	20
cis-1,2-Dichloroethene	57 54			ug/kg ug/kg	50.0		107	70-130 70-130	3.62 4.51	20
1,1-Dichloroethene	60			ug/kg ug/kg	50.0		119	70-130 70-130	0.0167	20
	51			ug/kg ug/kg	50.0		101	70-130 70-130	4.87	
1,2-Dichloropropane	56			ug/kg ug/kg	50.0					20
2,2-Dichloropropane cis-1,3-Dichloropropene				ug/kg ug/kg			112	70-130 70-130	2.90	20
	47 43			ug/kg ug/kg	50.0		94.4	70-130 70-130	11.4	20
trans-1,3-Dichloropropene	43				50.0		85.3	70-130	10.5	20
1,1-Dichloropropene	57			ug/kg	50.0		115	70-130	1.17 Page	20

Page 64 of 70

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2J1325 - EPA 5035 (C	Continued)									
LCS Dup (B2J1325-BSD1)					Prepared 8	& Analyzed: 1	0/26/22			
Diethyl ether	46			ug/kg	50.0		91.7	60-140	9.54	30
1,4-Dioxane	172			ug/kg	250		68.9	0-200	20.1	50
Ethylbenzene	56			ug/kg	50.0		111	70-130	1.35	20
Hexachlorobutadiene	54			ug/kg	50.0		109	70-130	0.971	20
2-Hexanone	42			ug/kg	50.0		83.3	70-130	17.3	20
Isopropylbenzene	58			ug/kg	50.0		117	70-130	0.154	20
p-Isopropyltoluene	56			ug/kg	50.0		112	70-130	0.573	20
Methylene Chloride	53			ug/kg	50.0		106	60-140	7.25	30
4-Methyl-2-pentanone	43			ug/kg	50.0		85.8	70-130	1.73	20
Naphthalene	45			ug/kg	50.0		90.5	70-130	2.40	20
n-Propylbenzene	58			ug/kg	50.0		116	70-130	0.225	20
Styrene	60			ug/kg	50.0		120	70-130	3.22	20
1,1,1,2-Tetrachloroethane	59			ug/kg	50.0		118	70-130	1.33	20
Tetrachloroethene	59			ug/kg	50.0		117	70-130	0.816	20
Tetrahydrofuran	42			ug/kg	50.0		83.4	50-150	6.27	40
Toluene	53			ug/kg	50.0		106	70-130	3.58	20
1,2,4-Trichlorobenzene	57			ug/kg	50.0		113	70-130	5.19	20
1,2,3-Trichlorobenzene	48			ug/kg	50.0		95.6	70-130	3.69	20
1,1,2-Trichloroethane	42			ug/kg	50.0		84.2	70-130	11.9	20
1,1,1-Trichloroethane	57			ug/kg	50.0		114	70-130	0.981	20
Trichloroethene	57			ug/kg	50.0		114	70-130	0.228	20
1,2,3-Trichloropropane	43			ug/kg	50.0		86.6	70-130	14.4	20
1,3,5-Trimethylbenzene	55			ug/kg	50.0		110	70-130	0.217	20
1,2,4-Trimethylbenzene	59			ug/kg	50.0		119	70-130	7.59	20
Vinyl Chloride	51			ug/kg	50.0		102	60-140	8.34	30
o-Xylene	59			ug/kg	50.0		118	70-130	11.7	20
m&p-Xylene	115			ug/kg	100		115	70-130	2.63	20
1,1,2,2-Tetrachloroethane	46			ug/kg	50.0		91.5	70-130	16.2	20
tert-Amyl methyl ether	46			ug/kg	50.0		92.6	70-130	13.1	20
1,3-Dichloropropane	44			ug/kg	50.0		87.6	70-130	9.58	20
Ethyl tert-butyl ether	48			ug/kg	50.0		96.5	70-130	9.87	20
Trichlorofluoromethane	52			ug/kg	50.0		103	70-130	13.0	20
Dichlorodifluoromethane	55			ug/kg	50.0		110	60-140	1.54	30
Surrogate: 4-Bromofluorobenzene			45.6	ug/kg	50.0		91.2	70-130		
Surrogate: 1,2-Dichloroethane-d4			45.1	ug/kg	50.0		90.1	70-130		
Surrogate: Toluene-d8			47.5	ug/kg	50.0		94.9	70-130		

Semivolatile organic compounds

Arrabata	5	01	Reporting	11-2	Spike	Source	0/ 550	%REC	DES	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Lim
Batch: B2K0113 - EPA 3546										
Blank (B2K0113-BLK1)				Pr	epared: 11/0	2/22 Analyze	ed: 11/04/22			
2-Methylnaphthalene	ND		130	ug/kg						
Acenaphthene	ND		130	ug/kg						
Acenaphthylene	ND		130	ug/kg						
Anthracene	ND		130	ug/kg						
Benzo(a)anthracene	ND		130	ug/kg						
Benzo(a)pyrene	ND		130	ug/kg						
Benzo(b)fluoranthene	ND		130	ug/kg						
Benzo(g,h,i)perylene	ND		130	ug/kg						
Benzo(k)fluoranthene	ND		130	ug/kg						
Chrysene	ND		130	ug/kg						
Dibenz(a,h)anthracene	ND		130	ug/kg						
Dibenzofuran	ND		130	ug/kg						
Fluoranthene	ND		130	ug/kg						
Fluorene	ND		130	ug/kg						
Indeno(1,2,3-cd)pyrene	ND		130	ug/kg						
Naphthalene	ND		130	ug/kg						
Phenanthrene	ND		130	ug/kg						
Pyrene	ND		130	ug/kg						
Surrogate: Nitrobenzene-d5			2290	ug/kg	3330		68.6	30-126		
Surrogate: p-Terphenyl-d14			2780	ug/kg	3330		83.3	47-130		
Surrogate: 2-Fluorobiphenyl			2470	ug/kg	3330		74.1	34-130		
LCS (B2K0113-BS1)				Pr	epared: 11/0	2/22 Analyze	ed: 11/04/22			
2-Methylnaphthalene	2690		130	ug/kg	3330		80.7	40-140		
Acenaphthene	2910		130	ug/kg	3330		87.2	40-140		
Acenaphthylene	3080		130	ug/kg	3330		92.4	40-140		
Anthracene	3190		130	ug/kg	3330		95.6	40-140		
Benzo(a)anthracene	3180		130	ug/kg	3330		95.3	40-140		
Benzo(a)pyrene	3360		130	ug/kg	3330		101	40-140		
Benzo(b)fluoranthene	3490		130	ug/kg	3330		105	40-140		
Benzo(g,h,i)perylene	3090		130	ug/kg	3330		92.6	40-140		
Benzo(k)fluoranthene	3540		130	ug/kg	3330		106	40-140		
Chrysene	3200		130	ug/kg	3330		96.0	40-140		
Dibenz(a,h)anthracene	3170		130	ug/kg	3330		95.0	40-140		
Dibenzofuran	3140		130	ug/kg	3330		94.2	40-140		
Fluoranthene	3230		130	ug/kg	3330		97.0	40-140		
Fluorene	2880		130	ug/kg	3330		86.4	40-140		
Indeno(1,2,3-cd)pyrene	2990		130	ug/kg	3330		89.7	40-140		
Naphthalene	2610		130	ug/kg	3330		78.3	40-140		
Phenanthrene	3200		130	ug/kg	3330		96.0	40-140		
Pyrene	3390		130	ug/kg	3330		102	40-140		
Surrogate: Nitrobenzene-d5			2380	ug/kg	3330		71.5	30-126		
Surrogate: p-Terphenyl-d14			2880	ug/kg	3330		86.5	47-130		
Surrogate: 2-Fluorobiphenyl			2620	ug/kg	3330		78.7	34-130		

Semivolatile organic compounds (Continued)

Analyte	Result	R Qual	eporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K0113 - EPA 3546 ((Continued)									
LCS Dup (B2K0113-BSD1)				Pr	epared: 11/0	2/22 Analyze	d: 11/04/22			
2-Methylnaphthalene	2520		130	ug/kg	3330		75.5	40-140	6.63	30
Acenaphthene	2970		130	ug/kg	3330		89.0	40-140	2.02	30
Acenaphthylene	3110		130	ug/kg	3330		93.2	40-140	0.862	30
Anthracene	3290		130	ug/kg	3330		98.8	40-140	3.35	30
Benzo(a)anthracene	3340		130	ug/kg	3330		100	40-140	5.15	30
Benzo(a)pyrene	3660		130	ug/kg	3330		110	40-140	8.49	30
Benzo(b)fluoranthene	3840		130	ug/kg	3330		115	40-140	9.49	30
Benzo(g,h,i)perylene	3300		130	ug/kg	3330		99.0	40-140	6.74	30
Benzo(k)fluoranthene	3750		130	ug/kg	3330		113	40-140	5.74	30
Chrysene	3310		130	ug/kg	3330		99.3	40-140	3.34	30
Dibenz(a,h)anthracene	3440		130	ug/kg	3330		103	40-140	8.39	30
Dibenzofuran	3270		130	ug/kg	3330		98.0	40-140	3.89	30
Fluoranthene	3430		130	ug/kg	3330		103	40-140	5.88	30
Fluorene	3080		130	ug/kg	3330		92.3	40-140	6.65	30
Indeno(1,2,3-cd)pyrene	3320		130	ug/kg	3330		99.7	40-140	10.6	30
Naphthalene	2260		130	ug/kg	3330		67.7	40-140	14.5	30
Phenanthrene	3320		130	ug/kg	3330		99.7	40-140	3.82	30
Pyrene	3490		130	ug/kg	3330		105	40-140	2.91	30
Surrogate: Nitrobenzene-d5			1950	ug/kg	3330		58.4	30-126		
Surrogate: p-Terphenyl-d14			2960	ug/kg	3330		88.7	47-130		
Surrogate: 2-Fluorobiphenyl			2530	ug/kg	3330		75.9	34-130		

				Control						
Total Petroleum Hydrocarbons										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2J1429 - EPA 3546 Blank (B2J1429-BLK1)				Pr	renared: 10/2	28/22 Analyze	ed: 10/31/22			
Total Petroleum Hydrocarbons	ND		27	mg/kg	срагос. 20,2	10/22 / 11.0.,2	50. 10,51,11			
Surrogate: Chlorooctadecane			4.76	mg/kg	8.33		57.2	50-130		
LCS (B2J1429-BS1)				Pr	repared: 10/2	28/22 Analyze	ed: 10/31/22			
Total Petroleum Hydrocarbons	336		27	mg/kg	667		50.4	44.7-125		
Surrogate: Chlorooctadecane			5.69	mg/kg	8.33		68.3	50-130		
LCS Dup (B2J1429-BSD1)				Pr	repared: 10/2	28/22 Analyze	ed: 10/31/22			
Total Petroleum Hydrocarbons	347		27	mg/kg	667		52.1	44.7-125	3.37	200
Surrogate: Chlorooctadecane			6.87	mg/kg	8.33		82.5	50-130		

Notes and Definitions

Item	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

NEW ENGLAND TESTING LABORATORY, INC.

59 Greenhill Street West Warwick, RI 02893 1-888-863-8522

CHAIN OF CUSTODY RECORD

1-000-003-032	,				
	756 and 770 Lonsdale Avenue			P	
CLIENT A		AQUEOUS	SOI L OTHER	NO. VA A T T	REMARKS
DATE TIME	C	S .	R	E	15 QT QT QT
10/2/2 0800	1 (t-101 (m) 0-2			5	
0815	SE-102 (m) to-113 SE-103 2-3			5	
0820	SE-103 2-3			2	
0830	SE-103 10-11			,5	
0845	SE-104 (mr) 0-2			5	
0900	SE-104 (nr) 10-12			5	VVV
0915	SE-105 (nn) 0-1		-	5	
0930	SE-105 (mu) 10-14		}	15	Do not run PAH
1000	SE-106 (mv) 0-2		igwedge	54	
1015	St-106 (mi) 10-11			3	
V 1100	\$ SE-107 15-17	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		5	
			-		
			-		
Sampled by: (Speciatus	19/2/22 1800 Jell		te	(,,)[d/T	Laboratory Remarks: 5 Temp. received:
Relinquished by: (Sig	16/21 1520				Turnaround (Business Days) Standard
Relinquished by: (Sig	Date/Time Received for Laboratory by: (Signatu	Te)	į.	0/21/22 1520	Turnaround (Business Days) Standard

^{**}Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 2K01008 Client Project: S4350 - 756 & 770 Lonsdale Ave

Report Date: 08-November-2022

Prepared for:

Cathy Racine SAGE Environmental 172 Armistice Blvd Pawtucket, RI 02860

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 11/01/22. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 2K01008. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
2K01008-01	SE-101 (MW)	Water	10/28/2022	11/01/2022
2K01008-02	SE-102 (MW)	Water	10/28/2022	11/01/2022
2K01008-03	SE-104 (MW)	Water	10/28/2022	11/01/2022
2K01008-04	SE-105 (MW)	Water	10/28/2022	11/01/2022
2K01008-05	SE-106 (MW)	Water	10/28/2022	11/01/2022

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

SE-101 (MW) (Lab Number: 2K01008-01)

Analysis Method
Volatile Organic Compounds EPA 8260C

SE-102 (MW) (Lab Number: 2K01008-02)

AnalysisMethodVolatile Organic CompoundsEPA 8260C

SE-104 (MW) (Lab Number: 2K01008-03)

Analysis Method
Volatile Organic Compounds EPA 8260C

SE-105 (MW) (Lab Number: 2K01008-04)

AnalysisMethodVolatile Organic CompoundsEPA 8260C

SE-106 (MW) (Lab Number: 2K01008-05)

Analysis Method

Volatile Organic Compounds EPA 8260C

Method References

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: Volatile Organic Compounds

Sample: SE-101 (MW) Lab Number: 2K01008-01 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/l	11/07/22	11/07/22
Benzene	ND	1	ug/l	11/07/22	11/07/22
Bromobenzene	ND	1	ug/l	11/07/22	11/07/22
Bromochloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromodichloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromoform	ND	1	ug/l	11/07/22	11/07/22
Bromomethane	ND	1	ug/l	11/07/22	11/07/22
2-Butanone	ND	5	ug/l	11/07/22	11/07/22
ert-Butyl alcohol	ND	5	ug/l	11/07/22	11/07/22
ec-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
n-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
ert-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
Methyl t-butyl ether (MTBE)	ND	1	ug/l	11/07/22	11/07/22
Carbon Disulfide	ND	1	ug/l	11/07/22	11/07/22
Carbon Tetrachloride	ND	1	ug/l	11/07/22	11/07/22
Chlorobenzene	ND	1	ug/l	11/07/22	11/07/22
Chloroethane	ND	1	ug/l	11/07/22	11/07/22
Chloroform	ND	1	ug/l	11/07/22	11/07/22
Chloromethane	ND	1	ug/l	11/07/22	11/07/22
-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
2-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	11/07/22	11/07/22
Dibromochloromethane	ND	1	ug/l	11/07/22	11/07/22
.2-Dibromoethane (EDB)	ND	1	ug/l	11/07/22	11/07/22
Dibromomethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,3-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,4-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,2-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
rans-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
cis-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
,1-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
:-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
rans-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
1,1-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropene (cis + trans)	ND	2	ug/l	11/07/22	11/07/22
Diethyl ether	ND	5	ug/l	11/07/22	11/07/22
,4-Dioxane	ND	100	ug/l	11/07/22	11/07/22
thylbenzene	ND	1	ug/l	11/07/22	11/07/22
lexachlorobutadiene	ND	1	ug/l	11/07/22	11/07/22
?-Hexanone	ND	5	ug/l	11/07/22	11/07/22
sopropylbenzene	ND	1	ug/l	11/07/22	11/07/22
-Isopropyltoluene	ND	1	ug/l	11/07/22	11/07/22
1ethylene Chloride	ND	2	ug/l	11/07/22	11/07/22
l-Methyl-2-pentanone	ND	5	ug/l	11/07/22	11/07 P

Results: Volatile Organic Compounds (Continued)

Sample: SE-101 (MW) (Continued)

Lab Number: 2K01008-01 (Water)

Analyte	Result	Reporting Qual Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	11/07/22	11/07/22
n-Propylbenzene	ND	1	ug/l	11/07/22	11/07/22
Styrene	ND	1	ug/l	11/07/22	11/07/22
1,1,1,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
Tetrachloroethene	30	1	ug/l	11/07/22	11/07/22
Tetrahydrofuran	ND	5	ug/l	11/07/22	11/07/22
Toluene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1,2-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,1,1-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
Trichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichloropropane	ND	1	ug/l	11/07/22	11/07/22
1,3,5-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
Vinyl Chloride	ND	1	ug/l	11/07/22	11/07/22
o-Xylene	ND	1	ug/l	11/07/22	11/07/22
m&p-Xylene	ND	2	ug/l	11/07/22	11/07/22
Total xylenes	ND	1	ug/l	11/07/22	11/07/22
1,1,2,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl methyl ether	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
Ethyl tert-butyl ether	ND	1	ug/l	11/07/22	11/07/22
Diisopropyl ether	ND	1	ug/l	11/07/22	11/07/22
Trichlorofluoromethane	ND	1	ug/l	11/07/22	11/07/22
Dichlorodifluoromethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl Alcohol	ND	5	ug/l	11/07/22	11/07/22
Surrogate(s)	Recovery%	Limit	cs		
4-Bromofluorobenzene	89.1%	<i>70-13</i>	30	11/07/22	11/07/22
1,2-Dichloroethane-d4	96.4%	<i>70-13</i>	<i>80</i>	11/07/22	11/07/22
Toluene-d8	90.0%	70-13	30	11/07/22	11/07/22

Results: Volatile Organic Compounds

Sample: SE-102 (MW) Lab Number: 2K01008-02 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/l	11/07/22	11/07/22
Benzene	ND	1	ug/l	11/07/22	11/07/22
Bromobenzene	ND	1	ug/l	11/07/22	11/07/22
Bromochloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromodichloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromoform	ND	1	ug/l	11/07/22	11/07/22
Bromomethane	ND	1	ug/l	11/07/22	11/07/22
2-Butanone	ND	5	ug/l	11/07/22	11/07/22
ert-Butyl alcohol	ND	5	ug/l	11/07/22	11/07/22
sec-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
n-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
ert-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
1ethyl t-butyl ether (MTBE)	ND	1	ug/l	11/07/22	11/07/22
Carbon Disulfide	ND	1	ug/l	11/07/22	11/07/22
Carbon Tetrachloride	ND	1	ug/l	11/07/22	11/07/22
Chlorobenzene	ND	1	ug/l	11/07/22	11/07/22
Chloroethane	ND	1	ug/l	11/07/22	11/07/22
Chloroform	ND	1	ug/l	11/07/22	11/07/22
Chloromethane	ND	1	ug/l	11/07/22	11/07/22
-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	11/07/22	11/07/22
Dibromochloromethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dibromoethane (EDB)	ND	1	ug/l	11/07/22	11/07/22
Dibromomethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,3-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,4-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,2-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
rans-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
cis-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
,1-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
:-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
rans-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
1,1-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropene (cis + trans)	ND	2	ug/l	11/07/22	11/07/22
Diethyl ether	ND	5	ug/l	11/07/22	11/07/22
,4-Dioxane	ND	100	ug/l	11/07/22	11/07/22
Ethylbenzene	ND	1	ug/l	11/07/22	11/07/22
lexachlorobutadiene	ND	1	ug/l	11/07/22	11/07/22
2-Hexanone	ND	5	ug/l	11/07/22	11/07/22
Sopropylbenzene	ND	1	ug/l	11/07/22	11/07/22
p-Isopropyltoluene	ND	1	ug/l	11/07/22	11/07/22
1ethylene Chloride	ND	2	ug/l	11/07/22	11/07/22
1-Methyl-2-pentanone	ND	5	ug/l	11/07/22	11/07 P

Results: Volatile Organic Compounds (Continued)

Sample: SE-102 (MW) (Continued)

Lab Number: 2K01008-02 (Water)

		Reporting			
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	11/07/22	11/07/22
n-Propylbenzene	ND	1	ug/l	11/07/22	11/07/22
Styrene	ND	1	ug/l	11/07/22	11/07/22
1,1,1,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
Tetrachloroethene	ND	1	ug/l	11/07/22	11/07/22
Tetrahydrofuran	ND	5	ug/l	11/07/22	11/07/22
Toluene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1,2-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,1,1-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
Trichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichloropropane	ND	1	ug/l	11/07/22	11/07/22
1,3,5-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
Vinyl Chloride	ND	1	ug/l	11/07/22	11/07/22
o-Xylene	ND	1	ug/l	11/07/22	11/07/22
m&p-Xylene	ND	2	ug/l	11/07/22	11/07/22
Total xylenes	ND	1	ug/l	11/07/22	11/07/22
1,1,2,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl methyl ether	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
Ethyl tert-butyl ether	ND	1	ug/l	11/07/22	11/07/22
Diisopropyl ether	ND	1	ug/l	11/07/22	11/07/22
Trichlorofluoromethane	ND	1	ug/l	11/07/22	11/07/22
Dichlorodifluoromethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl Alcohol	ND	5	ug/l	11/07/22	11/07/22
Surrogate(s)	Recovery%	Limit	rs .		
4-Bromofluorobenzene	90.4%	70-13	30	11/07/22	11/07/22
1,2-Dichloroethane-d4	112%	70-13	80	11/07/22	11/07/22
Toluene-d8	102%	70-13	30	11/07/22	11/07/22

Results: Volatile Organic Compounds

Sample: SE-104 (MW) Lab Number: 2K01008-03 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/l	11/07/22	11/07/22
Benzene	ND	1	ug/l	11/07/22	11/07/22
Bromobenzene	ND	1	ug/l	11/07/22	11/07/22
Bromochloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromodichloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromoform	ND	1	ug/l	11/07/22	11/07/22
Bromomethane	ND	1	ug/l	11/07/22	11/07/22
2-Butanone	ND	5	ug/l	11/07/22	11/07/22
ert-Butyl alcohol	ND	5	ug/l	11/07/22	11/07/22
ec-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
n-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
ert-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
/ lethyl t-butyl ether (MTBE)	ND	1	ug/l	11/07/22	11/07/22
Carbon Disulfide	ND	1	ug/l	11/07/22	11/07/22
Carbon Tetrachloride	ND	1	ug/l	11/07/22	11/07/22
Chlorobenzene	ND	1	ug/l	11/07/22	11/07/22
Chloroethane	ND	1	ug/l	11/07/22	11/07/22
Chloroform	ND	1	ug/l	11/07/22	11/07/22
Chloromethane	ND	1	ug/l	11/07/22	11/07/22
1-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
2-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
.,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	11/07/22	11/07/22
Dibromochloromethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dibromoethane (EDB)	ND	1	ug/l	11/07/22	11/07/22
Dibromomethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,3-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,4-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,1-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
rans-1,2-Dichloroethene	3	1	ug/l	11/07/22	11/07/22
cis-1,2-Dichloroethene	29	1	ug/l	11/07/22	11/07/22
,1-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
s-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
rans-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
1,1-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropene (cis + trans)	ND	2	ug/l	11/07/22	11/07/22
Diethyl ether	ND	5	ug/l	11/07/22	11/07/22
,4-Dioxane	ND	100	ug/l	11/07/22	11/07/22
Ethylbenzene	ND	1	ug/l	11/07/22	11/07/22
Hexachlorobutadiene	ND	1	ug/l	11/07/22	11/07/22
2-Hexanone	ND	5	ug/l	11/07/22	11/07/22
Sopropylbenzene	ND	1	ug/l	11/07/22	11/07/22
p-Isopropyltoluene	ND	1	ug/l	11/07/22	11/07/22
Methylene Chloride	ND	2	ug/l	11/07/22	11/07/22
1-Methyl-2-pentanone	ND	5	ug/l	11/07/22	11/07 P

Results: Volatile Organic Compounds (Continued)

Sample: SE-104 (MW) (Continued)

Lab Number: 2K01008-03 (Water)

		Reporting			
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	11/07/22	11/07/22
n-Propylbenzene	ND	1	ug/l	11/07/22	11/07/22
Styrene	ND	1	ug/l	11/07/22	11/07/22
1,1,1,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
Tetrachloroethene	ND	1	ug/l	11/07/22	11/07/22
Tetrahydrofuran	ND	5	ug/l	11/07/22	11/07/22
Toluene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1,2-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,1,1-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
Trichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichloropropane	ND	1	ug/l	11/07/22	11/07/22
1,3,5-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
Vinyl Chloride	ND	1	ug/l	11/07/22	11/07/22
o-Xylene	ND	1	ug/l	11/07/22	11/07/22
m&p-Xylene	ND	2	ug/l	11/07/22	11/07/22
Total xylenes	ND	1	ug/l	11/07/22	11/07/22
1,1,2,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl methyl ether	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
Ethyl tert-butyl ether	ND	1	ug/l	11/07/22	11/07/22
Diisopropyl ether	ND	1	ug/l	11/07/22	11/07/22
Trichlorofluoromethane	ND	1	ug/l	11/07/22	11/07/22
Dichlorodifluoromethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl Alcohol	ND	5	ug/l	11/07/22	11/07/22
Surrogate(s)	Recovery%	Limit	ts		
4-Bromofluorobenzene	92.6%	70-13	30	11/07/22	11/07/22
1,2-Dichloroethane-d4	109%	70-13	30	11/07/22	11/07/22
Toluene-d8	101%	<i>70-13</i>	30	11/07/22	11/07/22

Results: Volatile Organic Compounds

Sample: SE-105 (MW) Lab Number: 2K01008-04 (Water)

A	D lt	Reporting		Data Burnanad	D-4- 4
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/l	11/07/22	11/07/22
Benzene	ND	1	ug/l	11/07/22	11/07/22
Bromobenzene	ND	1	ug/l	11/07/22	11/07/22
Bromochloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromodichloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromoform	ND	1	ug/l	11/07/22	11/07/22
Bromomethane	ND	1	ug/l	11/07/22	11/07/22
2-Butanone	ND	5	ug/l	11/07/22	11/07/22
tert-Butyl alcohol	ND	5	ug/l	11/07/22	11/07/22
sec-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
n-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
tert-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
Methyl t-butyl ether (MTBE)	ND	1	ug/l	11/07/22	11/07/22
Carbon Disulfide	ND	1	ug/l	11/07/22	11/07/22
Carbon Tetrachloride	ND	1	ug/l	11/07/22	11/07/22
Chlorobenzene	ND	1	ug/l	11/07/22	11/07/22
Chloroethane	ND	1	ug/l	11/07/22	11/07/22
Chloroform	ND	1	ug/l	11/07/22	11/07/22
Chloromethane	ND	1	ug/l	11/07/22	11/07/22
4-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
2-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
1,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	11/07/22	11/07/22
Dibromochloromethane	ND	1	ug/l	11/07/22	11/07/22
L,2-Dibromoethane (EDB)	ND	1	ug/l	11/07/22	11/07/22
Dibromomethane	ND	1	ug/l	11/07/22	11/07/22
1,2-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,4-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,2-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
rans-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
cis-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
I,1-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
2,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
cis-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
rans-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
,1-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
.,1-bichloropropene (cis + trans)	ND ND	2	ug/l	11/07/22	11/07/22
Diethyl ether	ND	5	ug/l	11/07/22	11/07/22
L,4-Dioxane	ND ND	100	ug/I ug/I	11/07/22	11/07/22
	ND ND	1	_	11/07/22	11/07/22
Ethylbenzene Hexachlorobutadiene	ND ND		ug/l	11/07/22	11/07/22
		1	ug/l		
2-Hexanone	ND ND	5	ug/l	11/07/22	11/07/22
Isopropylbenzene p-Isopropyltolyopo	ND ND	1	ug/l	11/07/22 11/07/22	11/07/22 11/07/22
p-Isopropyltoluene Mathylana Chlarida		1	ug/l		
Methylene Chloride	ND	2	ug/l	11/07/22	11/07/22 11/07 P 8
-Methyl-2-pentanone	ND ND	5	ug/l	11/07/22	

Results: Volatile Organic Compounds (Continued)

Sample: SE-105 (MW) (Continued)

Lab Number: 2K01008-04 (Water)

Analyte	Result	Reporting Qual Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	11/07/22	11/07/22
n-Propylbenzene	ND	1	ug/l	11/07/22	11/07/22
Styrene	ND	1	ug/l	11/07/22	11/07/22
1,1,1,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
Tetrachloroethene	ND	1	ug/l	11/07/22	11/07/22
Tetrahydrofuran	ND	5	ug/l	11/07/22	11/07/22
Toluene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1,2-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,1,1-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
Trichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichloropropane	ND	1	ug/l	11/07/22	11/07/22
1,3,5-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
Vinyl Chloride	ND	1	ug/l	11/07/22	11/07/22
o-Xylene	ND	1	ug/l	11/07/22	11/07/22
m&p-Xylene	ND	2	ug/l	11/07/22	11/07/22
Total xylenes	ND	1	ug/l	11/07/22	11/07/22
1,1,2,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl methyl ether	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
Ethyl tert-butyl ether	ND	1	ug/l	11/07/22	11/07/22
Diisopropyl ether	ND	1	ug/l	11/07/22	11/07/22
Trichlorofluoromethane	ND	1	ug/l	11/07/22	11/07/22
Dichlorodifluoromethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl Alcohol	ND	5	ug/l	11/07/22	11/07/22
Surrogate(s)	Recovery%	Limit	s		
4-Bromofluorobenzene	95.2%	<i>70-13</i>	0	11/07/22	11/07/22
1,2-Dichloroethane-d4	102%	<i>70-13</i>	0	11/07/22	11/07/22
Toluene-d8	103%	<i>70-13</i>	0	11/07/22	11/07/22

Results: Volatile Organic Compounds

Sample: SE-106 (MW) Lab Number: 2K01008-05 (Water)

Analyte	Result	-	orting mit Units	Date Prepared	Date Analyzed
Acetone	ND		5 ug/l	11/07/22	11/07/22
Benzene	ND		1 ug/l	11/07/22	11/07/22
Bromobenzene	ND		1 ug/l	11/07/22	11/07/22
Bromochloromethane	ND		1 ug/l	11/07/22	11/07/22
Bromodichloromethane	ND		1 ug/l	11/07/22	11/07/22
Bromoform	ND		1 ug/l	11/07/22	11/07/22
Bromomethane	ND		1 ug/l	11/07/22	11/07/22
2-Butanone	ND		5 ug/l	11/07/22	11/07/22
ert-Butyl alcohol	ND		5 ug/l	11/07/22	11/07/22
ec-Butylbenzene	ND		1 ug/l	11/07/22	11/07/22
n-Butylbenzene	ND		1 ug/l	11/07/22	11/07/22
ert-Butylbenzene	ND		1 ug/l	11/07/22	11/07/22
Methyl t-butyl ether (MTBE)	ND		1 ug/l	11/07/22	11/07/22
Carbon Disulfide	ND ND		1 ug/l	11/07/22	11/07/22
Carbon Tetrachloride	ND ND		1 ug/l	11/07/22	11/07/22
Chlorobenzene	ND ND		1 ug/l	11/07/22	11/07/22
Chloroethane	ND ND				11/07/22
chloroform	ND ND		- -	11/07/22	
Chloromethane	ND ND		<u>-</u>	11/07/22	11/07/22
			1 ug/l	11/07/22	11/07/22
-Chlorotoluene	ND		1 ug/l	11/07/22	11/07/22
-Chlorotoluene	ND		1 ug/l	11/07/22	11/07/22
,2-Dibromo-3-chloropropane (DBCP)	ND		1 ug/l	11/07/22	11/07/22
oibromochloromethane	ND		1 ug/l	11/07/22	11/07/22
,2-Dibromoethane (EDB)	ND		1 ug/l	11/07/22	11/07/22
Dibromomethane	ND		1 ug/l	11/07/22	11/07/22
,2-Dichlorobenzene	ND		1 ug/l	11/07/22	11/07/22
,3-Dichlorobenzene	ND		1 ug/l	11/07/22	11/07/22
1,4-Dichlorobenzene	ND		1 ug/l	11/07/22	11/07/22
.,1-Dichloroethane	ND		1 ug/l	11/07/22	11/07/22
1,2-Dichloroethane	ND		1 ug/l	11/07/22	11/07/22
rans-1,2-Dichloroethene	ND		1 ug/l	11/07/22	11/07/22
cis-1,2-Dichloroethene	ND		1 ug/l	11/07/22	11/07/22
1,1-Dichloroethene	ND		1 ug/l	11/07/22	11/07/22
.,2-Dichloropropane	ND		1 ug/l	11/07/22	11/07/22
2,2-Dichloropropane	ND		1 ug/l	11/07/22	11/07/22
is-1,3-Dichloropropene	ND		1 ug/l	11/07/22	11/07/22
rans-1,3-Dichloropropene	ND		1 ug/l	11/07/22	11/07/22
,1-Dichloropropene	ND		1 ug/l	11/07/22	11/07/22
.,3-Dichloropropene (cis + trans)	ND		2 ug/l	11/07/22	11/07/22
iethyl ether	ND		5 ug/l	11/07/22	11/07/22
,4-Dioxane	ND	1	00 ug/l	11/07/22	11/07/22
thylbenzene	ND		1 ug/l	11/07/22	11/07/22
lexachlorobutadiene	ND		1 ug/l	11/07/22	11/07/22
2-Hexanone	ND		5 ug/l	11/07/22	11/07/22
sopropylbenzene	ND		1 ug/l	11/07/22	11/07/22
p-Isopropyltoluene	ND		1 ug/l	11/07/22	11/07/22
1ethylene Chloride	ND		2 ug/l	11/07/22	11/07/22
l-Methyl-2-pentanone	ND		5 ug/l	11/07/22	11/07 Pa

Results: Volatile Organic Compounds (Continued)

Sample: SE-106 (MW) (Continued)

Lab Number: 2K01008-05 (Water)

		Reporting			
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	11/07/22	11/07/22
n-Propylbenzene	ND	1	ug/l	11/07/22	11/07/22
Styrene	ND	1	ug/l	11/07/22	11/07/22
1,1,1,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
Tetrachloroethene	ND	1	ug/l	11/07/22	11/07/22
Tetrahydrofuran	ND	5	ug/l	11/07/22	11/07/22
Toluene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1,2-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,1,1-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
Trichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichloropropane	ND	1	ug/l	11/07/22	11/07/22
1,3,5-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
Vinyl Chloride	ND	1	ug/l	11/07/22	11/07/22
o-Xylene	ND	1	ug/l	11/07/22	11/07/22
m&p-Xylene	ND	2	ug/l	11/07/22	11/07/22
Total xylenes	ND	1	ug/l	11/07/22	11/07/22
1,1,2,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl methyl ether	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
Ethyl tert-butyl ether	ND	1	ug/l	11/07/22	11/07/22
Diisopropyl ether	ND	1	ug/l	11/07/22	11/07/22
Trichlorofluoromethane	ND	1	ug/l	11/07/22	11/07/22
Dichlorodifluoromethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl Alcohol	ND	5	ug/l	11/07/22	11/07/22
Surrogate(s)	Recovery%	Limit	rs .		
4-Bromofluorobenzene	98.2%	<i>70-13</i>	30	11/07/22	11/07/22
1,2-Dichloroethane-d4	104%	70-13	30	11/07/22	11/07/22
Toluene-d8	99.2%	<i>70-13</i>	30	11/07/22	11/07/22

Quality Control

Volatile Organic Compounds

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K0457 - Purge-Trap										
Blank (B2K0457-BLK1)					Prepared 8	& Analyzed: 1	1/07/22			
Acetone	ND		5	ug/l		,	, - ,			
Benzene	ND		1	ug/l						
Bromobenzene	ND		1	ug/l						
Bromochloromethane	ND		1	ug/l						
Bromodichloromethane	ND		1	ug/l						
Bromoform	ND		1	ug/l						
Bromomethane	ND		1	ug/l						
2-Butanone	ND		5	ug/l						
tert-Butyl alcohol	ND		5	ug/l						
sec-Butylbenzene	ND		1	ug/l						
n-Butylbenzene	ND		1	ug/l						
tert-Butylbenzene	ND		1	ug/l						
Methyl t-butyl ether (MTBE)	ND		1	ug/l						
Carbon Disulfide	ND		1	ug/l						
Carbon Tetrachloride	ND		1	ug/l						
Chlorobenzene	ND		1	ug/l						
Chloroethane	ND		1	ug/l						
Chloroform	ND		1	ug/l						
Chloromethane	ND		1	ug/l						
4-Chlorotoluene	ND		1	ug/l						
2-Chlorotoluene	ND		1	ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l						
Dibromochloromethane	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
Dibromomethane	ND		1	ug/l						
1,2-Dichlorobenzene	ND		1	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
1,4-Dichlorobenzene	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
trans-1,2-Dichloroethene	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
1,1-Dichloroethene	ND		1	ug/l						
1,2-Dichloropropane	ND		1	ug/l						
2,2-Dichloropropane	ND		1	ug/l						
cis-1,3-Dichloropropene	ND		1	ug/l						
trans-1,3-Dichloropropene	ND		1	ug/l						
1,1-Dichloropropene	ND		1	ug/l						
1,3-Dichloropropene (cis + trans)	ND		2	ug/l						
Diethyl ether	ND		5	ug/l						
1,4-Dioxane	ND		100	ug/l						
Ethylbenzene	ND		1	ug/l						
Hexachlorobutadiene	ND		1	ug/l						
2-Hexanone	ND		5	ug/l						
Isopropylbenzene	ND		1	ug/l						
p-Isopropyltoluene	ND		1	ug/l						
Methylene Chloride	ND		2	ug/l						
4-Methyl-2-pentanone	ND		5	ug/l						
Naphthalene	ND		1	ug/l						
n-Propylbenzene	ND		1	ug/l						
Styrene	ND		1	ug/l						
1,1,1,2-Tetrachloroethane	ND		1	ug/l						
Tetrachloroethene	ND		1	ug/l						
Tetrahydrofuran	ND		5	ug/l					Page	

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
atch: B2K0457 - Purge-Trap (C	Continued)									
Blank (B2K0457-BLK1)					Prepared a	& Analyzed: 1	1/07/22			
Toluene	ND		1	ug/l	. ropu.cu	o. 7, 2001 2	-, 0, ,			
1,2,4-Trichlorobenzene	ND		1	ug/l						
1,2,3-Trichlorobenzene	ND		1	ug/l						
1,1,2-Trichloroethane	ND		1	ug/l						
1,1,1-Trichloroethane	ND		1	ug/l						
Trichloroethene	ND		1	ug/l						
1,2,3-Trichloropropane	ND		1	ug/l						
1,3,5-Trimethylbenzene	ND		1	ug/l						
1,2,4-Trimethylbenzene	ND		1	ug/l						
Vinyl Chloride	ND ND		1	ug/l						
o-Xylene	ND ND		1	ug/l						
m&p-Xylene	ND ND		2	ug/l						
Total xylenes	ND ND		1	ug/l						
1,1,2,2-Tetrachloroethane	ND ND		1	ug/l						
tert-Amyl methyl ether	ND ND		1	ug/l						
1,3-Dichloropropane	ND ND		1	ug/l						
			1							
Ethyl tert-butyl ether	ND			ug/l						
Diisopropyl ether	ND		1	ug/l						
Trichlorofluoromethane	ND		1	ug/l						
Dichlorodifluoromethane tert-Amyl Alcohol	ND ND		1 5	ug/l ug/l						
Surrogate: 4-Bromofluorobenzene			44.2	ug/l	50.0		88.3	70-130		
Surrogate: 1,2-Dichloroethane-d4			53.9	ug/l	50.0		108	70-130		
Surrogate: Toluene-d8			48.7	ug/l	50.0		97.3	70-130		
.CS (B2K0457-BS1)			10.7	3		& Analyzed: 1		70 130		
Acetone	36			ug/l	50.0	a / illally zeal z	72.0	60-140		
Benzene	56			ug/l	50.0		112	70-130		
Bromobenzene	42			ug/l	50.0		83.8	70-130		
Bromochloromethane	59			ug/l	50.0		119	70-130		
Bromodichloromethane	45			ug/l	50.0		89.1	70-130		
Bromoform	45			ug/l	50.0		89.9	70-130		
Bromomethane	60			ug/l	50.0		119	70-130		
2-Butanone	35			ug/l	50.0		70.9	60-140		
				ug/l						
tert-Butyl alcohol	50			ug/l	50.0		99.3	70-130 70-130		
sec-Butylbenzene n-Butylbenzene	40				50.0		80.2 82.5	70-130 70-130		
•	41			ug/l ug/l	50.0		82.5 81.2	70-130 70-130		
tert-Butylbenzene	41				50.0		81.2	70-130 70-130		
Methyl t-butyl ether (MTBE)	53 50			ug/l	50.0		107	70-130 50-150		
Carbon Disulfide	50 50			ug/l	50.0		101	50-150 70-130		
Carbon Tetrachloride	58			ug/l	50.0		117	70-130 70-130		
Chlorophana	40			ug/l	50.0		80.5	70-130		
Chloroethane	42			ug/l	50.0		83.1	70-130		
Chloroform	47			ug/l	50.0		94.0	70-130		
Chloromethane	52			ug/l	50.0		105	70-130		
4-Chlorotoluene	41			ug/l	50.0		83.0	70-130		
2-Chlorotoluene	42			ug/l	50.0		83.2	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	36			ug/l	50.0		71.8	70-130		
Dibromochloromethane	42			ug/l	50.0		83.6	70-130		
1,2-Dibromoethane (EDB)	42			ug/l	50.0		84.2	70-130		
Dibromomethane	42			ug/l	50.0		84.5	70-130		
1,2-Dichlorobenzene	43			ug/l	50.0		86.7	70-130		
1,3-Dichlorobenzene	40			ug/l	50.0		80.1	70-130		
1,4-Dichlorobenzene	40			ug/l	50.0		80.1	70-130		
1,1-Dichloroethane	50			ug/l	50.0		99.7	70-130		
1,2-Dichloroethane	48			ug/l	50.0		95.5	70-130		

Page 16 of 21

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2K0457 - Purge-Trap	(Continued)									
LCS (B2K0457-BS1)					Prepared 8	& Analyzed: 1	1/07/22			
cis-1,2-Dichloroethene	53			ug/l	50.0		105	70-130		
1,1-Dichloroethene	57			ug/l	50.0		114	70-130		
1,2-Dichloropropane	44			ug/l	50.0		88.1	70-130		
2,2-Dichloropropane	60			ug/l	50.0		119	70-130		
cis-1,3-Dichloropropene	43			ug/l	50.0		85.5	70-130		
trans-1,3-Dichloropropene	45			ug/l	50.0		90.8	70-130		
1,1-Dichloropropene	59			ug/l	50.0		119	70-130		
Diethyl ether	53			ug/l	50.0		107	70-130		
1,4-Dioxane	87			ug/l	250		34.9	50-150		
Ethylbenzene	40			ug/l	50.0		80.4	70-130		
Hexachlorobutadiene	41			ug/l	50.0		81.9	70-130		
2-Hexanone	26			ug/l	50.0		52.4	70-130		
Isopropylbenzene	41			ug/l	50.0		81.2	70-130		
p-Isopropyltoluene	40			ug/l	50.0		80.7	70-130		
Methylene Chloride	26			ug/l	50.0		52.5	70-130		
4-Methyl-2-pentanone	29			ug/l	50.0		57.6	70-130		
Naphthalene	28			ug/l	50.0		55.8	70-130		
n-Propylbenzene	41			ug/l	50.0		81.0	70-130		
Styrene	40			ug/l	50.0		80.2	70-130		
1,1,1,2-Tetrachloroethane	41			ug/l	50.0		81.5	70-130		
Tetrachloroethene	49			ug/l	50.0		98.3	70-130		
Tetrahydrofuran	49			ug/l	50.0		98.0	50-150		
Toluene	48			ug/l	50.0		95.8	70-130		
1,2,4-Trichlorobenzene	35			ug/l	50.0		70.9	70-130		
1,2,3-Trichlorobenzene	35			ug/l	50.0		70.7	70-130		
1,1,2-Trichloroethane	41			ug/l	50.0		81.1	70-130		
1,1,1-Trichloroethane	56			ug/l	50.0		112	70-130		
Trichloroethene	43			ug/l	50.0		85.9	70-130		
1,2,3-Trichloropropane	40			ug/l	50.0		80.0	70-130		
1,3,5-Trimethylbenzene	40			ug/l	50.0		80.7	70-130		
1,2,4-Trimethylbenzene	40			ug/l	50.0		80.1	70-130		
Vinyl Chloride	50			ug/l	50.0		99.3	70-130		
o-Xylene	41			ug/l	50.0		82.3	70-130		
m&p-Xylene	81			ug/l	100		80.6	70-130		
1,1,2,2-Tetrachloroethane	39			ug/l	50.0		77.3	70-130		
tert-Amyl methyl ether	49			ug/l	50.0		98.8	70-130		
1,3-Dichloropropane	42			ug/l	50.0		84.6	70-130		
Ethyl tert-butyl ether	47			ug/l	50.0		93.2	70-130		
Trichlorofluoromethane	41			ug/l	50.0		81.4	70-130		
Dichlorodifluoromethane	52			ug/l	50.0		104	70-130		
Surrogate: 4-Bromofluorobenzene			46.6	ug/l	50.0		93.2	70-130		
Surrogate: 1,2-Dichloroethane-d4			53.8	ug/l	50.0		108	70-130		
Surrogate: Toluene-d8			46.0	ug/l	50.0		92.1	70-130		

Volatile Organic Compounds (Continued)

Analyte	Result Qua	Reporting Il Limit	Units	Spike Level	Source Result %RE	%REC C Limits	RPD	RPI Lim
Batch: B2K0457 - Purge-Trap ((Continued)							
LCS Dup (B2K0457-BSD1)				Prepared 8	& Analyzed: 11/07/22			
Acetone	36		ug/l	50.0	72.6	60-140	0.803	20
Benzene	55		ug/l	50.0	110	70-130	2.01	20
Bromobenzene	42		ug/l	50.0	84.3	70-130	0.595	20
Bromochloromethane	58		ug/l	50.0	116	70-130	2.26	20
Bromodichloromethane	43		ug/l	50.0	86.0	70-130	3.47	20
Bromoform	43		ug/l	50.0	86.1	70-130	4.29	20
Bromomethane	57		ug/l	50.0	115	70-130	3.88	20
2-Butanone	37		ug/l	50.0	73.1	60-140	3.08	20
tert-Butyl alcohol	46		ug/l	50.0	91.3	70-130	8.40	20
sec-Butylbenzene	39		ug/l	50.0	78.5	70-130	2.14	20
n-Butylbenzene	39		ug/l	50.0	77.8	70-130	5.86	20
tert-Butylbenzene	47		ug/l	50.0	93.4	70-130	14.0	20
Methyl t-butyl ether (MTBE)	54		ug/l	50.0	108		0.764	20
Carbon Disulfide	52		ug/l	50.0	104	50-150	2.74	20
Carbon Tetrachloride	58		ug/l	50.0	117		0.0171	20
Chlorobenzene	41		ug/l	50.0	82.8		2.82	2
Chloroethane	41		ug/l	50.0	82.4		0.773	2
Chloroform	47		ug/l	50.0	94.8		0.805	2
Chloromethane	51		ug/l	50.0	102		2.39	2
4-Chlorotoluene	41		ug/l	50.0	82.6		0.435	2
			ug/l					
2-Chlorotoluene	41			50.0	82.3		1.14	2
1,2-Dibromo-3-chloropropane (DBCP)	36		ug/l	50.0	71.3		0.755	2
Dibromochloromethane	42		ug/l	50.0	84.4		0.952	2
,2-Dibromoethane (EDB)	40		ug/l	50.0	80.1		4.94	2
Dibromomethane	46		ug/l	50.0	91.8		8.21	2
.,2-Dichlorobenzene	40		ug/l	50.0	80.8		7.07	2
1,3-Dichlorobenzene	41		ug/l	50.0	82.0		2.27	2
I,4-Dichlorobenzene	42		ug/l	50.0	83.7	70-130	4.42	2
,1-Dichloroethane	51		ug/l	50.0	102	70-130	2.54	2
1,2-Dichloroethane	45		ug/l	50.0	89.5	70-130	6.51	2
rans-1,2-Dichloroethene	51		ug/l	50.0	101	70-130	2.10	2
cis-1,2-Dichloroethene	48		ug/l	50.0	96.4	70-130	8.86	2
1,1-Dichloroethene	53		ug/l	50.0	106	70-130	7.03	2
1,2-Dichloropropane	42		ug/l	50.0	84.8	70-130	3.75	2
2,2-Dichloropropane	57		ug/l	50.0	114	70-130	4.58	2
cis-1,3-Dichloropropene	42		ug/l	50.0	83.8	70-130	2.03	2
rans-1,3-Dichloropropene	42		ug/l	50.0	84.0	70-130	7.76	2
1,1-Dichloropropene	58		ug/l	50.0	116	70-130	2.49	2
Diethyl ether	54		ug/l	50.0	108		1.47	2
1,4-Dioxane	101		ug/l	250	40.5		15.0	2
Ethylbenzene	42		ug/l	50.0	83.1		3.30	2
Hexachlorobutadiene	38		ug/l	50.0	75.8		7.76	2
2-Hexanone	26		ug/l	50.0	52.4		0.115	2
Sopropylbenzene	42		ug/l	50.0	83.8		3.15	2
	40		ug/l	50.0	80.9		0.322	2
o-Isopropyltoluene			ug/l ug/l					
Methylene Chloride	27		-	50.0	53.1		1.17	2
-Methyl-2-pentanone	28		ug/l	50.0	56.9		1.12	2
laphthalene	26		ug/l	50.0	52.6		5.98	2
-Propylbenzene	39		ug/l	50.0	77.6		4.31	2
Styrene	41		ug/l	50.0	82.5		2.75	2
I,1,1,2-Tetrachloroethane	40		ug/l	50.0	80.8		0.937	2
Tetrachloroethene	51		ug/l	50.0	102		4.11	2
Гetrahydrofuran	50		ug/l	50.0	100	50-150	2.48	2
Toluene	47		ug/l	50.0	94.3	70-130	1.60	2
1,2,4-Trichlorobenzene	32		ug/l	50.0	65.0	70-130	8.69	2
1,2,3-Trichlorobenzene	32		ug/l	50.0	64.9	70-130	8.50	2
1,1,2-Trichloroethane	41		ug/l	50.0	81.4	70-130	Page	

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2K0457 - Purge-Trap	(Continued)									
LCS Dup (B2K0457-BSD1)					Prepared 8	& Analyzed: 1	1/07/22			
1,1,1-Trichloroethane	56			ug/l	50.0		111	70-130	0.287	20
Trichloroethene	49			ug/l	50.0		97.7	70-130	12.8	20
1,2,3-Trichloropropane	40			ug/l	50.0		80.7	70-130	0.871	20
1,3,5-Trimethylbenzene	41			ug/l	50.0		81.7	70-130	1.23	20
1,2,4-Trimethylbenzene	40			ug/l	50.0		80.0	70-130	0.0750	20
Vinyl Chloride	48			ug/l	50.0		95.1	70-130	4.34	20
o-Xylene	41			ug/l	50.0		81.5	70-130	0.928	20
m&p-Xylene	83			ug/l	100		83.0	70-130	2.90	20
1,1,2,2-Tetrachloroethane	36			ug/l	50.0		72.2	70-130	6.85	20
tert-Amyl methyl ether	47			ug/l	50.0		93.7	70-130	5.28	20
1,3-Dichloropropane	42			ug/l	50.0		83.7	70-130	1.07	20
Ethyl tert-butyl ether	46			ug/l	50.0		92.5	70-130	0.733	20
Trichlorofluoromethane	41			ug/l	50.0		81.5	70-130	0.0491	20
Dichlorodifluoromethane	52			ug/l	50.0		104	70-130	0.385	20
Surrogate: 4-Bromofluorobenzene			48.3	ug/l	50.0		96.6	70-130		
Surrogate: 1,2-Dichloroethane-d4			57.9	ug/l	50.0		116	70-130		
Surrogate: Toluene-d8			50.9	ug/l	50.0		102	70-130		

Notes and Definitions

<u>Item</u>	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

59 Greenhill Street

West Warwick, RI 02893

1-888-863-8522

2 K 0 1008=

CHAIN OF CUSTODY RECORD

PROJ. NO.	PROJECT I	NAME/LOCATION							T	T		/		$\overline{-}$		
54350	1		nstale Ave.)	j					P							
REPORT TO: 37 INVOICE TO: UP	AGE @ 51 OB 50 QE O R P A B	Environmen gge-envira.co conviro.com	sample I.D.		AQUEOUS	\$ 0 L	OTHER	NO. OF CONTAINERS	PRESERVATIVE						REN	MARKS
10/28 14:1		SE-101 (M	n 1./		×		•	2-4eml	HCI	×		_	_			
13:50	T T "	1				•	100	HEI								
14:2	o ×	+ =				-	•						-			
15:ψ	1 1 .				4	_	•		1	4		-				
\$6.0	0 ×	SE - 106 (M	w)		-	-	•		-	1		-				
	+-					-					_					
	1									+		-	'			
					11		 	-				-				
				-					 			-				
	+				-				 	-		-				
	++-				-					+-+	_	-				
Sampled by: (Signate Date of the Part of t	m ignature)	10/20	8 16,30 Pate/Time Receive 2 153.5	ved by: (Signature) ved by: (Signature) ved for Laboratory by: (Signature)			11-11	Date/Time Date/Time	7 Ten	poratory mp. recei	Remarks:	5	<u> </u>		Special Instructions: List Specific Detection Limit Requirements:	+-6₩ ©
Relinquished by. (Si	griature)		Jaie/Time Receiv	Wed for Earloratory by. (Signature		_	1/	1	535					l	Turnaround (Business Day	s) Standard

**Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

Page 21 of 21

DO NOT REMOVE THIS PAGE INTENTIONALLY LEFT BLANK

SITE INVESTIGATION REPORT

756 & 770 Lonsdale Avenue Assessor's Plat 9, Lots 26 & 203 Central Falls, Rhode Island

RIDEM Case No. SR-04-2061B

Submitted to:

Rhode Island Department of Environmental Management
Office of Land Revitalization & Sustainable Materials Management
Site Remediation Program
235 Promenade Street
Providence, Rhode Island 02908

On Behalf of:

The City of Central Falls 580 Broad Street Central Falls, Rhode Island 02863

Prepared by:

SAGE Environmental, Inc. 301 Friendship Street Providence, Rhode Island 02903

SAGE Project No. S4350

May 2023

TABLE OF CONTENTS

INTRODUCTION, BACKGROUND, AND OBJECTIVES (1.8.3(A)(1))	3
INFORMATION FROM NOTIFICATION OF RELEASE (1.8.3(A)(2))	4
DOCUMENTATION OF PAST INCIDENCES OR RELEASES (1.8.3(A)(3))	4
1 AERIAL PHOTOGRAPHS	4 6
PREVIOUSLY EXISTING ENVIRONMENTAL INFORMATION (1.8.3(A)(5))	9
CURRENT USES AND ZONING (1.8.3(A)(6))	
1 ZONING 2 CURRENT SITE USAGE 3 WASTE GENERATED AND HAZARDOUS MATERIALS HANDLED	10 10
LOCUS MAP (1.8.3(A)(7))	10
SITE PLAN (1.8.3(A)(8))	10
GENERAL CHARACTERIZATION OF SURROUNDING AREA (1.8.3(A)(9))	10
DESCRIPTION OF CONTAMINATION (1.8.3(A)(11))	
L.1 SOIL/GROUNDWATER REGULATORY CLASSIFICATION	11 11 OF REMEDIAL
L.1 SOIL/GROUNDWATER REGULATORY CLASSIFICATION	11 11 OF REMEDIAL 12
L.1 SOIL/GROUNDWATER REGULATORY CLASSIFICATION	11 OF REMEDIAL1212121314
L.1 SOIL/GROUNDWATER REGULATORY CLASSIFICATION	11 OF REMEDIAL121212131414
L.1 SOIL/GROUNDWATER REGULATORY CLASSIFICATION	11 OF REMEDIAL121213141415
L.1 SOIL/GROUNDWATER REGULATORY CLASSIFICATION	11 OF REMEDIAL12121314141515
L.1 SOIL/GROUNDWATER REGULATORY CLASSIFICATION	11 OF REMEDIAL121314151515
L.1 SOIL/GROUNDWATER REGULATORY CLASSIFICATION	11 OF REMEDIAL
L.1 SOIL/GROUNDWATER REGULATORY CLASSIFICATION	11 OF REMEDIAL1212131415151515
123	DOCUMENTATION OF PAST INCIDENCES OR RELEASES (1.8.3(A)(3)) PAST OWNERS AND OPERATORS AND SITE HISTORY (1.8.3(A)(4))

13.0	BACKGR	OUND CONCENTRATION INVESTIGATIONS (1.8.3(A)(13))16
14.0	SITE-SPE	CIFIC HYDROGEOLOGICAL PROPERTIES (1.8.3(A)(14))16
15.0	TOPOGR	APHY, SURFACE WATER, AND RUN-OFF FLOW PATTERNS (1.8.3(A)(15))17
16.0	VOLATIL	IZATION POTENTIAL OF HAZARDOUS SUBSTANCES (1.8.3(A)(16))17
17.0	CONTAN	IINANT TRANSPORT BY WIND OR EROSION (1.8.3(A)(17))17
18.0	FATE AN	D TRANSPORT MODELS (1.8.3(A)(18))18
19.0	SUMMA	RY OF SAMPLING AND ANALYTICAL METHODS (1.8.3(A)(19))18
20.0	MONITO	RING WELL CONSTRUCTION PLAN AND DEVELOPMENT PROCEDURES (1.8.3(A)(20))18
21.0	MANAGI	EMENT OF INVESTIGATION-DERIVED WASTE (1.8.3(A)(21))18
22.0	QUALITY	ASSURANCE AND QUALITY CONTROL EVALUATION (1.8.3(A)(22))
23.0	PUBLIC II	NVOLVEMENT (1.8.3(A)(23))19
24.0	OTHER S	ITE-SPECIFIC FACTORS (1.8.3(A)(24))19
25.0	DEVELOR	PMENT OF REMEDIAL ALTERNATIVES (1.8.4)20
27.0	CERTIFIC	ATION STATEMENTS (1.8.5)23
FIGUR	F.C	
FIGUR Figure		USGS Quadrangle Site Location Map
Figure		Site Plan
Figure	3	RIDEM Environmental Resource Map
Figure	4	Soil and Groundwater Analytical Results Plan
TABLE		
Table		TVOV Screening Results
Table		Summary of Soil Analysis Results
Table :		Groundwater Gauging Log Summary of Groundwater Analysis Results
ΔΤΤΔΩ	HMENTS	
	ment 1	Limitations
	ment 2	SIR Checklist
	ment 3	RIDEM Release Notification Form and RIDEM Letter of Responsibility
Attach	ment 4	Sanborn Map and City Directory Reports
Attach	ment 5	Phase I ESA & LSI Report Text
Attach	ment 6	Soil Boring/Monitoring Well Logs
	ment 7	Copy of Soil Laboratory Analytical Data Report
	ment 8	Copy of Groundwater Laboratory Analytical Data Report
Attach	ment 9	Public Notification & Public Hearing Documentation

1.0 INTRODUCTION, BACKGROUND, AND OBJECTIVES (1.8.3(A)(1))

SAGE Environmental, Inc. (SAGE), on behalf of the City of Central Falls, has prepared this Site Investigation Report (SIR) for the property located at 756 & 770 Lonsdale Avenue in Central Falls, Rhode Island and identified by the City of Central Falls Assessor's Office as a portion of Assessor's Plat Map 9, Lots 26 and 203 (hereinafter, "Site"). The Site parcel is comprised of approximately 0.68 of an acre, situated on the southwestern corner of Lonsdale Avenue and Higginson Avenue.

A United States Geological Survey (USGS) Quadrangle Site Location Map showing the location of the Site relative to pertinent geographic features is included in **Figure 1**, and a plan depicting the Site boundaries and other relevant features is included in **Figure 2**. This SIR is subject to the limitations presented in **Attachment 1**.

This SIR summarizes the work that was completed to assess the nature and extent of contamination discovered during Phase II Limited Subsurface Investigation (LSI) activities and to present remedial alternatives to achieve compliance with the Rhode Island Department of Environmental Management (RIDEM) Rules and Regulations of the Investigation and Remediation of Hazardous Material Releases, as amended January 4, 2022 (the "Remediation Regulations"). This SIR provides the information required under Section 1.8 of the RIDEM Remediation Regulations and provides an evaluation of remedial approaches along with the selection of the approach to address contamination identified at the Site. A completed SIR Checklist is included in **Attachment 2**.

The Site is the proposed location of the Central Falls High School. As such, the Site investigation was performed in accordance with the RIDEM guidance document entitled *School Siting Guidance for the Evaluation of Vapor Intrusion Potential in Proposed Rhode Island School Sites* (the "School Siting Guidance") and dated September 19, 2012.

The objective of the Site investigation activities described herein was to evaluate Site conditions in accordance with the *Remediation Regulations* as well as the *School Siting Guidance*. The investigation consisted of the collection and laboratory analysis of soil and groundwater to assess the nature and extent of contamination, assess the potential for vapor intrusion into the anticipated Site building, and to evaluate and select a proposed remedy.

Please note that the subject Site is a part of a larger proposed development of the Central Falls High School, which includes the westerly adjacent 10 Higginson Avenue (RIDEM File No. SR-04-2061). As the proposed redevelopment spans both properties, the selected remedial alternative is the same for both properties, and the current status of each property in the RIDEM remediation process is in alignment, SAGE will be pursuing a combined Remedial Action Work Plan (RAWP) and Remedial Action Completion Report (RACR) upon RIDEM approval, which will include information and documentation of the remedial alternative implementation for both properties. This approach will increase the efficiency of the RIDEM communication and will streamline the process of reaching compliance with the RIDEM *Remediation Regulations* for each property.

SAGE has worked collaboratively with the RIDEM throughout the Site investigation process and submitted a *Hazardous Materials Release Notification Form* (RNF), on behalf of City of Central Falls to the RIDEM on January 11, 2023. The RIDEM subsequently issued a Letter of Responsibility (LOR) on January 19, 2023,

which included public notice requirements. Prior to preparing this SIR, SAGE conducted the pre-SIR public notification process, including the notification requirements of Environmental Justice areas and School Siting requirements (i.e., public meeting). Copies of the RNF and LOR are included in **Attachment 3**.

2.0 INFORMATION FROM NOTIFICATION OF RELEASE (1.8.3(A)(2))

As described above, an RNF and supplemental documentation for the Site was submitted to the RIDEM on January 11, 2023. A copy of the RNF is included in **Attachment 3**.

3.0 DOCUMENTATION OF PAST INCIDENCES OR RELEASES (1.8.3(A)(3))

No past incidences and/or releases (i.e. fires, spills, explosions, leaks, etc.) are known to have occurred at the Site.

4.0 PAST OWNERS AND OPERATORS AND SITE HISTORY (1.8.3(A)(4))

Based on information reviewed through the City of Central Falls Assessor's Office, the following provides a list of the available prior property owners, including a sequence of property transfers.

Plat/Lot	Grantee	Date of Transfer	Book/Page
Both Parcels	Faria Holdings, LLC.	7/25/2019	958/265 (Plat 9, Lot 203) and 958/267 (Plat 9, Lot 26)
	Odete B. Faria	3/9/2018	928/170
	Manuel M. Faria	6/14/2006	665/263
9/203	Francisco V. & Rosa M. Diniz, Benjamin E. & Maria E. Barcelos	10/25/1983	221/177
	Eric R. & Theresa B. Nordquist	Not listed	Not listed
	Jesse B. & Jason B. Faria	1/13/2010	775/340
9/26	City of Central Falls	2/24/2009	755/61
3,20	James Stanton Post No. 5 American Legion Inc.	Not listed	Not listed

Additional information regarding former Site occupants and Site history are included in **Sections 4.2** and **4.3** below.

4.1 Aerial Photographs

Historical aerial photographs were provided by EDR for years dating back to 1939. A summary of the Site and surrounding property descriptions is below.

Year	Site Description	Surrounding Property Descriptions	
1939	The Site appears to be improved with an industrial/commercial style structure along the northern portion of the property. The remainder of the Site appears to be vacant/cleared land.	North: Property to the north appears to be improved with a small structure. South: Property to the south appears to be improved with several structures. East: Property to the east appears to be improved with a number of residential style structures. West: Property to the west appears to be vacant land with potential filling activities.	
1951-52	No significant changes to the Site were observed.	North: Property to the north appears to be improved with a potential residential style structure. South: Property to the south appears to be improved with several potential residential style structures. East: Property to the east appears to be improved with a number of residential style structures. West: No significant changes were observed.	
1962	The southern portion of the Site now also appears to be improved with a potential industrial/commercial style structure.	North: Higginson Avenue appears to have been constructed to the north of the Site. Beyond that, there appears to be an industrial/commercial facility to the north of the Site. South: No significant changes were observed. East: No significant changes were observed. West: No significant changes were observed.	
1972	No significant changes to the Site were observed.	North: The parking lot associated with the property to the north appears to have been reconfigured and appears to be smaller than depicted in the previous aerial. South: No significant changes were observed. East: No significant changes were observed. West: Property to the west appears to have been developed as a sports complex with a baseball diamond, basketball court, soccer field, and a small structure (field house) and parking lot.	
1981	No significant changes to the Site were observed.	No significant changes were observed.	
1988	No significant changes to the Site were observed.	North: The industrial/commercial structure to the north of the Site appears to have an addition constructed along the northern portion of the original structure. Additionally, an industrial/commercial style structure appears to have been developed to the northeast of the Site. South: No significant changes were observed. East: No significant changes were observed.	

Year	Site Description	Surrounding Property Descriptions	
		West: No significant changes were observed.	
1997	No significant changes to the Site were observed.	No significant changes were observed.	
2008	No significant changes to the Site were observed.	No significant changes were observed.	
2011	The previously identified structure along the northern portion of the Site appears to have been razed. No other significant changes were observed.	No significant changes were observed.	
2014	No significant changes to the Site were observed.	No significant changes were observed.	
2018	No significant changes to the Site were observed.	No significant changes were observed.	
2019	No significant changes to the Site were observed.	No significant changes were observed.	
2020	No significant changes to the Site were observed.	No significant changes were observed.	
2021	No significant changes to the Site were observed.	No significant changes were observed.	
2022	No significant changes to the Site were observed.	No significant changes were observed.	

4.2 Sanborn Fire Insurance Maps

Sanborn fire insurance maps were reviewed via an EDR Certified Sanborn Map Report. Sanborn fire insurance maps were available for the Site and surrounding area beginning in 1890. The following is a summary of the Sanborn maps reviewed.

Year	Site Description	Surrounding Property Descriptions
1890	A portion of the Site is not depicted in this Sanborn map. The portion that is depicted appears to be vacant property.	North: Property to the north of the Site appears to be vacant. South: Property to the south of the Site is not depicted. East: Property to the east of the Site appears to be utilized as a residential dwelling. West: Property to the west of the Site is not depicted.
1902	The Site appears to be vacant.	North: Property to the north of the Site appears to be vacant. South: Property to the south of the Site appears to be occupied by residential dwellings. East: Property to the east of the Site appears to be occupied by residential dwellings. West: Property to the west of the Site appears to be vacant.
1923	No significant changes to the Site were observed.	North: No significant changes were observed. South: No significant changes were observed. East: A large garage/automobile storage area appears to have been constructed to the east of the Site. West: No significant changes were observed.
1949	The northern portion of the Site appears to be improved with a structure labeled "American Legion Home."	North: Property to the north appears to be improved with a structure labeled as "Club House" and a garage. Property to the northeast appears to be utilized as a filling station, with a

Year	Site Description Surrounding Property Descriptions	
		number of gasoline tanks on the southern and western side of the property. South: No significant changes were observed. East: No significant changes were observed. West: No significant changes were observed.
1984	In addition to the structure on the northern portion of the Site, the southern portion of the Site appears to be improved with a storefront.	North: No significant changes were observed. South: No significant changes were observed. East: No significant changes were observed. West: No significant changes were observed.

A copy of the EDR Certified Sanborn Map Report is included in **Attachment 4**.

4.3 Local Street Directories

City directories were reviewed *via* an EDR City Directory Report. Directories were available beginning in 1938. The following is the result of this research.

Year	Owner
2017	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: International Meat Market
	768 Lonsdale Avenue: Not listed
	770 Lonsdale Avenue: Not listed
2014	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: International Meat Market
	768 Lonsdale Avenue: Not listed
	770 Lonsdale Avenue: Not listed
2010	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Carnicaria International Meat Market
	768 Lonsdale Avenue: Not listed
	770 Lonsdale Avenue: Not listed
2005	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Carnicaria International Meat Market Sign Corp.
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
2000	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Carnicaria International Meat Market
	768 Lonsdale Avenue: James Stanton Post 15
	770 Lonsdale Avenue: Not listed
1995	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Carnicaria International Meat Market
	768 Lonsdale Avenue: Not listed
	770 Lonsdale Avenue: Not listed
1992	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Carnicaria International Meat Market
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1989	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Carnicaria International Meat Market

Year	Owner
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1984	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Carnicaria International Meat Market
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1979	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: CF Butcher Shops Inc.
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1974	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Vacant
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1971	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Mil-Ga Cleansers Inc.
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1966	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Mil-Gat Cleansers Inc.
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1961	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Mil-Gat Cleansers Inc.
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1957	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Mil-Gat Cleansers
	768 Lonsdale Avenue: American Legion, James Stanton Post No. 5
	770 Lonsdale Avenue: Not listed
1953	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Not listed
	768 Lonsdale Avenue: American Legion, James Stanton Post No. 5
	770 Lonsdale Avenue: Not listed
1948	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Not listed
	768 Lonsdale Avenue: American Legion, James Stanton Post No. 5
10.12	770 Lonsdale Avenue: Not listed
1943	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Not listed
	768 Lonsdale Avenue: American Legion, James Stanton Post No. 5 770 Lonsdale Avenue: Not listed
1020	
1938	744 Lonsdale Avenue: Not listed 756 Lonsdale Avenue: Not listed
	768 Lonsdale Avenue: American Legion, James Stanton Post No. 5 770 Lonsdale Avenue: Not listed
	1770 Londuale Avenue. Not listed

A copy of the EDR City Directory Report is included within **Attachment 4**.

5.0 PREVIOUSLY EXISTING ENVIRONMENTAL INFORMATION (1.8.3(A)(5))

From September through December 2022, SAGE completed a Phase I ESA & Phase II LSI Report, as part of due-diligence activities. These documents form the basis for this SIR and provide the information leading to the identification of the reportable release.

The Phase I ESA revealed several Recognized Environmental Conditions (RECs) in connection with the Site that included:

- Former Site Use: According to historical directory descriptions, the Site was formerly occupied by Mil-Gat Cleansers Inc., a suspect dry-cleaning operation, between at least 1957 to 1971 at Lot 203. Dry-cleaning facilities often utilize hazardous solvents as part of normal operations and have historically resulted in releases of hazardous chlorinated volatile organic compounds to the subsurface due to poor handling/housekeeping practices.
- Former Site Structure: Lot 26 of the Site was formerly occupied by an American Legion Hall between at least 1938 to 2005. While this historical use is unlikely to have impacted the Site subsurface, the heating source for this structure was unknown, and it is possible that the heating source for this structure was a fuel oil underground storage tank (UST).
- Historical Filling/Landfilling Activities: Historical aerial depictions of the Site indicate potential filling activities within the surrounding area and the Site between at least 1939 to circa 1972. Additionally, observations during a UST closure at the Site in 2018 indicated that while soils were observed to contain urban fill materials, no stains or odors were identified. The RIDEM noted that the soils were from a previous landfill; however, no soil samples were collected or submitted for laboratory analysis. Furthermore, during this assessment, Mr. Faria, the Site owner, indicated that the Site and surrounding area were formerly utilized as a landfill. Urban fill materials often consist of coal, coal ash, brick, slag, and other components that may contain oil or hazardous materials (OHM), such as polycyclic aromatic hydrocarbons (PAHs).
- Based on the findings of the Phase I ESA, SAGE recommended a subsurface investigation to evaluate soil and groundwater at the Site, the results of which are summarized in **Section 11** of this report.

A copy of the combined Phase I/Phase II ESA/Limited Site Investigation (LSI) Report text is included as **Attachment 5**. Supporting documentation are provided in the noted attachments herein.

6.0 CURRENT USES AND ZONING (1.8.3(A)(6))

6.1 Zoning

The parcel is zoned for General Commercial District (C-2); adjacent lots to the north are zoned for General Commercial District (C-2) as well, adjacent lots to the east and south are zoned for Residential (R-2), and adjacent lots to the west are zoned for Park District.

Adjoining properties consist of: Burger King restaurant to the north; the Francis L Corrigan Sports Complex and ball fields to the west; and residential dwellings to the east and south.

6.2 Current Site Usage

The Site is improved with a single-story commercial/market style structure constructed slab-on-grade with a wood plank exterior, a flat roof structure, and a tar and gravel roof cover. The Site is currently operating as a butchshop, d.b.a. International Meat Market. The remainder of the Site is utilized as a paved parking lot.

6.3 Waste Generated and Hazardous Materials Handled

No hazardous materials are currently generated or handled on-Site. As previously discussed, the Site is currently a commercial meat market and is proposed to be redeveloped for use as a public high school.

6.4 Residential Activity

Pursuant to Section 1.4(A)(68) of the *Remediation Regulations*, "Residential activity" means any activity related to a residence or dwelling, including but not limited to a house, apartment, or condominium, or school, day care center, playground, or Recreational Facility for Public Use.

Under this definition, the Site does not currently apply to this regulation; however, upon redevelopment of the Site as a school, the Site use would be considered "Residential activity."

7.0 LOCUS MAP (1.8.3(A)(7))

A Locus Map showing the location of the Site using the USGS 7.5 minute quadrangle map and relative to pertinent geographic features is included in **Figure 1**.

8.0 SITE PLAN (1.8.3(A)(8))

A Site Plan depicting sample locations and relevant Site features is included in Figure 2.

9.0 GENERAL CHARACTERIZATION OF SURROUNDING AREA (1.8.3(A)(9))

The following provides a general characterization of the property surrounding the area affected by the release. According to the online RIDEM Environmental Resource Map, referenced on March 2, 2023:

- An unnamed water body is located approximately 0.25 of a mile to the southwest of the Site, and the Moshassuck River is located approximately 0.3 of a mile to the west of the Site;
- > The Site is located within five-hundred feet of a deciduous forested wetland to the west;

- No public water supplies are located within one mile of the Site;
- > The underlying groundwater classification of the Site and surrounding area is "GB." GB areas are defined as "groundwater resources which are known or presumed to be unsuitable for drinking water use without treatment"; and
- The Site is located within an Environmental Justice (EJ) Focus Area.

A copy of the RIDEM Environmental Resource Map is included as Figure 3.

10.0 CLASSIFICATION OF SURFACE WATER AND GROUNDWATER (1.8.3(A)(10))

The following provides the classifications of the surface water and groundwater at and surrounding the Site that could be impacted by a release:

- No surface water is present on-Site. The nearest surface water body is an unnamed water body is located approximately 0.25 of a mile to the southwest of the Site, and the Moshassuck River is located approximately 0.3 of a mile to the west of the Site;
- The surface water classification of the Moshassuck River is "Class B." Class B waters are designated for fish and wildlife habitat and primary and secondary contact recreational activities. They shall be suitable for compatible industrial processes and cooling, hydropower, aquacultural uses, navigation, and irrigation and other agricultural uses. These waters shall have good aesthetic value. Certain Class B waterbody segments may also have partial use designations assigned to them; and
- As previously noted, the underlying groundwater classification at the Site and surrounding area is "GB". GB areas are defined as "groundwater resources which are known or presumed to be unsuitable for drinking water use without treatment".

11.0 DESCRIPTION OF CONTAMINATION (1.8.3(A)(11))

As previously noted, SAGE completed a Phase I ESA and a Phase II LSI at the Site, which forms the basis for this SIR. A description of the environmental investigation at the Site, including sampling locations, sampling procedures, and copies of analytical results, is provided below.

11.1 Soil/Groundwater Regulatory Classification

SAGE reviewed the *Remediation Regulations* to identify the applicable soil criteria for soils at the Site. Pursuant to Section 1.9.1 and 1.9.2 of the *Remediation Regulations*, the R-DEC, and the GB Leachability Criteria (GB-LC) apply to soils at the Site.

As previously noted, the groundwater classification at the Property is GB. Pursuant to Section 1.9.3 of the *Remediation Regulations*, the GB-GWO applies to groundwater at the Site.

11.2 Environmental Investigation and Concentrations of Hazardous Substances in Excess of Remedial Objectives

11.2.1 Ground Penetrating Radar Survey

A GPR survey was performed to investigate whether an underground storage tank (UST) was present on the Site, as the heating source for a former Site structure was unknown and potentially a fuel oil UST. On October 20,2022, SAGE personnel were present to oversee the GPR survey completed by Advanced Technologies Utility Locating Corp. of Rehoboth, Massachusetts. The GPR survey was performed along the accessible areas of the Site identified on **Figure 2**. No anomalies consistent with a UST were identified during this survey.

Please note that GPR surveys are interpretive and do not, in all cases, guarantee the presence or absence of a UST. A GPR survey is a non-invasive investigatory tool that is used to identify the need for and/or location of future investigative efforts. The GPR survey is limited to the areas which were scanned and walkable during the Site survey.

11.2.2 Soil Borings, Soil Sample Collection, and Monitoring Well Installation

Prior to advancing soil borings, SAGE marked the areas to be investigated and contacted DigSafe such that underground utilities could be marked prior to commencement of field work. On October 20, 2022, SAGE oversaw the advancement of seven soil borings (SE-101 through SE-107) at select locations throughout the Site.

SAGE EnviroTech Drilling Services, Inc. completed the soil borings utilizing a track-mounted Geoprobe® rig and direct push methodology for all seven of the boring locations. The groundwater monitoring wells were installed to bisect the groundwater interface. The monitoring wells were constructed with one-inch-diameter, thread-coupled, machine-cut, 0.010-inch slot well screen. The wells were completed with gripper plugs and road boxes mounted flush with the ground surface to limit disturbance and surface water infiltration. Upon completion, the wells were developed with a peristaltic pump to reduce sample turbidity by removing fine particulate matter (clay and silt) from the filter pack and the geologic formation near the well intake, enhancing inflow to the well. Soil boring and monitoring well locations are identified in **Figure 2**.

During soil boring advancement, continuous soil samples were collected in two, three, and/or five-foot intervals (sample intervals included: 0-2 feet below ground surface (bgs), 2-5 feet bgs, and five-foot intervals thereafter). Each collected sample was field screened for the presence of volatile organic compounds (VOCs) in the form of total volatile organic vapor (TVOV) *via* jar-headspace methodology using a photoionization detector (PID) equipped with a 10.6 electron volt (eV) lamp and calibrated to an 100 parts per million by volume (ppmV) isobutylene standard.

TVOV screening values ranged between less than the instrument detection limit of 0.1 ppmV to 1.8 ppmV. A detailed summary of TVOV screening for each sample is provided in **Table 1**, attached.

Of the seven (7) borings, five (5) were completed as permanent groundwater monitoring wells as follows: SE-101(MW), SE-102(MW), SE-104(MW), SE-105(MW) and SE-106(MW). Groundwater was encountered

at depths ranging from 10 to 15 feet BSG throughout the Subject Property. Borings were advanced to a terminal depth of approximately 15 to 20 feet bgs. Monitoring wells were set at a terminal depth of approximately 18 to 20 feet bgs. Subsurface soil conditions observed during soil boring advancement consisted predominantly of well graded gravelly sands, with little or no fines. Groundwater was encountered at depths ranging from 10 to 15 feet bgs. Soil lithology observations and monitoring well construction details are provided in the Soil Boring/Monitoring Well Logs included as **Attachment 6**.

11.2.3 Soil Sampling and Analysis

Select soil samples were placed in a cooler on ice, and submitted under chain-of-custody protocol to a state-certified laboratory for one or more of the following analyses:

- VOCs via United States Environmental Protection Agency (U.S. EPA) Method 8260C;
- Total petroleum hydrocarbons (TPH) via modified U.S EPA Method 8100;
- Polynuclear aromatic hydrocarbons (PAHs) via U.S. EPA Method 8270D; and/or,
- Priority Pollutant 13 metals via U.S. EPA Methods 6010C and 7471B.

The analytical results of soil samples collected by SAGE are summarized in **Table 2**, attached, which provides a summary of all analytes detected above laboratory reporting limits and analytes for which the laboratory reporting limit is above applicable RIDEM Method 1 R-DEC, I/C-DEC and/or GB-LC. It should be noted that analytes that were not detected are not listed in the table. A complete list of analytes tested is included in the laboratory analytical report included as **Attachment 7**. Concentrations of detections and regulatory exceedances are depicted on the Soil and Groundwater Analytical Results Plan included in **Figure 4**.

As indicated in **Table 2**, VOCs were not detected in excess of the laboratory detection limits or their applicable RIDEM Method 1 R-DEC or applicable GB-LC. No PAHs, metals or TPH concentraitons were detected in excess of RIDEM GB-LC. Several PAHs, metals and TPH were detected in excess of RIDEM Method 1 R-DEC and/or I/C-DEC as noted below:

COCs	Soil Sample ID with Detections Exceeding R-DEC	Soil Sample ID with Detections Exceeding I/C-DEC	
Benzo(a)anthracene	SE-103 (10-11'), SE-104 (0-2'),	-	
. ,	SE-104 (10-12') SE-103 (10-11'), SE-104 (0-2'),	SE-103 (10-11'), SE-104 (0-2'),	
Benzo (a)pyrene	SE-104 (10-12')	SE-104 (10-12')	
Benzo(b)fluoranthene	SE-103 (10-11'), SE-104 (0-2'), SE-104 (10-12')	SE-103 (10-11'), SE-104 (0-2'), SE-104 (10-12')	
Benzo(g,h,i)perylene	SE-104 (10-12) SE-103 (10-11'), SE-104 (0-2'), SE-104 (10-12')	-	
Benzo(k)fluoranthene	SE-103 (10-11'), SE-104 (0-2'), SE-104 (10-12')	-	
Chrysene	SE-103 (10-11'), SE-104 (0-2'), SE-104 (10-12')	-	
Dibenz(a,h)anthracene	SE-104 (0-2')	SE-104 (0-2')	

COCs	Soil Sample ID with Detections Exceeding R-DEC	Soil Sample ID with Detections Exceeding I/C-DEC
Indeno(1,2,3-cd)pyrene	SE-103 (10-11'), SE-104 (0-2'),	-
ilidelio(1,2,3-cd)pyrelie	SE-104 (10-12')	
Pyrene	SE-104 (10-12')	-
Arsenic	SE-103 (10-11'), SE-104 (10-12')	SE-103 (10-11'), SE-104 (10-12')
Lead	SE-103 (10-11'), SE-104 (10-12')	-
TPH	SE-103 (2-3'), SE-103 (10-11')	-

11.2.4 Groundwater Sampling and Analysis

On October 28, 2022, SAGE collected groundwater samples from the five (5) newly-installed monitoring wells. Prior to collecting groundwater samples, SAGE gauged each monitoring well utilizing an oil/water interface probe to determine the depth to groundwater and to assess for the presence and/or absence of non-aqueous phase liquid (NAPL). NAPL was not detected during the monitoring well gauging. Measured static depth to groundwater ranged between 11.81 and 14.62 feet below the top of the inner road box collar (btoc). A groundwater gauging log is provided in **Table 3**, attached.

Following gauging, each monitoring well was purged a minimum of three (3) static well volumes utilizing a low-flow peristaltic pump with dedicated tubing. The tubing was deployed at a depth approximately equivalent to the mid-screen point or the mid-water column height of the monitoring well, as applicable. Additionally, a Geotech Portable Turbidity Meter was utilized throughout groundwater purging to confirm the turbidity of each sample was less than 5 Nephelometric Turbidity Units (NTUs). A copy of the water level measurement field notes and final NTU readings is included as **Table 3.** Upon completion of purging, groundwater samples were collected from each monitoring well, placed in a cooler with ice, and were submitted under chain-of-custody protocol to a state-certified laboratory for analysis of VOCs *via* U.S. EPA Method 8260C.

The detected analytical results obtained from groundwater samples collected by SAGE are summarized in **Table 4**, attached, which provides a summary of all analytes detected above laboratory reporting limits and analytes for which the laboratory reporting limit is above the applicable RIDEM Method 1 GB-GWO. It should be noted that analytes that were not detected are not listed in the table. A complete list of analytes tested is included in the laboratory analytical reports included as **Attachment 8**. Concentrations of detections and regulatory exceedances are depicted on the Soil and Groundwater Analytical Results Plan included in **Figure 4**.

As indicated in **Table 4**, no VOCs were detected in excess of applicable RIDEM Method 1 GB-GWOs.

11.2.5 Groundwater Elevation Survey

On October 28, 2022, a relative groundwater elevation survey was performed to determine the approximate groundwater flow direction at the Site. Each monitoring well was surveyed to establish relative elevations. Based on the elevation survey and groundwater elevation data, groundwater at the Site appears to flow in a west/northwest direction. A summary of the groundwater gauging and elevation survey has been provided in the attached **Table 3**. Groundwater elevation contours are depicted in **Figure 2**.

11.3 Free Liquids on the Surface

No "free liquids on the surface" have been observed at the Site.

11.4 Non-Aqueous Phase Liquid (NAPL)

No NAPL has been detected in any on-Site monitoring wells.

11.5 Impact to Environmentally Sensitive Areas

Based on laboratory analytical data collected at the Site, the release does not appear to have adversely impacted an "Environmentally Sensitive Area," as defined by the *Remediation Regulations*.

11.6 Contamination of Man-Made Structures

Based on the findings discussed throughout this report, the identified COC release is not expected to have contaminated buried man-made structures, although it is possible that polluted fill may have been historically used to backfill the various utility corridors underlying the Site.

Sub slab soil gas or indoor air samples were not colleted at the Site as part of investigation activities. However, the installation of a vapor barrier and passive SSDS (designed to be converted to an active SSDS, if required in the future) will be required relative to the *School Siting Guidance*.

11.7 Odors or Stained Soil

No odors or stained soil have been observed at the Site.

11.8 Stressed Vegetation

No stressed vegetation has been observed at the Site.

11.9 Presence of Excavated or Stockpiled Material

No excavated and/or stockpiled material has been observed at the Site.

11.10 List of Hazardous Substances and/or Petroleum at the Site

No hazardous substances and/or petroleum products have been observed to be stored or utilized at the Site.

12.0 CONCENTRATION GRADIENTS (1.8.3(A)(12))

All Site data are summarized in **Tables 1** through **4**, attached, and are compared to their applicable RIDEM criteria. A summary of laboratory analytical detections and/or criteria exceedances is as follows:

- As indicated in **Table 1**, TVOV screening values, for soils collected during soil boring advancement ranged between less than the instrument detection limit of 0.1 ppmV to 5.5 ppmV;
- Laboratory analytical results for soil samples collected by SAGE are summarized in **Table**2 and are compared to the applicable RIDEM Method 1 R-DEC, I/C-DEC and GB-LC. As

- indicated in **Table 2**, several PAHs, metals, and TPH were detected in excess of RIDEM Method 1 R-DEC and/or the I/C-DEC;
- As indicated in **Table 3**, measured static depth to groundwater ranged between 11.81 and 14.62 feet btoc, and NAPL was not detected during the monitoring well gauging; and
- Laboratory analytical results for groundwater samples are summarized in **Table 4** and are compared to the applicable RIDEM GB-GWOs. No VOCs were detected in excess of a laboratory detection limit, all of which are below applicable RIDEM Method 1 GB-GWOs;

The concentrations of contaminants found in soil at the Site are likely related to former filling activities during and/or prior to Site development. Typical historical fill material often included contaminated soils. Additionally, the VOCs detected in groundwater are consistent with the Site's former use as a drycleaning facility. The concentrations and localization of VOCs detected in groundwater are indicative of incidental spills as part of normal operations rather than a significant release due to a large spill.

Based on the investigations completed at the Site to date, there does not appear to be gross contamination associated with the historical use of the Site, but rather, impacted media is likely the result of historical filling activities and operations as a drycleaning facility.

13.0 BACKGROUND CONCENTRATION INVESTIGATIONS (1.8.3(A)(13))

No investigations have been conducted to determine background concentrations of hazardous substances identified at the Site. Background concentrations are assumed to be below laboratory reporting limits.

14.0 SITE-SPECIFIC HYDROGEOLOGICAL PROPERTIES (1.8.3(A)(14))

The following provides an evaluation of the site-specific hydrogeological properties which could influence migration of hazardous substances throughout and away from the Site:

- On October 28, 2022, depth to water ranged from approximately 11.81 and 14.62 feet btoc. Given these depths, man-made barriers to and conduits for contamination at the Site are unlikely to affect groundwater flow direction;
- There are no known natural barriers to and conduits for contamination at the Site;
- According to the RIDEM Environmental Resource Map, the Site is located in an area mapped as being underlain by the Rhode Island Formation, which consists of gray sandstone and stilstone and lesser amounts of black shale, gray conglomerate, and coal beds:
- The water table elevation contours depicted on **Figure 2** illustrate the direction of groundwater flow at the Site as measured on October 28, 2022. Based on the elevation survey and groundwater elevation data, groundwater at the Site appears to flow in a west/northwesterly direction; and
- Subsurface soil conditions observed during soil boring advancement consisted predominantly of well graded, gravelly sands. SAGE's field descriptions of Site soil are consistent with information published on the RIDEM Environmental Resource Map, which depicts the Site as being located in an area of glacial outwash plains deposits, which consists primarily of sorted sand and local deposits of coarse gravel.

15.0 TOPOGRAPHY, SURFACE WATER, AND RUN-OFF FLOW PATTERNS (1.8.3(A)(15))

The following provides a characterization of the topography, surface water, and run-off flow patterns, including the flooding potential of the Site:

- According to the Pawtucket, Rhode Island USGS Quadrangle topographic map and the Environmental Data Resources, Inc. (EDR) report, the general elevation of the Site is approximately 61 feet above the National Geodetic Vertical Datum (NGVD). The topography of the Site and surrounding area is slopes toward the north/northwest;
- The majority of the Site not occupied by the existing building footprint is developed with asphalt paved parking. The remaining areas are developed with concrete walkways. Stormwater is currently inferred to flow to off-Site stormwater catch basins. Following redevelopment, the school site will be designed to infiltrate stormwater on-Site to prevent runoff to nearby stormwater catch basins. This investigation was conducted with a focus on environmental contamination rather than Site development design. Stormwater management plans are being developed in conjunction with the school development design; and
- Based on information obtained from the online RIDEM Environmental Resource Map, the Site is within Zone X (unshaded), which is defined as an area of minimal flood hazard, with a less than 0.2% annual chance of flooding. As such, according to the RIDEM Environmental Resource Map, the potential for flooding at the Site is minimal. However, based on prior knowledge, the Site is known to be prone to local flooding during storm events. A stormwater management plan for stormwater infiltration in on-Site stormwater management infrastructure is being designed as part of the Site redevelopment process. All stormwater is anticipated to infiltrate on-Site. Furthermore, the proposed building footprint and capping of the Site is expected to prevent the off-Site migration of identified contaminants.

16.0 VOLATILIZATION POTENTIAL OF HAZARDOUS SUBSTANCES (1.8.3(A)(16))

Given the nature of contamination present and the depth to groundwater, there is low volatilization potential at the Site. However, as the Site is proposed for redevelopment for use as a public school, and in accordance with the *School Siting Guidance*, proposed remedial actions to mitigate a potential future vapor intrusion pathway will include the installation of a vapor barrier along with a passive SSDS (designed to be converted to an active SSDS, if required in the future).

17.0 CONTAMINANT TRANSPORT BY WIND OR EROSION (1.8.3(A)(17))

Under current conditions, the Site is developed with only one small structure. Precipitation reaching the ground surface is expected to flow to off-Site catch basins. As such, wind and erosion are not expected to contribute to contaminant migration until redevelopment of the Site commences. SAGE anticipates that appropriate dust and erosion control measures will be implemented during redevelopment, if needed.

18.0 FATE AND TRANSPORT MODELS (1.8.3(A)(18))

No fate and transport models were used during the Site investigation.

19.0 SUMMARY OF SAMPLING AND ANALYTICAL METHODS (1.8.3(A)(19))

Section 11.2, **Figure 4**, **Tables 2 and 4**, and **Attachments 7**, **and 8**, provide a summary of the samples taken, the location of all samples, the parameters tested for, and the analytical methods used during the Site investigation.

20.0 MONITORING WELL CONSTRUCTION PLAN AND DEVELOPMENT PROCEDURES (1.8.3(A)(20))

Monitoring well construction is consistent with the requirements of the Groundwater Quality Rules, Part 150-05-3. Groundwater monitoring wells were constructed with one-inch diameter, thread coupled PVC materials. Lengths of machine-cut, 0.010-inch slot well screen were installed roughly across the observed water table elevation to obtain an adequate and representative sample for laboratory analysis. Screened intervals were set in silica sand, and a one-foot bentonite seal was set above the well screen. The monitoring wells were completed with gripper plugs and road boxes mounted flush with ground surface to limit disturbance and surface water infiltration. Upon completion, the wells were developed with a peristaltic pump to reduce sample turbidity by removing fine particulate matter (clay and silt) from the filter pack and the geologic formation near the well intake, enhancing inflow to the well. Monitoring well construction details are presented on the Soil Boring/Monitoring Well Logs included as **Attachment 6**.

21.0 MANAGEMENT OF INVESTIGATION-DERIVED WASTE (1.8.3(A)(21))

Investigation-derived waste was managed on-Site during the investigation in accordance with the RIDEM *Guidelines for the Management of Investigation Derived Waste (Policy Memo 95-01)*. Soil borings were advanced via mechanical methods and soil generated during the advancement of soil borings was used as backfill within the boreholes following the collection of soil samples.

22.0 QUALITY ASSURANCE AND QUALITY CONTROL EVALUATION (1.8.3(A)(22))

The Remediation Regulations require a quality assurance and quality control (QA/QC) evaluation summary for sample handling and analytical procedures. As documented herein, the analysis of soil samples was completed using U.S EPA Methods 8260C, 8100 (modified), 8270D, 6010C, and 7471B. The analysis of groundwater samples was completed using U.S. EPA Method 8260C. The laboratory reports included in **Attachments 7 and 8** document the laboratory QA/QC concerns identified for each of the analyses. There is no impact to the overall usability of the data set for the purposes of this SIR.

With respect to field QA/QC, all analytical samples were collected using SAGE's standard operating procedures, which were prepared in accordance with RIDEM and U.S. EPA. Samples were collected in laboratory-supplied containers, placed in a cooler on ice, and submitted under chain-of-custody protocol to a state-certified laboratory.

23.0 PUBLIC INVOLVEMENT (1.8.3(A)(23))

Pre-Site Investigation public notification was distributed to Site abutters on January 26, 2022. Because the Site is located in a designated EJ Focus Area, EJ Materials were also distributed. Copies of the distributed public notification documents are included in **Attachment 9**.

SAGE is prepared to implement post-SIR public notice requirements when the RIDEM deems the SIR to be complete.

As previously detailed, because the Site is the proposed location of a school, Site Investigation activities are also being performed pursuant to the RIDEM *School Siting Guidance*. In accordance with the *School Siting Guidance*, a public hearing was held on March 22, 2023 at 4:30 at 1280 High Street in Central Falls, Rhode Island. The public comment period was open for thirty (30) days and closed at 4:30 PM on April 7, 2023. No public comments have been received to date by either SAGE or the RIDEM for this Site (756 & 770 Lonsdale Avenue); however, the westerly adjacent 10 Higginson Avenue property has also been investigated as part of this overall school redevelopment project (RIDEM File No. SR-04-2061). During the post-SIR public comment period, SAGE received and addressed one (1) public comment regarding the flooding potential of the 10 Higginson Avenue and nearby properties. The RIDEM received the public comment on March 30, 2023, and issued a Request for Response to Public Comment to the City of Central Falls on April 7, 2023.

SAGE provided a response on May 8, 2023 that indicated that stormwater considerations will be made as part of the civil engineering design of the Site redevelopment, and stormwater management practices are anticipated to include bioswales and rain gardens. All stormwater designs will follow the RIDEM Stormwater Management, Design, and Installation Rules (250-RICR-150-10-8), will meet the eleven minimum standards as required, and comply with the specific performance criteria, which includes a requirement of a stormwater management site plan review by State and local government; however, the stormwater management system design is outside of SAGE's environmental investigation scope, and will be further addressed in the Remedial Action Work Plan (RAWP).

Please also note that no stormwater will be allowed to infiltrate into soils with RIDEM GB Leachability Criteria (GB-LC) exceedances. The environmental testing conducted to date has not identified a GB-LC exceedance.

Documentation of the public meeting, including an attendance list, and a copy of the presentation is also included in **Attachment 9**.

24.0 OTHER SITE-SPECIFIC FACTORS (1.8.3(A)(24))

No other Site-specific factors are necessary to make an accurate decision as to the appropriate Remedial Action to be taken at the Site.

25.0 DEVELOPMENT OF REMEDIAL ALTERNATIVES (1.8.4)

Based on the information presented herein, it is SAGE's opinion that remedial activities are warranted at the Site to achieve the Soil Objectives established within the *Remediation Regulations* and to address vapor intrusion concerns in accordance with the *School Siting Guidance*. In compliance with Section 1.8.4 of the *Remediation Regulations* and based on the nature and extent of the contamination detected at the Site, SAGE has developed the following three remedial alternatives:

- Alternative 1 No action/monitored natural attenuation: This option would retain all contaminant-impacted soil on-Site and Site conditions remain unchanged;
- Alternative 2 Soil excavation and importation of clean fill material: This option would require excavation of all contaminant-impacted soil with concentrations above the applicable RIDEM Method 1 R-DEC and/or GB-LC followed by backfilling the Site with clean fill material; and
- Alternative 3 Implementation of engineering controls (applied vapor barrier, passive SSDS [designed to be converted to an active SSDS, if required in the future], and capping) and institutional controls (ELUR and Soil Management Plan (SMP)) to limit contact with contaminant-impacted soil at the Site and to mitigate the potential for vapor intrusion to indoor air in the Site building.

The following table summarizes our evaluation of the technical feasibility, permanency, cost efficiency, compliance with state/local laws or other public concerns, and the ability of the Performing Party to perform the preferred remedial alternative for the above-noted remedial alternatives:

Remedial Alternative	Risk Management	Technical Feasibility	Compliance with State/Local Laws or Other Public Concerns	Ability of Performing Party to Perform the Preferred Remedial Alternative
Alternative 1: No Action/Monitored Natural Attenuation	Will not comply with the Remediation Regulations and/or School Siting Guidance – Soil concentrations of contaminants at the Site would remain in soil above their applicable RIDEM regulatory criteria and the potential for vapor intrusion would not be addressed.	Yes	No	Yes
Alternative 2: Soil Excavation and Importation of Clean Fill Material	Will comply with the Remediation Regulations by mitigating risk to human health and the environment. Material that remains would no longer pose a risk to Site users. Will not comply with the School Siting Guidance – Potential for vapor intrusion would not be addressed. Not recommended due to the high	No	No	No

Remedial Alternative	Risk Management	Technical Feasibility	Compliance with State/Local Laws or Other Public Concerns	Ability of Performing Party to Perform the Preferred Remedial Alternative
	cost associated with soil disposal and			
Alternative 3: Implementation of Engineering Controls and Institutional Controls	the import of clean fill material. Will comply with the Remediation Regulations and/or School Siting Guidance by mitigating the risk to human health and the environment. Site users will have a reduced potential to contact contaminated soil, the potential for vapor intrusion will be eliminated, and future users of the Site will be mandated to maintain the cap/vapor barrier/SSDS	Yes	Yes	Yes
	and manage soil in accordance with the SMP.			

Alternative 3 (Implementation of Engineering and Institutional Controls (ELUR and SMP)) is the preferred alternative, as it is a cost-effective remedial alternative that complies with the intent of the RIDEM *Remediation Regulations* (as well as other applicable federal, state, and local laws or public concerns), it is technically feasible, it is consistent with current and future land use, and it manages actual and potential risks to human health and the environment. The Performing Party has the ability to implement the abovenoted preferred remedial alternative.

During the proposed Site redevelopment, the Site will be capped in accordance with RIDEM-approved engineered barriers and will consist of one of the following:

Hardscape Cap Areas:

During the proposed Site redevelopment, a proposed Site building will be constructed and the final building footprint will serve as part of the engineered cap.

Additionally, any new asphalt/concrete pavements to be installed with six (6) inches of clean sub-grade overlain by four (4) inches of asphalt or concrete pavement. Surface soil in the new asphalt/concrete surfacing areas will either be excavated and replaced with the pavement or the asphalt/concrete surfacing and/or clean fill will be placed directly on top of Site soil without excavation.

Any existing asphalt/concrete pavements to remain as part of the Site redevelopment will be inspected, and any cracked or damaged areas will be repaired and sealed.

<u>Landscaped Areas:</u>

During the proposed Site redevelopment, new/reconfigured landscaped areas will be installed on-Site. Surface soils will either be:

- Excavated to a depth of either one (1) or two (2) feet below the planned grade and replaced with a minimum of 12-inches of clean fill placed over a non-woven geotextile fabric with a minimum CBR puncture strength of 220 (consistent with current RIDEM policy) or a minimum of 24-inches of clean fill; or
- > The clean fill and/or geotextile will be placed directly on top of existing Site soil without excavation.

A preliminary redevelopment and capping design plan will be provided as part of the Remedial Action Work Plan (RAWP) once the selected remedial alternative has been approved. All Site surfaces will be capped in accordance with RIDEM-approved engineered barriers.

27.0 CERTIFICATION STATEMENTS (1.8.5)

This SIR was completed in accordance with the RIDEM Remediation Regulations and School Siting Guidance. Accordingly, the following signed statements are included with regard to this SIR.

I certify that the SIR is complete and accurate representation of the contaminated Site and the release and contains all known facts syrrounding the release to the best of my knowledge.

Jim Vandermillen 05/10/2023

Director of the Department of Planning and Economic Development City of Central Falls

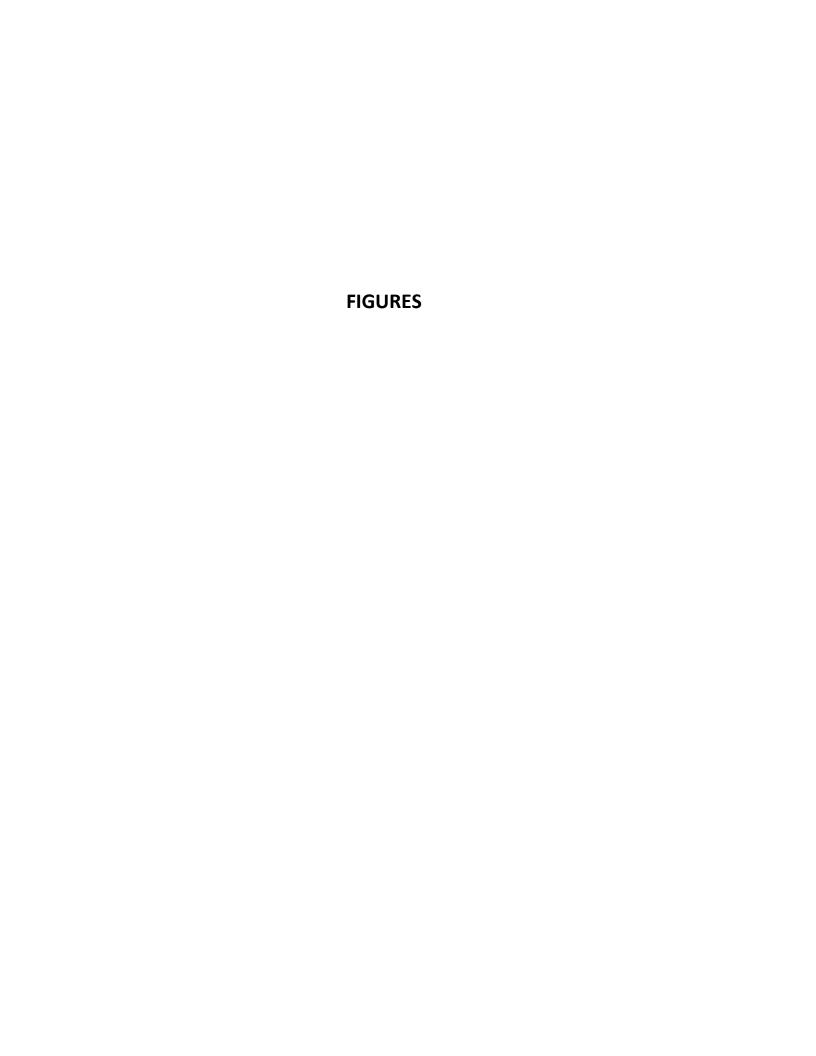
We certify that information contained within the SIR is complete and accurate to the best of our knowledge. This report has been prepared and reviewed by the undersigned staff in accordance with SAGE's standard Quality Control Procedures.

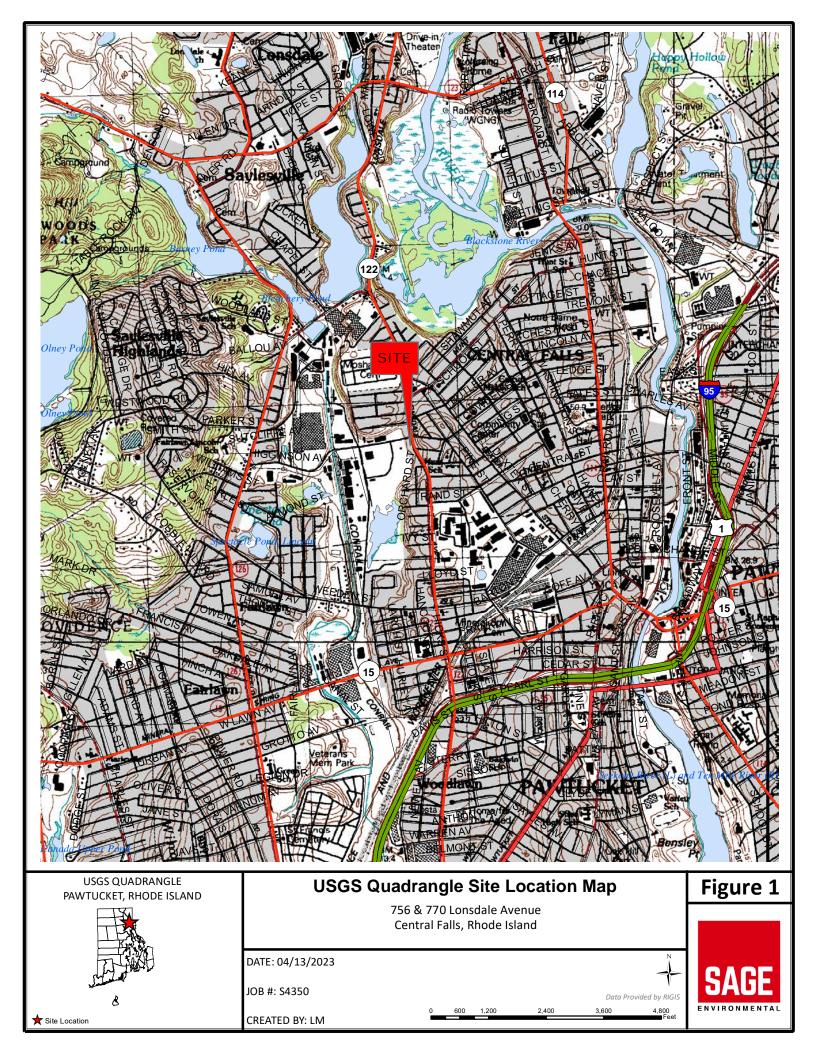
Becky Raymond

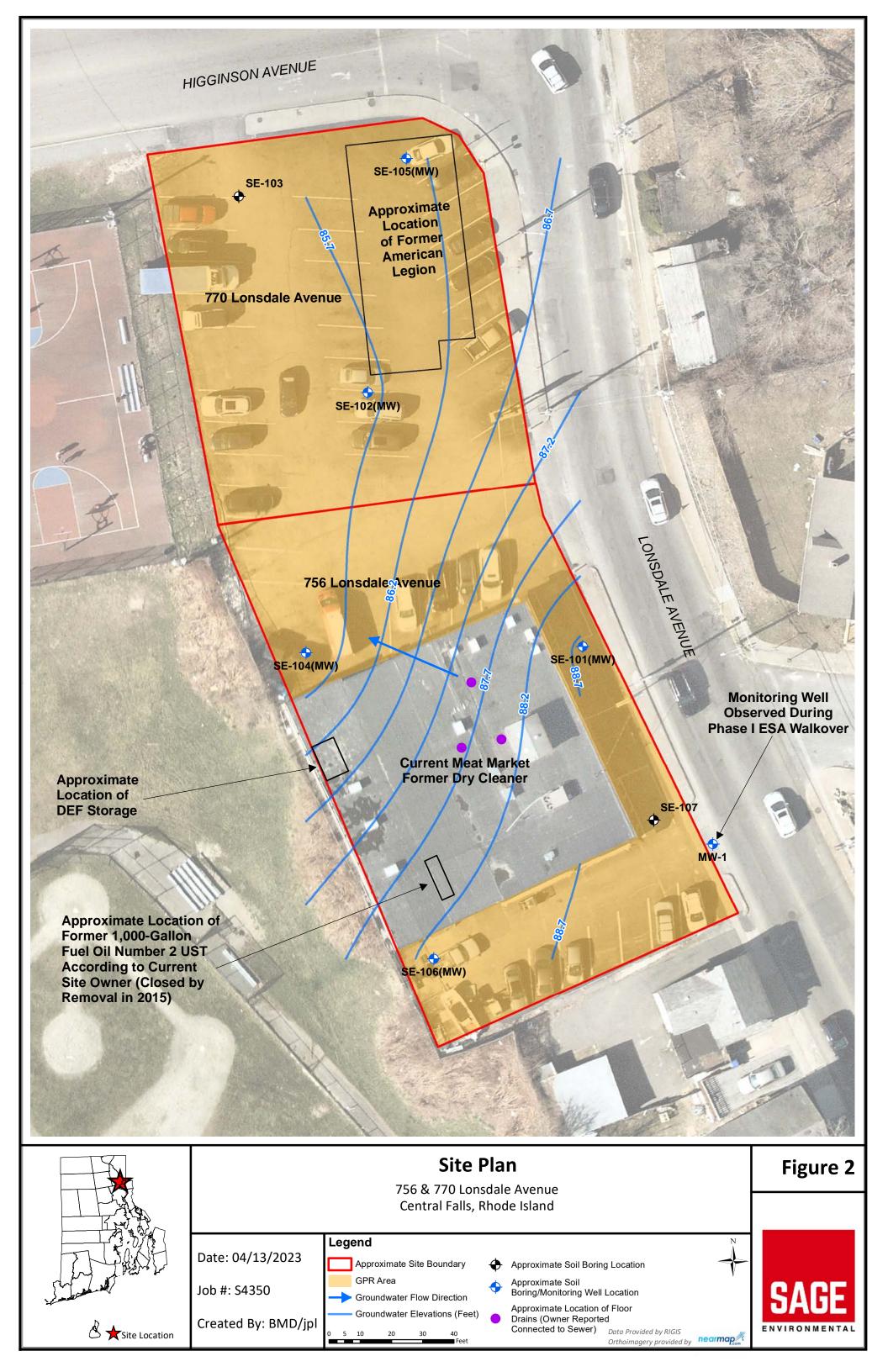
Environmental Scientist

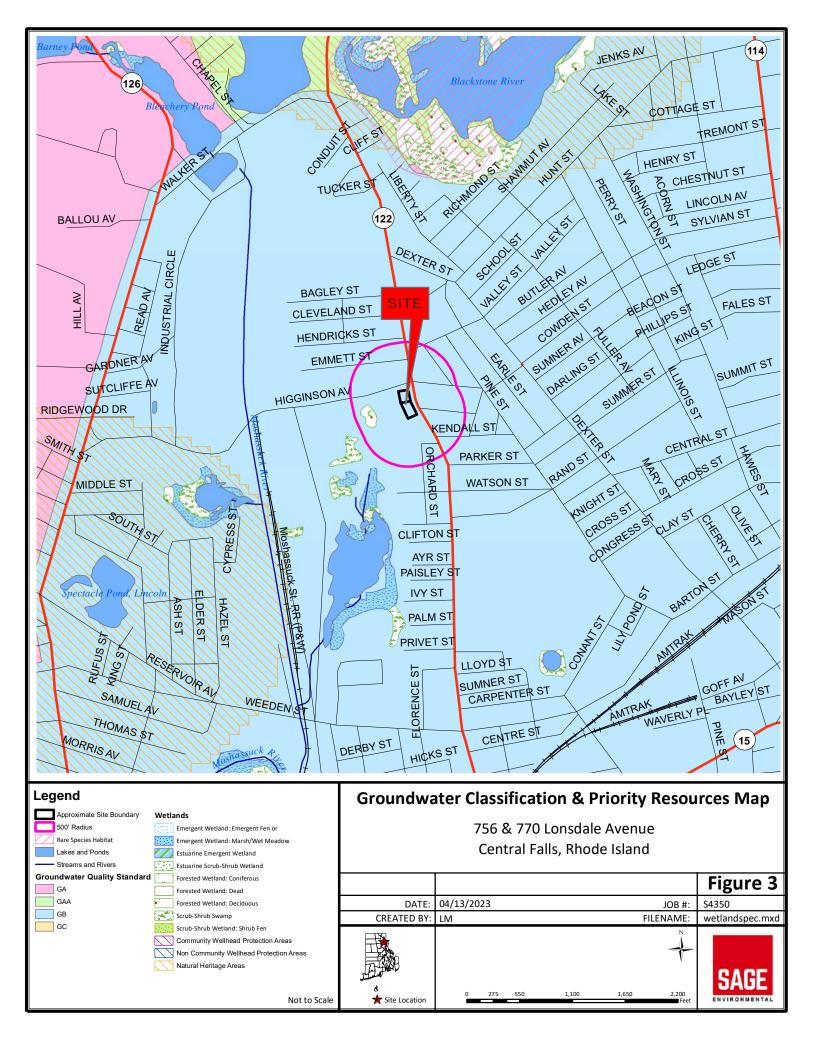
5/11/23

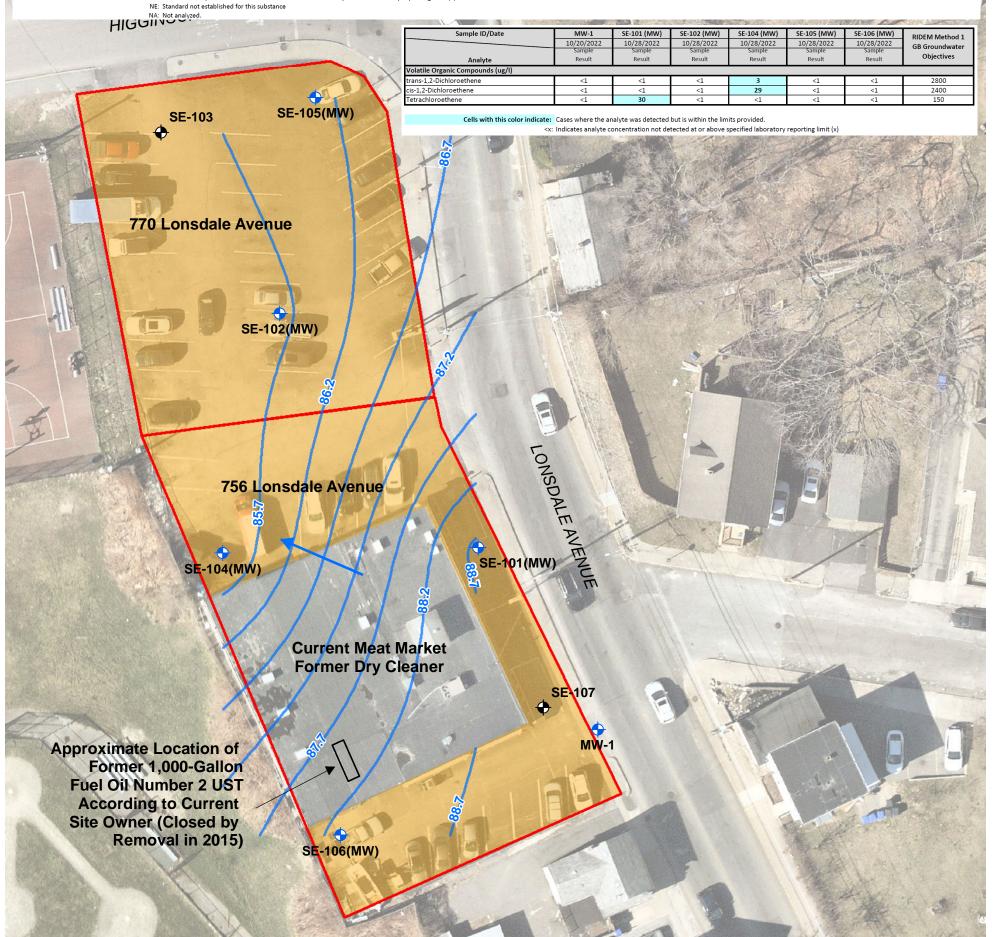
Senior Environmental Scientist


Date


Jacob H. Butterworth, MS, LSP


Vice President


Date

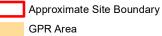

Sample ID (Depth (Feet))/Date	SE-101 (MW) 0-2	SE-102 (MW) 10-13	SE-103 2-3	SE-103 10-11	SE-104 (MW) 0-2	SE-104 (MW) 10-12	SE-105 (MW) 0-1	SE-105 (MW) 10-14	SE-106 (MW) 0-2	SE-106 (MW) 10-11	SE-107 15-17	RIDEM Method 1	RIDEM Method
	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	Residential	GB Leachabilit
	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Direct Exposure Criteria	Criteria
Analyte	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Direct Exposure Criteria	Criteria
emivolatile organic compounds (mg/kg)													
Acenaphthene	<0.133	NA	<1.4	<1.53	0.856	1.08	<0.687	NA	<0.695	<0.138	NA	43	NE
Acenaphthylene	<0.133	NA	<1.4	<1.53	0.738	<0.779	<0.687	NA	< 0.695	<0.138	NA	23	NE
Anthracene	< 0.133	NA	<1.4	1.7	2.79	2.62	<0.687	NA	< 0.695	<0.138	NA	35	NE
Benzo(a)anthracene	<0.133	NA	<1.4	5.88	6.19	6.07	<0.687	NA	< 0.695	<0.138	NA	0.9	NE
Benzo(a)pyrene	0.167	NA	<1.4	5.47	6.5	5.09	<0.687	NA	<0.695	<0.138	NA	0.4	NE
Benzo(b)fluoranthene	0.246	NA	<1.4	6.69	7.88	6.11	<0.687	NA	0.802	<0.138	NA	0.9	NE
Benzo(g,h,i)perylene	0.17	NA	<1.4	4.27	5.45	3.18	<0.687	NA	<0.695	<0.138	NA	0.8	NE
Benzo(k)fluoranthene	<0.133	NA	<1.4	2.42	3	2.04	<0.687	NA	<0.695	<0.138	NA	0.9	NE
Chrysene	0.154	NA	<1.4	5.76	6.21	7.03	<0.687	NA	< 0.695	<0.138	NA	0.4	NE
Dibenz(a,h)anthracene	< 0.133	NA	<1.4	<1.53	1.12	<0.779	<0.687	NA	< 0.695	<0.138	NA	0.4	NE
Dibenzofuran	<0.133	NA	<1.4	<1.53	< 0.695	1.02	<0.687	NA	< 0.695	<0.138	NA	NE	NE
luoranthene	0.171	NA	<1.4	9.99	11.1	13.2	0.783	NA	0.945	<0.138	NA	20	NE
Fluorene	<0.133	NA	<1.4	<1.53	0.891	0.998	<0.687	NA	< 0.695	<0.138	NA	28	NE
ndeno(1,2,3-cd)pyrene	0.146	NA	<1.4	3.98	5.21	2.99	<0.687	NA	<0.695	<0.138	NA	0.9	NE
Naphthalene	<0.133	NA	<1.4	<1.53	1.38	1.08	<0.687	NA	< 0.695	<0.138	NA	54	NE
Phenanthrene	<0.133	NA	<1.4	5.71	7.71	16.3	<0.687	NA	<0.695	<0.138	NA	40	NE
Pyrene	0.235	NA	<1.4	11.8	12.7	18	0.955	NA	1.1	<0.138	NA	13	NE
Total Metals (mg/kg)													
Antimony	< 0.75	NA	< 0.74	<0.82	<0.75	2.76	<0.72	NA	1.44	<0.78	NA	10	NE
Arsenic	2.27	NA	4.64	10.4	2.29	11.8	3.41	NA	2.26	<1.18	NA	7	NE
Cadmium	0.65	NA	1.25	6	<0.57	11.2	0.96	NA	0.93	<0.59	NA	39	NE
Chromium	6.62	NA	13.3	49.6	8.03	98.3	11	NA	6.35	2.34	NA	NE	NE
Copper	10.5	NA	21.1	302	11.8	198	13	NA	30	3.59	NA	3100	NE
Lead	58.3	NA	29	325	41.2	417	23.1	NA	86.9	3.44	NA	150	NE
lickel	5.92	NA	8.45	38.3	5.11	74.1	10.1	NA	5.66	2.22	NA	1000	NE
linc	39	NA	43.1	490	63.2	324	38.4	NA	62.4	8.1	NA	6000	NE
Mercury	<0.164	NA	0.162	<0.181	0.524	<0.177	<0.172	NA	0.182	<0.162	NA	23	NE
Total Petroleum Hydrocarbons (mg/kg)													
otal Petroleum Hydrocarbons	31	<31	1060	954	65	232	75	<31	135	38	<31	500	2500
Volatile Organic Compounds (mg/kg)	< RL	< RL	< RL	< RL	< RL	< RL	< RL	< RL	< RL	NA	< RL	Various	Various

 Cells with this color indicate:
 Cases where a reporting limit is not sufficiently low for evaluating compliance with one or more of the limits provided.

 Cells with this color indicate:
 Cases where the analyte was detected but is within the limits provided.

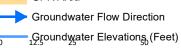
 Cells with this color indicate:
 Cases where the analyte concentration violates one or more of the limits provided. (The violated limits are colored as well.)

<x: Indicates analyte concentration not detected at or above specified laboratory reporting limit (x)



Job #: S4350

Created By: BMD/jpl


Date: 04/13/2023

Legend

Soil & Groundwater Analytical Plan

756 & 770 Lonsdale Avenue Central Falls, Rhode Island

Approximate Soil Boring Location Approximate Soil

100 Feet

Data Provided by RIGIS

Orthoimagery provided by nearmap

Figure 4

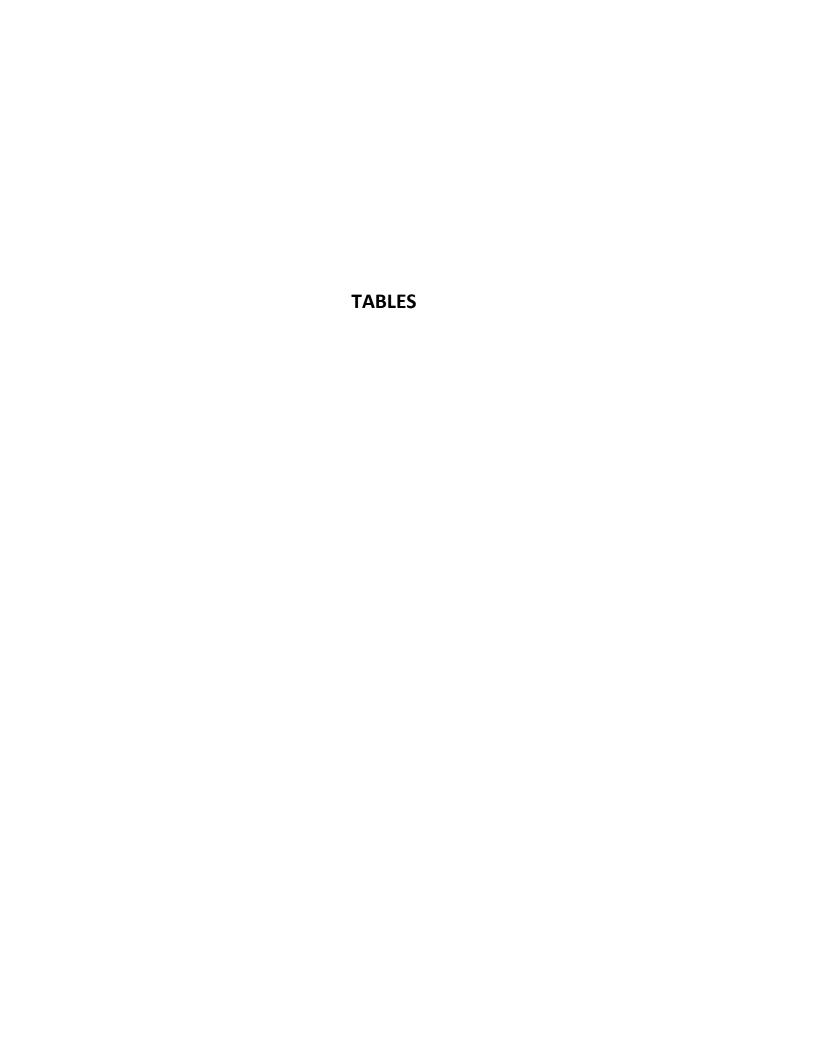


Table 1
TVOV Screening Results

Boring ID	Depth (Feet BSG)	TVOV Result (ppmv)
	0-2*	0.2
	2-5	0.2
SE-101(MW)	5-10	0.1
	10-15	0.2
	15-20	0.2
	0-2	0.2
	2-5	0.3
SE-102(MW)	5-10	0.1
	10-13*	0.2
	15-20	NS
	0-2	0.8
SE 102	2-3*	5.5
SE-103	5-10	2.2
	10-11*	3
	0-2*	0.1
	2-5	0.1
SE-104(MW)	5-10	0
	10-12*	0
	15-20	NS
	0-1*	0.1
	2-5	0.2
SE-105(MW)	5-10	0.1
	10-14*	3.6
	15-20	NS
	0-2*	0.2
	2-5	0.2
SE-106(MW)	5-10	0.1
	10-11*	0.1
	15-18	NS
	0-2	0.3
	2-5	0.1
SE-107	5-10	0.1
	10-15	0.1
	15-17*	0.3

BSG=Below surface grade

ND=Non-detect (<1ppmv)

^{*=}Submitted for laboratory analysis

Table 2 **Summary of Soil Analytical Results** 756 & 770 Lonsdale Avenue, Central Falls, RI

Sample ID (Depth (Feet))/Date	SE-101 (MW) 0-2	SE-102 (MW) 10-13	SE-103 2-3	SE-103 10-11	SE-104 (MW) 0-2	SE-104 (MW) 10-12	SE-105 (MW) 0-1	SE-105 (MW) 10-14	SE-106 (MW) 0-2	SE-106 (MW) 10-11	SE-107 15-17	RIDEM Method 1	RIDEM Method 1
	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	Residential	GB Leachability
	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Direct Exposure Criteria	Criteria
Analyte	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Direct Exposure Criteria	Criteria
emivolatile organic compounds (mg/kg)													
Acenaphthene	<0.133	NA	<1.4	<1.53	0.856	1.08	<0.687	NA	<0.695	<0.138	NA	43	NE
Acenaphthylene	<0.133	NA	<1.4	<1.53	0.738	<0.779	<0.687	NA	< 0.695	<0.138	NA	23	NE
Anthracene	<0.133	NA	<1.4	1.7	2.79	2.62	<0.687	NA	< 0.695	<0.138	NA	35	NE
Benzo(a)anthracene	< 0.133	NA	<1.4	5.88	6.19	6.07	<0.687	NA	< 0.695	<0.138	NA	0.9	NE
Benzo(a)pyrene	0.167	NA	<1.4	5.47	6.5	5.09	< 0.687	NA	< 0.695	<0.138	NA	0.4	NE
Benzo(b)fluoranthene	0.246	NA	<1.4	6.69	7.88	6.11	<0.687	NA	0.802	<0.138	NA	0.9	NE
Benzo(g,h,i)perylene	0.17	NA	<1.4	4.27	5.45	3.18	<0.687	NA	< 0.695	<0.138	NA	0.8	NE
Benzo(k)fluoranthene	<0.133	NA	<1.4	2.42	3	2.04	<0.687	NA	< 0.695	<0.138	NA	0.9	NE
Chrysene	0.154	NA	<1.4	5.76	6.21	7.03	<0.687	NA	<0.695	<0.138	NA	0.4	NE
Dibenz(a,h)anthracene	<0.133	NA	<1.4	<1.53	1.12	<0.779	<0.687	NA	<0.695	<0.138	NA	0.4	NE
Dibenzofuran	<0.133	NA	<1.4	<1.53	<0.695	1.02	<0.687	NA	< 0.695	<0.138	NA	NE	NE
Fluoranthene	0.171	NA	<1.4	9.99	11.1	13.2	0.783	NA	0.945	<0.138	NA	20	NE
Fluorene	<0.133	NA	<1.4	<1.53	0.891	0.998	<0.687	NA	< 0.695	<0.138	NA	28	NE
Indeno(1,2,3-cd)pyrene	0.146	NA	<1.4	3.98	5.21	2.99	<0.687	NA	< 0.695	<0.138	NA	0.9	NE
Naphthalene	< 0.133	NA	<1.4	<1.53	1.38	1.08	<0.687	NA	< 0.695	<0.138	NA	54	NE
Phenanthrene	< 0.133	NA	<1.4	5.71	7.71	16.3	<0.687	NA	< 0.695	<0.138	NA	40	NE
Pyrene	0.235	NA	<1.4	11.8	12.7	18	0.955	NA	1.1	<0.138	NA	13	NE
Total Metals (mg/kg)													
Antimony	<0.75	NA	<0.74	<0.82	<0.75	2.76	<0.72	NA	1.44	<0.78	NA	10	NE
Arsenic	2.27	NA	4.64	10.4	2.29	11.8	3.41	NA	2.26	<1.18	NA	7	NE
Cadmium	0.65	NA	1.25	6	<0.57	11.2	0.96	NA	0.93	<0.59	NA	39	NE
Chromium	6.62	NA	13.3	49.6	8.03	98.3	11	NA	6.35	2.34	NA	NE	NE
Copper	10.5	NA	21.1	302	11.8	198	13	NA	30	3.59	NA	3100	NE
Lead	58.3	NA	29	325	41.2	417	23.1	NA	86.9	3.44	NA	150	NE
Nickel	5.92	NA	8.45	38.3	5.11	74.1	10.1	NA	5.66	2.22	NA	1000	NE
Zinc	39	NA	43.1	490	63.2	324	38.4	NA	62.4	8.1	NA	6000	NE
Mercury	<0.164	NA	0.162	<0.181	0.524	<0.177	<0.172	NA	0.182	<0.162	NA	23	NE
Total Petroleum Hydrocarbons (mg/kg)													
Total Petroleum Hydrocarbons	31	<31	1060	954	65	232	75	<31	135	38	<31	500	2500
Volatile Organic Compounds (mg/kg)	< RL	< RL	< RL	< RL	< RL	< RL	< RL	< RL	< RL	NA	< RL	Various	Various

Cells with this color indicate: Cases where a reporting limit is not sufficiently low for evaluating compliance with one or more of the limits provided.

Cells with this color indicate: Cases where the analyte was detected but is within the limits provided.

Cells with this color indicate: Cases where the analyte concentration violates one or more of the limits provided. (The violated limits are colored as well.)

<x: Indicates analyte concentration not detected at or above specified laboratory reporting limit (x)

NE: Standard not established for this substance

NA: Not analyzed.

Table 3 Groundwater Guaging Log Water Level Measurements/Volume Average Sampling Form

Project Number: S4350	Gauging Instru	ument: IP
Date: 10/28/2022		
Personnel: JRD		

Monitoring Well ID	Well Diameter (inches)	Screened Interval (feet)	Measuring Point	Depth to Product (feet)	Depth to Water (feet)	Depth to Bottom (feet)	Amount to Purge (gallons)	Amount Purged (gallons)	Sample Time	Measuring Point Elevation	Groundwater Elevation	Did Monitoring Well Go Dry?	Odors	Color	Final Turbidity Reading (NTU)
SE-101(MW)	1	10-20	PVC	-	14.62	19.68	0.63	1.5	14:10	103.42	88.8	NO	NO	CLEAR	2.64
SE-102(MW)	1	10-20	PVC	-	12.34	19.29	0.84	2.5	13:50	97.92	85.58	NO	NO	CLEAR	2.77
SE-104(MW)	1	10-20	PVC	-	12.14	19.39	0.9	4.5	14:20	97.4	85.26	NO	NO	CLEAR	3.39
SE-105(MW)	1	10-20	PVC	-	11.81	19.45	0.93	9.5	15:45	97.94	86.13	YES	NO	CLEAR	4.95
SW-106(MW)	1	8-18	PVC	-	13.83	19.41	0.69	6	16:00	102.17	88.34	NO	NO	CLEAR	2.14

Comments:

Notes:

- = No separate-phase petroleum identified

ND = Not Detected

NG = Not Gauged

If turbidity is greater than 5 NTU or visibly turbid, notify the project manager prior to collecting a sample.

Table 4
Summary of Groundwater Analytical Results
756 & 770 Lonsdale Avenue, Central Falls, RI

Sample ID/Date	MW-1 10/20/2022 Sample	SE-101 (MW) 10/28/2022 Sample	SE-102 (MW) 10/28/2022 Sample	SE-104 (MW) 10/28/2022 Sample	SE-105 (MW) 10/28/2022 Sample	SE-106 (MW) 10/28/2022 Sample	RIDEM Method 1 GB Groundwater			
Analyte	Result	Result	Result	Result	Result	Result	Objectives			
Volatile Organic Compounds (ug/l)	/olatile Organic Compounds (ug/l)									
trans-1,2-Dichloroethene	<1	<1	<1	3	<1	<1	2800			
cis-1,2-Dichloroethene	<1	<1	<1	29	<1	<1	2400			
Tetrachloroethene	<1	30	<1	<1	<1	<1	150			

Cells with this color indicate: Cases where the analyte was detected but is within the limits provided.

<x: Indicates analyte concentration not detected at or above specified laboratory reporting limit (x)

LIMITATIONS

- 1. This report was prepared for the exclusive use of The City of Central Falls ("Client"). This report and any findings and conclusions contained therein shall not, in whole or in part, be provided to, used, or relied upon by any other person, firm, entity or governmental agency in whole or in part, without the prior written approval of SAGE. Reliance by any other person, firm, entity, or governmental agency in whole or in part, for any use, without SAGE's prior written approval, shall be at that party's sole risk and without any liability to SAGE.
- 2. This report, and the findings and conclusions contained therein, are based on services provided to Client under the conditions stated herein, pursuant to the agreement between SAGE and Client. Use of this report, in whole or in part, at other locations or for other purposes, without SAGE's prior written approval, will be at Client's sole risk and without any liability to SAGE.
- 3. This report has been prepared in accordance with generally accepted practices. SAGE's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property.
- 4. In preparing this report, SAGE may have relied upon certain information made available by governmental agencies, Client, and/or other persons, firms, or entities. SAGE cannot verify the accuracy or completeness of that information and cannot guarantee or warrant the information provided by non-SAGE sources.
- 5. SAGE does not and cannot represent that a site contains no hazardous material, oil, or other condition beyond that observed by SAGE during its study. Additionally, SAGE does not assume responsibility for limited sampling and explorations, fluctuations in water levels, or the presence of chemical constituents that are not the subject of this investigation and which are not included in the of analyzed parameters for a study.
- 6. The findings and conclusions presented in this report are based solely on the information contained or referenced in this report. If additional environmental or other relevant information that was not made available to SAGE at the time of this report is developed at a later date, Client agrees to promptly bring such information to the attention of SAGE. Upon evaluation of such information, SAGE reserves the right to recommend modification of this report and its findings and conclusions.
- 7. No warranty, express or implied, is made by way of SAGE's performance of services or providing a work product, including but not limited to any warranty with the contents of a report or with any and all work product.

Section 1.20 of the "Remediation Regulations" Site Investigation Report (SIR) Checklist

(The following information shall be completed and submitted with the SIR)

Contact Name: Contact Address: Contact Telephone:	
Site Name: Site Address:	

OFFICE USE ONLY

SITE INVESTIGATION REPORT (SIR) SITE:

PROJECT CODE:

SIR SUBMITTAL DATE:

CHECKLIST SUBMITTAL DATE:

DIRECTIONS: The box to the left of each item listed below is for the administrative review of the SIR submission and is for **RIDEM USE ONLY**. Under each item listed below, cross-reference the specific sections and pages in the SIR that provide detailed information that addresses each stated requirement. Failure to include cross-references may delay review and approval. If an item is not applicable, simply state that it is not applicable and provide an explanation in the SIR.

- 1.8.3(A)(1) List specific objectives of the SIR related to characterization of the Release, impacts of the Release and remedy.
- 1.8.3(A)(2) Include information reported in the Notification of Release. A copy of the Release notification form should be included in the SIR. Include information relating to short-term response, if applicable.
- 1.8.3(A)(3) Include documentation of any past incidents or Releases.
- 1.8.3(A)(4) Include list of prior property Owners and Operators, as well as sequencing of property transfers and time periods of occupancy.
- 1.8.3(A)(5) Include previously existing environmental information which characterizes the Contaminated-Site and all information that led to the discovery of the Contaminated-Site.
- 1.8.3(A)(6) Include current uses and zoning of the Contaminated-Site, including brief statements of operations, processes employed, waste generated, Hazardous Materials handled, and any residential activities on the site, if applicable. (This section should be linked to the specific objectives section demonstrating how the compounds of concern in the investigation are

those that are used or may have been used on the site or are those that may have impacted the site from an off-site source.)

1.8.3(A)(7) Include a locus map showing the location of the site using US Geological Survey 7.5-min quadrangle map or a copy of a section of that USGS map.

1.8.3(A)(8)	Include a	site plan.	to scale.	showing:

Buildings

Activities

Structures

North Arrow

Wells

UIC Systems, septic tanks, UST, piping and other underground structures

Outdoor Hazardous Materials storage and handling areas

Extent of paved areas

Location of environmental samples previously taken with analytical results

Waste management and disposal areas

Property Lines

1.8.3(A)(9) Include a general characterization of the property surrounding the area including, but not limited to:

Location and distance to any surface water bodies within 500 ft of the site.

Location and distance to any Environmentally Sensitive Areas within 500 ft of the site.

Actual sources of potable water for all properties immediately abutting the site.

Location and distance to all public water supplies, which have been active within the previous 2 years and within one mile of the site.

Determination as to whether the Release impacts any off-site area utilized for residential or industrial/commercial property or both.

Determination of the underlying groundwater classification and if the classification is GB, the distance to the nearest GA area.

- 1.8.3(A)(10) Include classifications of surface and ground water at and surrounding the site that could be impacted by a Release.
- 1.8.3(A)(11) Include a description of the contamination from the Release, including:

Free liquids on the surface

LNAPL and DNAPL

Concentrations of Hazardous Substances which can be shown to present an actual or potential threat to human health and any concentrations in excess of any of the remedial objectives (reference Section 1.13)

Impact to Environmentally Sensitive Areas

Contamination of man-made structures

Odors or stained soil

Stressed vegetation

Presence of excavated or stockpiled material and an estimate of its total volume

Environmental sampling locations, procedures and copies of the results of any analytical testing at the site

List of Hazardous Substances at the site

Discuss if the contamination falls outside of the jurisdiction of the Remediation Regulations, including but not limited to USTs, UICs, and wetlands.

1.8.3(A)(12) Include the concentration gradients of Hazardous Substances throughout the site for each media impacted by the Release.

- 1.8.3(A)(13) Include the methodology and results of any investigation conducted to determine background concentrations of Hazardous Substances identified at the Contaminated-Site (see Section 1.13).
- 1.8.3(A)(14) Include a listing and evaluation of the site specific hydrogeological properties which could influence the migration of Hazardous Substances throughout and away from the site, including but not limited to, where appropriate:

Depth to GW

Presence and effects of both the natural and man-made barriers to and conduits for contaminant migration

Characterization of bedrock

Groundwater contours, flow rates and gradients throughout the site

- 1.8.3(A)(15) Include a characterization of the topography, surface water and run-off flow patterns, including the flooding potential, of the site.
- 1.8.3(A)(16) Include the potential for Hazardous Substances from the site to volatilize and any and all potential impacts of the volatilization to structures within the site.
- 1.8.3(A)(17) Include the potential for entrainment of Hazardous Substances from the site by wind or erosion actions.
- 1.8.3(A)(18) Include detailed protocols for all fate and transport models used in the Site Investigation.
- 1.8.3(A)(19) Include a complete list of all samples taken, the location of all samples, parameters tested for and analytical methods used during the Site Investigation. (Be sure to include the samples locations and analytical results on a site figure).
- 1.8.3(A)(20) Include construction plans and development procedures for all monitoring wells. Well construction shall be consistent with the requirements of the Groundwater Quality Rules.
- 1.8.3(A)(21) Include procedures for the handling, storage and disposal of wastes derived from and during the investigation.

- 1.8.3(A)(22) Include a quality assurance and quality control evaluation summary report for sample handling and analytical procedures, including, but not limited to, chain-of-custody procedures and sample preservation techniques.
- 1.8.3(A)(23) Include any other site-specific factor, that the Director believes, is necessary to make an accurate decision as to the appropriate Remedial Action to be taken at the site.
- 1.8.4 Include Remedial Alternatives. The Site Investigation Report shall contain a minimum of **TWO** (2) remedial alternatives other than no action/natural attenuation alternative, unless this requirement is waived by the Department. It should be clear which of these alternatives is most preferable. All alternatives shall be supported by relevant data contained in the Site Investigation Report and consistent with the current and reasonably forseeable land usage, and documentation of the following:
 - Compliance with Section 1.9 (RISK MANGEMENT);
 - Technical feasibility of the preferred remedial alternative;
 - Compliance with federal, state and local laws or other public concerns; and
 - The ability of the Performing Party to perform the preferred remedial alternative.
- 1.8.5 **Certification Requirements:** The Site Investigation Report and all associated progress reports shall include the following statements signed by an authorized representative of the party specified:
 - A statement signed by an authorized representative of the Person who prepared the Site Investigation Report certifying the completeness and accuracy of the information contained in that report to the best of their knowledge; and
 - A statement signed by the Performing Party responsible for the submittal of the Site Investigation Report certifying that the report is a complete and accurate representation of the site and the Release and contains all known facts surrounding the Release to the best of their knowledge.
- 1.8.6 **Progress Reports:** If the Site Investigation is not complete, include a schedule for the submission of periodic progress reports on the status of the investigation and interim reports on any milestones achieved in the project.
- **Public Involvement and Notice:** Be prepared to implement public notice requirements per Sections 1.8.7 and 1.8.9 of the Remediation Regulations when the Department deems the Site Investigation Report to be complete.
 - Indicate if the site falls within an Environmental Justice (EJ) area and, if applicable, include all EJ public notice documentation issued, and the list of recipients.

Office of Land Revitalization & Sustainable Materials Management Site Remediation Section

HAZARDOUS MATERIAL RELEASE NOTIFICATION FORM

THIS FORM IS NOT TO BE USED TO REPORT AN IMMINENT HAZARD

۱.	Notifier Informa	tion:											
	Name: Lacy	Reyna, SAGE Environmental, Inc.											
	Address: 30	Address: 301 Friendship Street, Providence, RI 02903											
	Phone: 401-	Phone: 401-723-9900											
	Email: LRey	na@sage-enviro.com											
	Status:	Environmental ProfessionalOwner	Secured CreditorVoluntary										
		Operator											
	If Environmental	Professional is selected, please supply the	e follow information for your client below:										
	Name: City o	f Central Falls, RI - Contact: Thomas E. D omic Development	eller, AICP - Director of the Department of Planning and										
	Address: 128	Address: 1280 High Street, Central Falls, RI 02863											
	Phone: 401-6	Phone: 401-616-2481											
	Email: tdelle	Email: tdeller@centralfallsri.us											
	Status:	X Owner☐ Operator	☐ Secured Creditor ☐ Voluntary										
2.	Property Inform	ation:											
	Name of Site	: International Meat Market											
		756 & 770 Lonsdale Avenue											
		abers: Assessor's Plat 9, Lots 26 & 203											
		Approximate Acreage of Property: 0.68 of an acre Latitude/Longitude: 41.886393, -71.401781											
			▼ Industrial/Communical										
	Site Land Us		▼ Industrial/Commercial										
		Release (Attach site sketch as necessary): ated to soil - VOC detections in groundw ched hereto.	rater were below the GB Groundwater Objectives. Site plan and										
3.	Release Informa	Release Information:											
	Date of Disco	overy: October 2022											

Source: Historical Filling Activities

	Release Media: Soil	Release Media: Soil							
	Hazardous Materials and Concer	ntrations (Attach certificates of anal	ysis as necessary):						
	Information attached.								
	Extent of Contamination: Contained to Site.								
	Approximate acreage of Contam	inated Area: 0.68 of an acre							
4.	Resource Information:								
	Site Land Usage:	X Industrial/Commercial	Residential						
	Adjacent Land Usage:	X Industrial/Commercial	X Residential						
	Site Groundwater Class:	☐ GA/GAA	▼ GB						
	Adjacent Groundwater Class: (if different than site groundwater classif	GA/GAA ication within 500 feet)	▼ GB						
	Nearest Surface Water or Wetlan	nd: Less Than 500 Feet	Greater Than 500 Feet						
	Potential for adverse impact	? Yes X	No						
5.	Potentially Responsible Parties:								
	Name: City of Central Falls, RI								
	Address: 1280 High Street, Cent	ral Falls, RI 02863							
	Status: X Owner C	Operator							
	Name:								
	Address:								
	Status: Owner	Operator							
6.	Measures taken or proposed to be	taken in response to Release:							
	Future actions include site-wide cap depressurization system.	ping, vapor barrier placement, and	d installation/operation of a passive sub-slab						
	Check all that apply:	ite Investigation Short-Ter	m/Emergency						
	☐ F	EXPRESS Policy Dig & Ha	aul Policy						
7.	Other significant remarks about R	elease (Will a background determ	nination be made?)						
	The Site is anticipated for redevelop Environmental Justice Area.	oment as a school along with the w	vesterly adjacent parcel. The Site is also in an						
		01	/11/2023						
	Signature: Lacy Reyna	Date:	/11/2023						
	Title Environmental Scientist								

235 Promenade Street, Providence, Rhode Island 02908

LETTER OF RESPONSIBILITY File No. SR-04-2061 B January 19, 2023

CERTIFIED MAIL

Thomas E. Deller, AICP
Director of the Department of Planning and Economic Development
City of Central Falls
580 Broad Street
Central Falls, RI 02863

RE: International Meat Market 756 & 770 Lonsdale Avenue Central Falls, Rhode Island Plat Map 6 / Lots 26 & 203

Dear Mr. Deller:

On April 22, 2020, the Rhode Island Department of Environmental Management's (the Department) Office of Land Revitalization and Sustainable Materials Management (LRSMM) enacted the codified 250-RICR-140-30-1, Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (the Remediation Regulations). The purpose of these regulations is to create an integrated program requiring reporting, investigation, and remediation of contaminated sites in order to eliminate and/or control threats to human health and the environment in a timely and cost-effective manner. A Letter of Responsibility (LOR) is a preliminary document used by the Department to codify and define the relationship between the Department and a Performing Party.

Please be advised of the following facts:

- 1. The above referenced property is located at 756 & 770 Lonsdale Avenue, Central Falls, Rhode Island (the Site). The Site is further identified by the City of Central Falls Tax Assessor's Office as Plat Map 6 / Lots 26 & 203.
- 2. The Department is in receipt of the following document:
 - a. <u>Release Notification Package</u>, received by the Department on January 11, 2023, and prepared by SAGE Environmental, Inc. (SAGE)
- 3. The above referenced document identifies concentrations of polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPHs), and metals, specifically arsenic and lead, in Site soils that exceed the Department's Method 1 Direct Exposure Criteria, as referenced in

the <u>Remediation Regulations</u>.

- 4. Based on the presence and nature of these Hazardous Substances and petroleum hydrocarbons, the Department concurs that a Release of Hazardous Materials has occurred as defined by Sections 1.4(A)(33), 1.4(A)(34), 1.4(A)(59), and 1.4(A)(63) of the <u>Remediation Regulations</u>.
- 5. The City of Central Falls is identified as the current owner of the Site by the City of Central Falls Tax Assessor's office and as such is a Responsible Party as defined by Section 1.4(A)(70) of the Remediation Regulations.

As a result of the information known and the conditions observed at the site, the Department requests that the City of Central Falls comply with the following:

1. If necessary, prior to the implementation of any additional site investigation field activities and in accordance with Section 1.8.7(A)(1) of the <u>Remediation Regulations</u>, the City of Central Falls must notify all abutting property owners, tenants, easement holders, and the municipality that an investigation is about to occur. The notice should briefly indicate the purpose of the investigation, the work to be performed, and the approximate scheduled dates of activities. Please submit a draft notification to the Department via E-mail for review and approval prior to distribution. A boilerplate notification to be distributed can be found online at: https://dem.ri.gov/environmental-protection-bureau/land-revitalization-and-sustainable-materials-management/state-4.

The Department will require a copy of the public notice letter and a list of all recipients. Failure to comply with the aforementioned items may result in enforcement actions as specified in Rhode Island General Laws 23-19.1-17 and 23-19.1-18.

- **2.** Ensure that the requirements of Rhode Island General Law (RIGL), Title 23, *Health and Safety*, Chapter 23-19.14, *Industrial Property Remediation and Reuse Act*, Section 23-19.14-5, *Environmental Equity and Public Participation*, have been fulfilled. A copy of this section of the RIGL and an outline highlighting the requirements to be performed by the Performing Party under this policy have been attached for your reference. Please note that all materials issued, as part of public notice will be required to be distributed in English and in the predominant language of the area surrounding the Site. Environmental Justice Area public notice requirements and documents to be distributed can be found online at https://dem.ri.gov/environmental-protection-bureau/land-revitalization-and-sustainable-materials-management/environment-justice.
- 3. Ensure that the requirements of Rhode Island General Law (RIGL), Title 23, Health and Safety, Chapter 23-19.14, Industrial Property Remediation and Reuse Act, Section 23-19.14-5, Environmental Equity and Public Participation, have been fulfilled. A copy of this section of the RIGL has been attached for your reference. In accordance with the Industrial Property Remediation and Reuse Act, prior to the establishment of a final scope of investigation for the Site, and after the completion of All Appropriate Inquiries (AAI), hold a public meeting for the purposes of obtaining information about conditions at the Site and the environmental history at the Site that may be useful in establishing the scope

of the investigation and/or establishing the objectives for the environmental clean-up of the Site.

- a. The public meeting shall be held in the City or Town in which the Site is located.
- b. Public notice shall be given of the meeting at least ten (10) business days prior to the meeting.
- c. Following the meeting, the record of the meeting shall be open for a period of not less than ten (10) and not more than twenty (20) business days for the receipt of public comment.
- d. The results of all appropriate inquiries, analysis, and the public meeting, including the comment period and responses to all comments received, shall be documented in a written report submitted to the Department.

No work (remediation or construction) shall be permitted at the property until the public meeting and comment period regarding the Site's proposed reuse has closed. The above detailed required public notice, meeting and comment period shall be in addition to any other requirements for public notice and comment relating to the investigation or remedy of the Site and may be part of another meeting pertaining to the Site provided that the minimum standards established by RIGL Section 23-19.14-5 for notice and comment are met.

- 4. Additionally, ensure that the requirements of RIGL Title 23, *Health and Safety*, Chapter 23-19.14, *Industrial Property Remediation and Reuse Act*, Section 23-19.14-4, *Objectives of Environmental Clean-Up* have been met. A copy of this section of the RIGL has been attached for your reference. The requirements of the Objectives of Environmental Clean-Up statute, include, but are not limited to the following:
 - a. Thirty (30) days prior to final selection of the location for construction or leasing the building, the project sponsor must complete the following public notice requirements with ten (10) days prior written notice to the public of each measure:
 - I. Prepare and post on the sponsor's website that:
 - a. Projects project costs;
 - b. Projects the time period required to complete the project; and
 - c. Discusses the rationale for selecting the property.
 - II. Solicit written comments on the abovementioned report for a period of thirty (30) days and conduct a public hearing within that thirty (30) days for public comment; and
 - III. Prepare a second report summarizing and responding to the public comments received and post said second report on the sponsor's website.
 - b. The site investigation shall include analysis for the chemicals of potential concern for vapor intrusion. The list of chemicals of potential concern for vapor intrusion is attached for your reference;
 - c. Remediate the soils where chemicals of potential concern for vapor intrusion or petroleum exceed the residential direct exposure criteria through the physical removal of said chemicals or petroleum through excavation or in situ treatment; and
 - d. Equip the school building with both a passive sub slab ventilation system capable of

conversion to an active system and a vapor barrier beneath the school building or incorporated in the concrete slab, all in compliance with an approved Department Remedial Action Work Plan (RAWP) and completed prior to the occupancy of the school;

- 5. Conduct further investigation of the Site soil and groundwater, if warranted, in accordance with Section 1.8 of the Remediation Regulations.
- 6. Upon completion of the additional site investigation submit a Site Investigation Report (SIR) in accordance with Section 1.8 of the <u>Remediation Regulations</u> within ninety (90) days from the date of this letter. Given that some limited environmental investigation has already been performed at the Site, you may incorporate portions of the information already gathered and work already performed to address the items covered in Section 1.8. The SIR should include at least two remedial alternatives other than no action/natural attenuation and include future plans for the re-use or redevelopment (if applicable) of the property.
- 7. Submit an SIR checklist in accordance with Section 1.8.8 of the <u>Remediation Regulations</u>. The SIR checklist was created as a supplemental tool to expedite the review and approval process by cross-referencing the specific sections and pages within the SIR that provide the detailed information that addresses each stated requirement within Section 1.20 of the <u>Remediation Regulations</u>.
- 8. Upon approval by the Department of the SIR, be prepared to bring the Site into compliance with the <u>Remediation Regulations</u>.

Please be advised that the City of Central Falls, as the Responsible Party, is responsible for the proper investigation and remediation of hazardous substances and petroleum hydrocarbons at this site. Also be advised that any remedial alternative that proposes to leave contaminated media on-site at levels which exceed the Department's Residential Direct Exposure Criteria, applicable Leachability Criteria, or applicable Groundwater Criteria will, at a minimum, necessitate the recording of an institutional control in the form of an Environmental Land Usage Restriction (ELUR) on the deed for the site, and will likely require implementation of additional engineered controls to restrict human exposure.

Please notify this office within seven days of the receipt of this letter of your plans to address these items. All correspondences should be sent to the attention of:

Joanna Pawlina
RIDEM / Office of Land Revitalization and Sustainable Materials Management
235 Promenade Street
Providence, RI 02908

If you have any questions regarding this letter or would like the opportunity to meet with Department personnel, please contact me by telephone at (401) 222-2797 ext. 2777117, or by E-mail at Joanna.Pawlina@dem.ri.gov.

Sincerely,

Joanna Pawlina

Environmental Scientist

J. Pawlina

Office of Land Revitalization &

Sustainable Materials Management

cc: Kelly Owens, RIDEM/LRSMM

Ashley Blauvelt, RIDEM/LRSMM

Rachel Simpson, RIDEM/LRSMM

Jacob Butterworth, SAGE Environmental Inc.

Lacy Reyna, SAGE Environmental Inc.

756 Lonsdale Ave756 Lonsdale AveCentral Falls, RI 02863

Inquiry Number: 7119363.3

September 16, 2022

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Certified Sanborn® Map Report

09/16/22

Site Name: Client Name:

756 Lonsdale Ave Sage Environmental, Inc.
756 Lonsdale Ave 301 Friendship St
Central Falls, RI 02863 Providence, RI 02903
EDR Inquiry # 7119363.3 Contact: Kirsten Andersen

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Sage Environmental, Inc. were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 489D-4D4A-95AB

PO# NA

Project S4350

Maps Provided:

1984

1949

1923

1902

1890

Sanborn® Library search results

Certification #: 489D-4D4A-95AB

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

✓ Library of Congress

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Sage Environmental, Inc. (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2022 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

page 2

Sanborn Sheet Key

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1984 Source Sheets

Volume 2, Sheet 264 1984

Volume 2, Sheet 265 1984

Volume 2, Sheet 274 1984

Volume 2, Sheet 276 1984

1949 Source Sheets

Volume 2, Sheet 264 1949

Volume 2, Sheet 265 1949

Volume 2, Sheet 274 1949

Volume 2, Sheet 276 1949

1923 Source Sheets

Volume 2, Sheet 264 1923

Volume 2, Sheet 265 1923

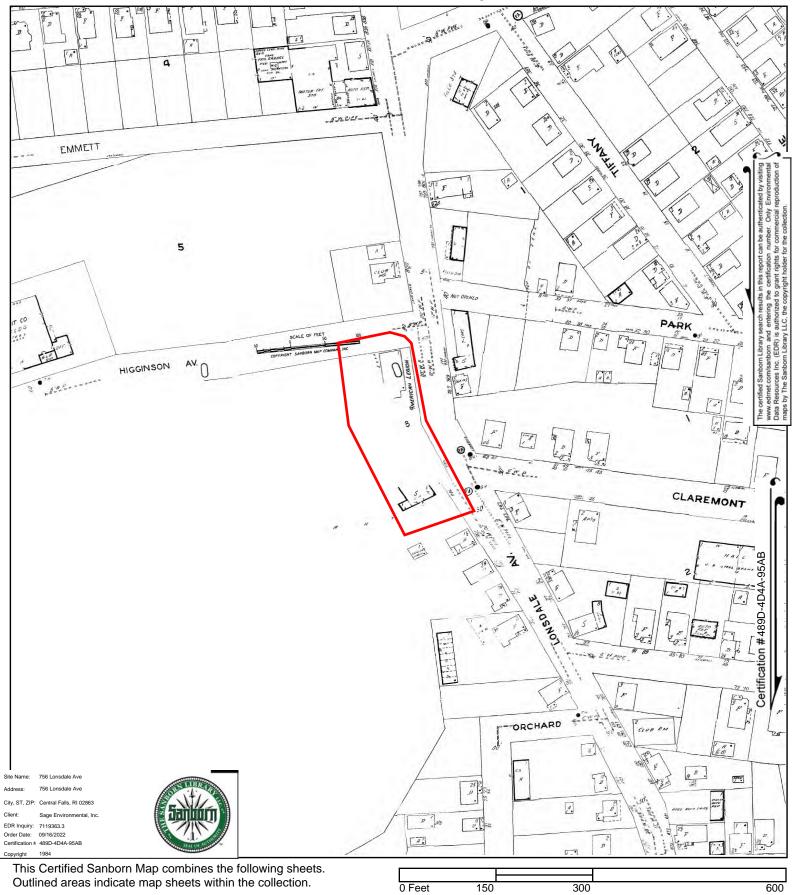
Volume 2, Sheet 276 1923

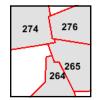
1902 Source Sheets

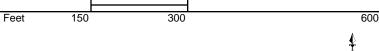
Volume 1, Sheet 68 1902

Sanborn Sheet Key

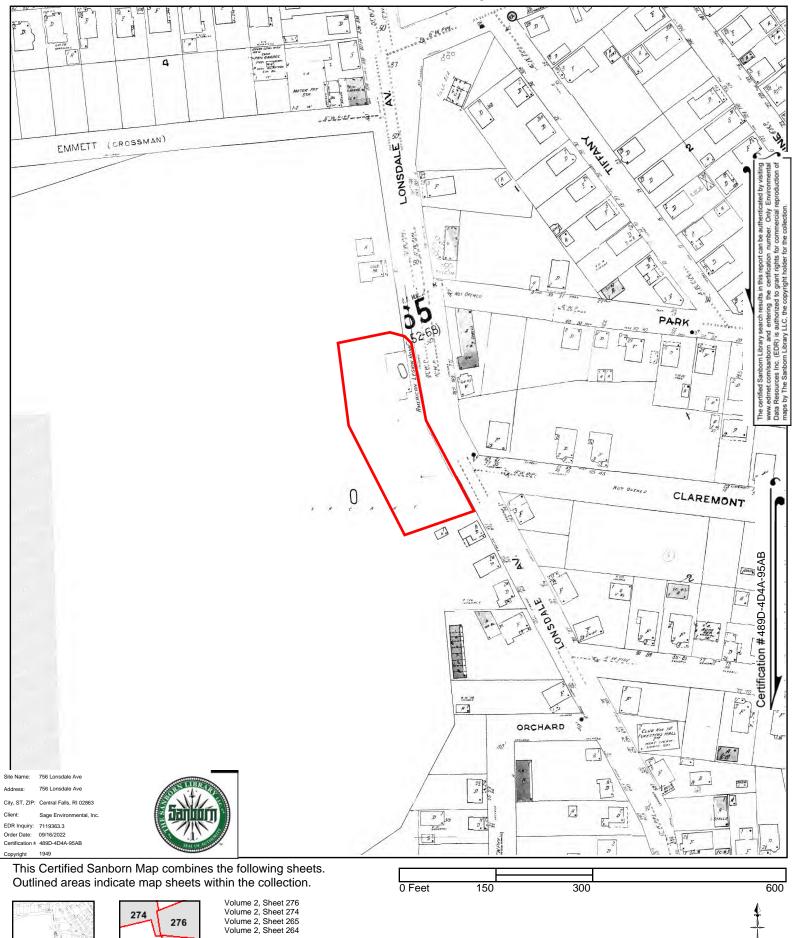
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.


1890 Source Sheets

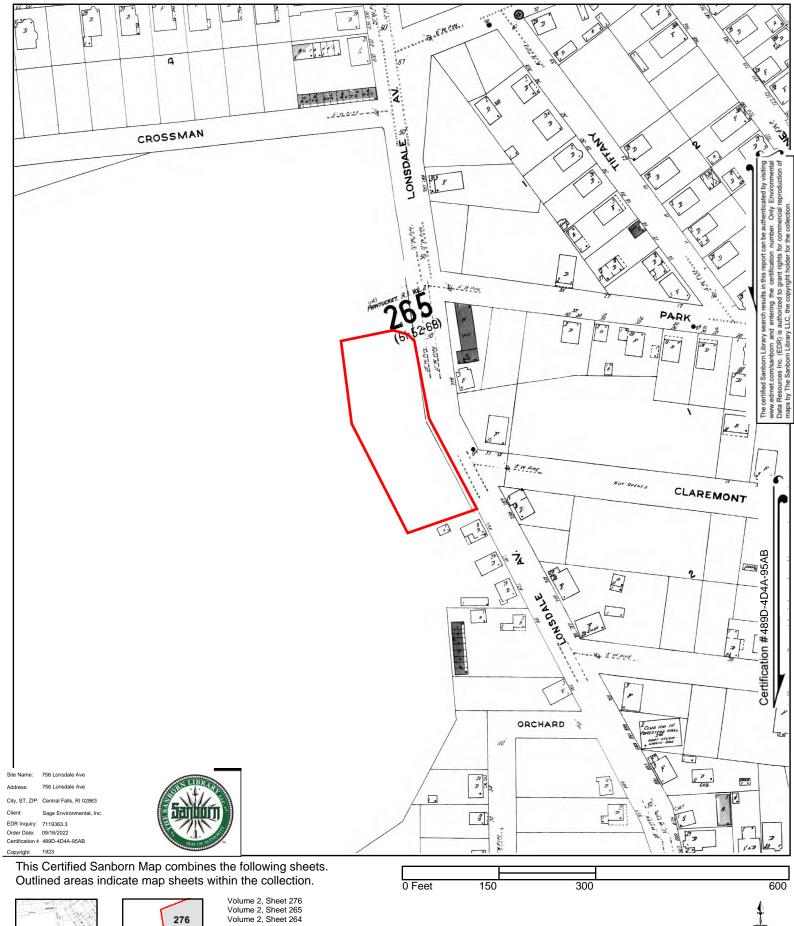

Volume 1, Sheet 28 1890



Volume 2, Sheet 276 Volume 2, Sheet 274 Volume 2, Sheet 265 Volume 2, Sheet 264

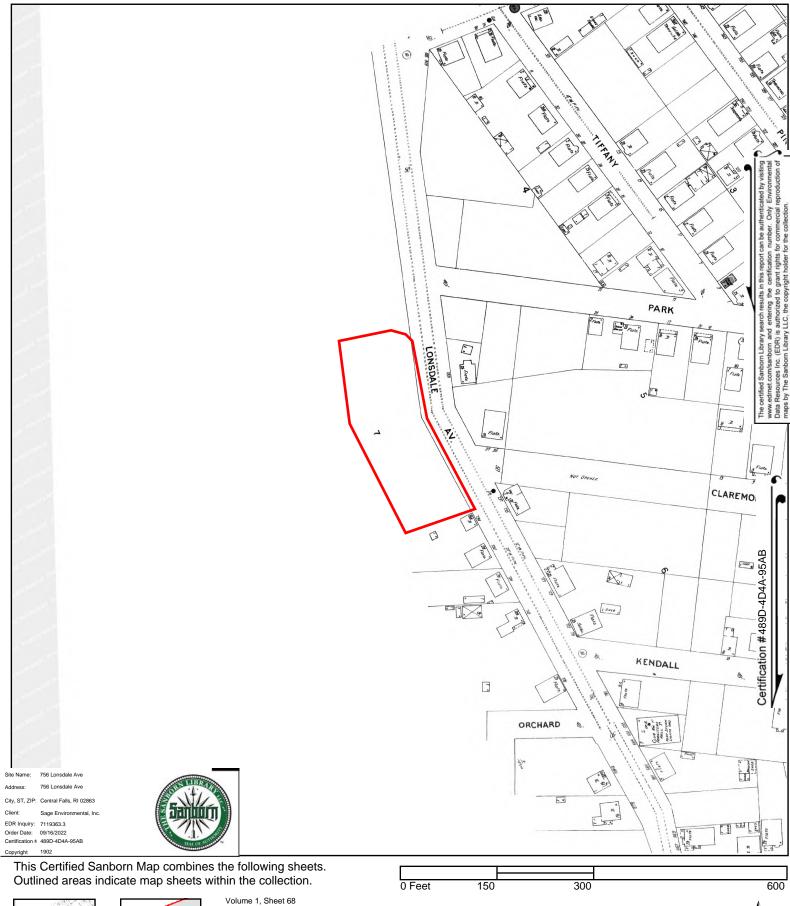


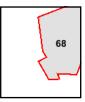
7119363 - 3

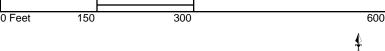


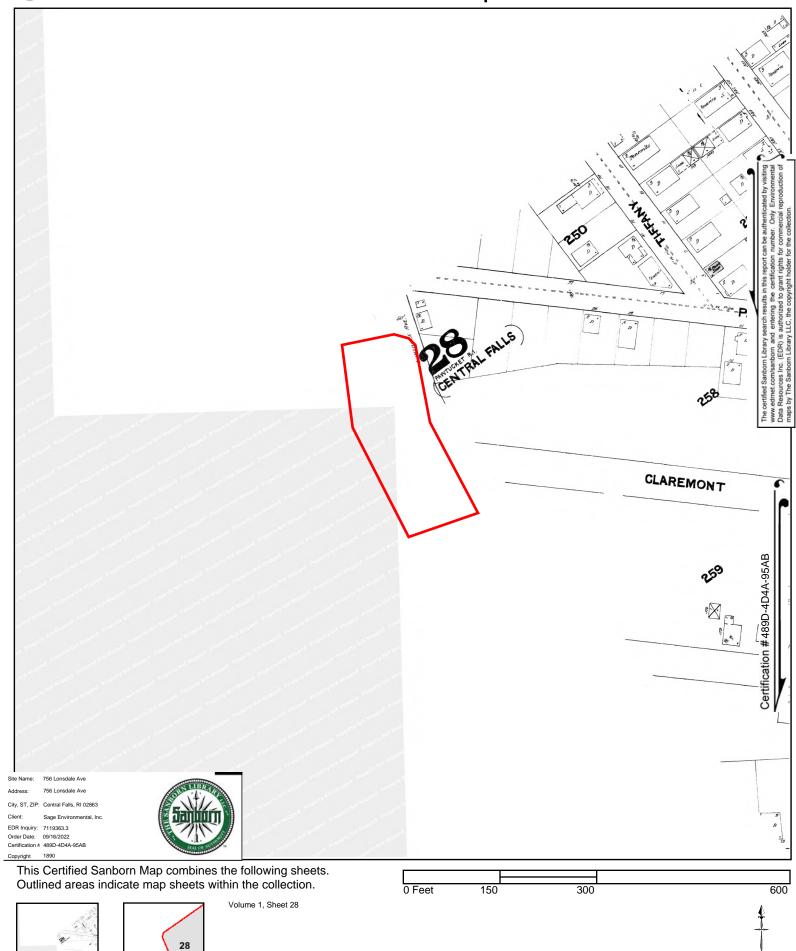
7119363 - 3

page 6









7119363 - 3

page 9

756 Lonsdale Ave

756 Lonsdale Ave Central Falls, RI 02863

Inquiry Number: 7119363.9

September 16, 2022

The EDR-City Directory Image Report

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business.

Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Report includes a search of available city directory data at 5 year intervals.

RECORD SOURCES

EDR's Digital Archive combines historical directory listings from sources such as Cole Information and Dun & Brad street. These standard sources of property information complement and enhance each other to provide a more comprehensive report.

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer. Reproduction of City Directories without permission of the publisher or licensed vendor may be a violation of copyright.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. A check mark indicates where information was identified in the source and provided in this report.

<u>Year</u>	Target Street	Cross Street	<u>Source</u>
2017	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
2014	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
2010	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
2005	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
2000	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
1995	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
1992	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
1989	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1984	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1979	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1974	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1971	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1966	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1961	$\overline{\checkmark}$	$\overline{\checkmark}$	Polk's City Directory
1957	$\overline{\checkmark}$		Polk's City Directory
1953	$\overline{\checkmark}$		Polk's City Directory
1948	$\overline{\checkmark}$		Polk's City Directory
1943	$\overline{\checkmark}$		Polk's City Directory
1938	$\overline{\checkmark}$		Polk's City Directory

EXECUTIVE SUMMARY

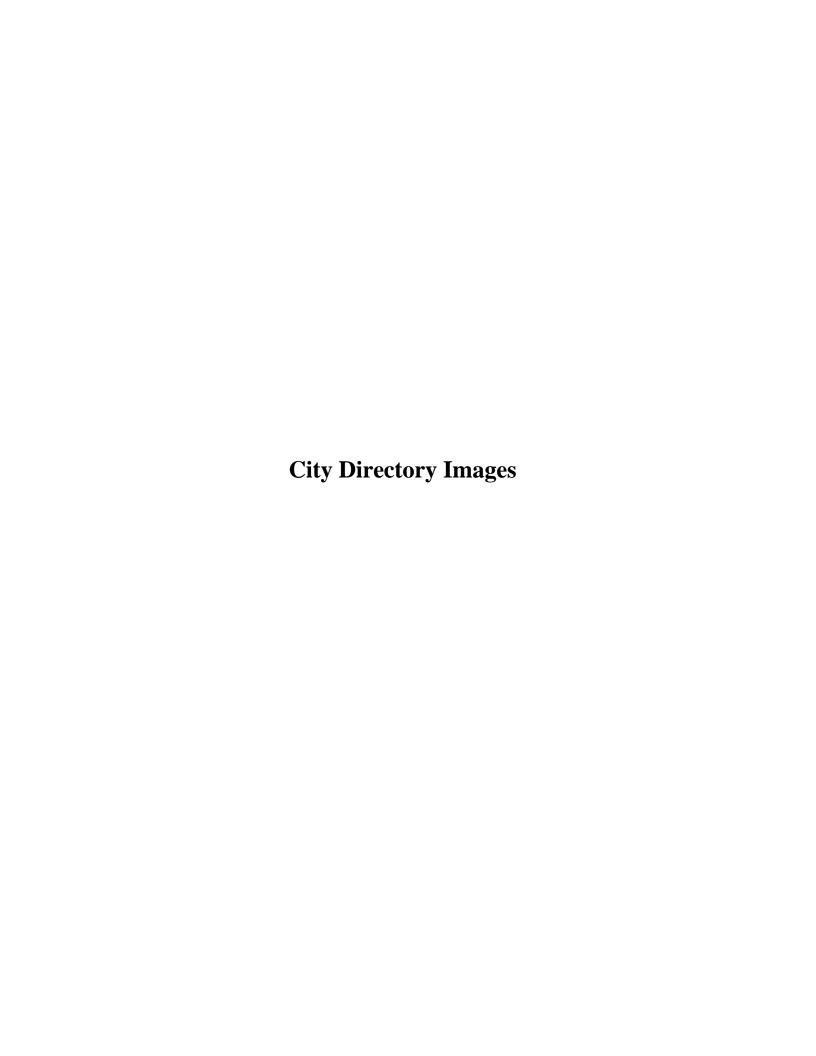
Year Target Street Cross Street Source

FINDINGS

TARGET PROPERTY STREET

756 Lonsdale Ave Central Falls, RI 02863

<u>Year</u>	<u>CD Image</u>	<u>Source</u>
LONSDALE AV	<u>E</u>	
2017	pg A2	EDR Digital Archive
2014	pg A7	EDR Digital Archive
2010	pg A13	EDR Digital Archive
2005	pg A19	EDR Digital Archive
2000	pg A25	EDR Digital Archive
1995	pg A30	EDR Digital Archive
1992	pg A34	EDR Digital Archive
1989	pg A38	Polk's City Directory
1984	pg A40	Polk's City Directory
1979	pg A42	Polk's City Directory
1974	pg A44	Polk's City Directory
1971	pg A46	Polk's City Directory
1971	pg A47	Polk's City Directory
1966	pg A49	Polk's City Directory
1961	pg A51	Polk's City Directory
1957	pg A52	Polk's City Directory
1953	pg A53	Polk's City Directory
1948	pg A54	Polk's City Directory
1943	pg A55	Polk's City Directory
1938	pg A56	Polk's City Directory


7119363-9 Page 3

FINDINGS

CROSS STREETS

<u>Year</u>	<u>CD Image</u>	Source	
HIGGINSON A	<u>VE</u>		
2017	pg. A1	EDR Digital Archive	
2014	pg.A6	EDR Digital Archive	
2010	pg. A12	EDR Digital Archive	
2005	pg. A18	EDR Digital Archive	
2000	pg. A24	EDR Digital Archive	
1995	pg. A29	EDR Digital Archive	
1992	pg. A33	EDR Digital Archive	
1989	pg. A37	Polk's City Directory	
1984	pg. A39	Polk's City Directory	
1979	pg. A41	Polk's City Directory	
1974	pg. A43	Polk's City Directory	
1971	pg. A45	Polk's City Directory	
1966	pg. A48	Polk's City Directory	
1961	pg. A50	Polk's City Directory	
1957	-	Polk's City Directory	Street not listed in Source
1953	-	Polk's City Directory	Street not listed in Source
1948	-	Polk's City Directory	Street not listed in Source
1943	-	Polk's City Directory	Street not listed in Source
1938	-	Polk's City Directory	Street not listed in Source

7119363-9 Page 4

HIGGINSON AVE 2017

33 40	WHITTETHIGGINGS CO HORIZON FORM & AGREEMENT
TU	HORLEST ORM & MORLEMENT

LONSDALE AVE 2017

	LONSDALE AVE ZUIT
534	SILVA, WILLIAM
536	SILVA AGENCY
546	LAMAS, MARIA M
556	RIVERA, TYNTHIA
560	DELEON, ELMER O
	FULBRIGHT, ED B
	IBIKUNLE, ATKINS I
	OCONNOR, BONNIE L
	POMALES, ZORAIDA
	WHITAKER, DEVAN
564	LEMUS, NATALY
576	BOTELHO, ANA
580	IBANEZ, MARIO R
	PENA, LUZ D
	REYES, WENDY
586	NGUYEN, HAN
000	SANTOS, VENANCIO D
590	BASILE, CAROL
000	BOURDEAU, CHRISTINA
	JEFFERIES, BRENDA
	OGANDO, SALVADOR J
595	J R TIRE SHOP LLC
597	CONTROL HARDWOOD FLOOR INC
391	J R INSTALLATIONS
601	CHIQUI AUTO SALES & MUFFLER INC
602	
606	DEPINA, ALICE
000	ANDRADE, ADILSO
040	FURTADO, DANIEL
610	FERNANDES, SORAIA H
611	MENDES, MARIA P
616	ENCARNACION, GLENNYS
	KIEPEA, CHRIS
040	VALERA, DULEIDY
618	DIAZ, JEREMY
623	ROBIN, ALEX
626	SALAKO, DANIEL O
	SALAKO, KUDIRAT
627	CENTRAL FALLS LOCK MASTER
	GARCIA, ZULMA D
633	APONTE, JOVANY
	AVILES, ARAMIS
	COELHO, FERNANDO M
	LUGO, CHRISTIAN M
645	CHINCHILLA, GUALFRE
	TRIGO, FRANCISCO
646	SEGURA, ANDY
650	TAVERAS, MARTHA
656	AGUILAR, EDWIN
	ALVADADO ILICTINIANO
	ALVARADO, JUSTINIANO

65	,
	CAMARA, VERONICA
	FARIA, JASON B
	LAVALLEE, KELLY L
	TORRES, MARCELINO
67	·
	CABRALPATINO, LUZA
	CRUZ, AIDA
67	·
67	, , , , , , , , , , , , , , , , , , ,
67	
68	, , , , , , , , , , , , , , , , , , ,
70	5 BRITO, JOAO
	DOSTSANTOS, ADRIEL
	RODRIGUES, SONIA
71	0 DEIBANEZ, ANA
	ESPINOSA, EUGENIO
72	0 BETTERS, ELIZABETH
	CLOUTIER, DENISE M
	FELICIDADE, MARIA
	GARCIA, JOSE P
	NAVARRO, JOSE
	NUNES, JOAO
72	5 FRANCO, BRIANDA
72	6 BARRIENTOS, SHANNA
73	8 ANKOMA, BAFFOUR
75	6 INTERNATIONAL MEAT MARKET
76	9 GARANT, GARY R
77	3 BEST EASTERN RESTAURANT
79	1 CENTRAL FALLS EXPERT LOCKSMITH
	EL SALVADORENO RESTAURANT
	GONZALEZ, HECTOR
	OLDETIME DONUT
	PENDERGRASS, EDWARD
80	0 BURGER KING
81	9 LONSDALE AUTO REPAIR INC
82	4 B & L AUTO SALES
83	8 CHEVIS, DARRELL
84	0 DELGADO, TEODORA
	TEIXEIRA, CASSANDRA
85	1 LOPES, HILARIO
85	3 LOPES, MANUEL
85	9 LIMA, DERRICK
	TEIXEIRA, HUGO
86	O GOMES, JOHN S
86	1 FIGUEREO, NURYS
	GIBBS, MARCUS
	MARTIN, SHANE
	MICROULIS, RYAN
86	
	·

	(
000	OAMBOO LUIO B
863	CAMPOS, LUIS D
868	CARPENTER, SHALIMAR
	MOORE, TODD
	SOSTLE, BEVERLY
	TORRES, LEISHLA
	WATSON, LYNN
869	LEWIS, DAVID K
871	ARIAS, CRISTINA
872	GIBAO, PAULO P
873	BAPTISTA, ANTONIO F
	SALVATORI, JOANNE
	TRAN, HUNG C
874	ROCHA, MARIA
875	ROSA, JOSE S
876	MERCADO, KEISHA
881	DEPINA, FLAVIO B
884	24 HR EMERGENCY LOCKSMITH
	ALISSON & KEVINS HAIR SALON
	FAST CENTRAL FALLS LOCKSMITH
901	HOLY SPIRIT PARISH
904	XELAPAN BAKERY
918	DELACRUZ, DENNY
922	FERNANDES, ALEIDE
	FERNANDEZ, CARLOS A
	LAKPOR, MARTIN A
963	RUIZ, EDGAR M
969	ARCHILA, CLAUDIA M
978	MOSHASSUCK CEMETERY & CREMATORY
991	CARIGNAN, SHANE D
	FARRELL, ANN
995	CAMARA, ROBIN L
1005	QUINONES, SEBASTIAN W
1011	CONRY, NYISHA U
1017	COSTA, LAURINDO R
1023	KEEFE, THOMAS H
1035	HAYMAN, LINDA K
1044	MITCHELL, MICHAEL
	SPHERE LOCKSMITH
1051	KHOURT GAS
1063	M & G AUTO REPAIR LONSDALE
1064	OCONNER, ALAN E
1071	IRWIN, KIMBERLY A
1072	LAZIEH, THOMAS J
1088	FOLGAR, SHERLY P
1089	BAKER, PATRICIA
	BALFOUR, KIM
	FLEURANTIN, FITO
1090	DREWERY, CHARNELL
1092	DUONG, SONNY
1094	HOKE, GIHAN

1095	ARVALHO, AUGUSTO C
1098	BENSON, RHODA N
1100	BENSON, WILLIAM
1101	ROBERGE, JOHN V
1103	CABA, BIANCA J
	SALAS, ENRIQUE
1109	CENTRAL FALLS LOCKSMITH GOLD STAR
	MEIRELES, IVONE
1117	RODRIGUES, ALBERTO M
1121	DEBORGO, JOSEPH
1123	DEBURGO, GEORGETTE
1133	BLACKMAN, MARYANN A
1135	NOLASCO, STEVEN
1139	DASILVA, ANTHONY
	EFUSANYA, OLANREWAJU
1140	ISSA, DANI J
1145	BENITEZ, JANET
	MONTOYA, JOHN
1149	VIEIRA, MARIA C
1150	PEGUERO, RAFAEL T
1151	SIMOES, LUIS M
1154	ALONSO, NANCY S

HIGGINSON AVE 2014

30 33	PACKAGING & MORE INC WHITTETHIGGINS CO
51	NEW ENGLAND PAINT MFG CO

LONSDALE AVE 2014

	LONSDALE AVE	2014	
534	DOMINGOS, ISILDA		
	SILVA, KATHARINE		
536	SILVA AGENCY RL EST		
546	LAMAS, MARIA M		
556	ALEXANDER, ANGEL		
	ORTIZ, MARANGELY		
	TEJEDA, CRISANTA		
560	ESTHENOR, RENE		
	RENE, ESTHENOR		
564	PAYAN, GIOVANY F		
575	BUFFINTON F H PAPR3 BXS		
	HOPEBUFFINTON PACKAGING GROUP		
576	BOTELHO, ANA		
580	IBANEZ, MARIO R		
	LOPEZ, SINDHIA		
	PENA, LUZ D		
	REYES, WENDY		
584	DOSSANTOS, ANNA		
586	DEPINA, VIRIATO		
	LOPES, ADRITO		
	MASTROFINE, DAVID A		
	SANTOS, VENANCIO D		
590	BOURDEAU, CHRISTINA		
	LUCIANO, OLGA		
	OGANDO, SALVADOR J		
595	J R TIRE SHOP LLC		
597	CONTROL HARDWOOD FLOOR INC		
	J R INSTALLATIONS		
601	CHIQUI AUTOMOBILE SALES & MUFFLER IN		
602	FURTADO, DANI		
606	ANDRADE, ADILSO		
	BURGO, MANUEL		
610	FERNANDES, SORAIA H		
611	GIRALDO, JAIME A		
612	DEPINA, ANILTON		
616	ENCARNACION, GLENNYS		
	MORI, JAIME		
	SHAR, ZACKP		
	VALERA, DULEIDY		
	VELASQUEZ, CIRO		
619	ARRINGTON, JAMES F		
623	ROBIN, ALEX		
626	SAL, VITORIA		
	SALAKO, KUDIRAT		
627	ARTEAGA, ENRIQUE		
	CENTRAL FALLS LOCK MASTER		
	GOLD LOCKSMITH		
633	APONTE, ANGEL		
	AVILES, ARAMIS		
	COELHO, FERNANDO M		

622	EELICIANO VAHAIDA	
633	FELICIANO, YAHAIRA	
	FLORES, SELVIN	
0.45	GONZALEZ, GLORIMAR	
645	LOPES, DANNY	
	TRIGO, FRANCISCO	
0.40	VIERA, VIVIANA	
646	ORTEGA, JOSE P	
650	OCCUPANT UNKNOWN,	
656	ALVARADO, JUSTINIANO	
	APONTE, GERALDO	
	CAMARA, VERONICA	
	DUMAS, ELAINE J	
070	FARIA, JASON B	
672	BORO, MANUELA	
C74	LAGUNA, ADRIANA	
674	TREMBLAY, DEAN M	
676	TREMBLAY, EUGENE J	
677	BENITEZ, ALBERTO B	
679	ACS AUTOMOBILE	
684	MIRA, JOSE U	
687	GIRALDO, ALEXANDER	
	MONTEIRO, MARY E	
000	MORENO, ATANACIO	
690	GRAJALES, HUMBERTO	
705	DOSTSANTOS, ADRIEL	
740	RODRIGUES, SONIA	
710	GUZMAN, DOMINGO E	
	IBANEZ, ANN	
720	ROCHA, NAJARY	
720	BETTERS, ELIZABETH	
	CLOUTIER, DENISE M	
	DIAZ, LYDIA	
	GARCIA, JOSE P	
	NAVARRO, JOSE	
705	NUNES, JOAO	
725	FRANCO, CARLOS A PINEDA, JOSE	
706		
726	MORALES, ALEX PANIAGUA, ROSEMARY	
734	BETTERS, JENNY	
734	COUTURE, ERIC	
	GONSALVES, RACHEL	
	YULFO, RUBEN R	
738	OCCUPANT UNKNOWN,	
736 743	CICCIA, ROSSANA	
743		
	CITCIA, ROSSANA HIGHAM, CRYSTAL A	
	MARIN, ANGELO	
756	INTERNATIONAL MEAT MARKET	
756 769		
709	GARANT, GARY R	

770	DEGT EAGTEDN DEGTANDANT FAV
773	BEST EASTERN RESTAURANT FAX
791	EL SALVADORENO RESTAURANT
	EMERGENCY AUTOMOBILE LOCKSMITH
	LIMOGES, DONNA
	OLDETIME DONUT
	PENDERGRASS, EDWARD
	PEREZ, ISMAEL
	TOUPIN, AMANDA L
	WEEDEN, RAYCHELL
800	BURGER KING
819	POLLOS AUTOMOBILE REPAIR
824	B & L AUTO SALES
	B & L AUTOMOBILE SALES
838	OCCUPANT UNKNOWN,
840	DELGADO, TEODORA
	GOMES, MELISSA
	MEJIA, VIVIANA C
851	LOPES, HILARIO
853	LOPES, MANNY
857	HUGO, TEXIERA M
859	LIMA, JOSE E
	TEIXEIRA, HUGO
860	GOMES, JOHN S
861	DICKS, AMBER
	GIBBS, MARCUS
	LAVALLEE, WILLIAM M
	MARTIN, SHANE
862	HERNANDEZ, PABLO
	JOHNSON, JULIE
	VARGAS, OSWALDO
863	BROWN, KYILIL
	GRAY, JOHN
	SEELEY, ROBERT
	STJEAN, BRITTNEY L
868	GAUDETTE, LOUISA
	HALL, CINDY
	MCDONALD, SALLY
	REID, CHARLES E
	SOSTLE, BEVERLY
	TORRES, LEISHLA
	TURNER, LEE A
869	ALVARADO, EUNICE
000	LEWIS, DAVID K
	MARRERO, HEISHA
	SANTANA, ZULAIKA
871	ESTEFANI, ARIAS
011	ESTRADA, GUS
	GONZALEZ, LUZ
872	GIBAO, PAULO P
873	BAPTISTA, ANTONIO
013	DAI HOTA, AINTONIO

	,
072	COMES VITALINA
873 874	GOMES, VITALINA
874 875	ROCHA, MARIA ROSA, JOSE S
	· ·
879 881	OCCUPANT UNKNOWN, OCCUPANT UNKNOWN,
883	MONTEIRO, FRANCISCA
884	24 HR EMERGENCY LOCKSMITH
004	ALISSON & KEVINS HAIR SALON
	DALOMBA, JOE
	FAST CENTRAL FALLS LOCKSMITH
901	HOLY SPIRIT RELIGIOUS EDUC
901	ST ELIZABETH ANN SETON ACADEMY
904	XELAPAN BAKERY
914	XTREME COMPUTERS
922	DASILVA, ONELIA
922	FERNANDEZ, CARLOS A
	SAL, CAL
	SALAZAR, CARLOS S
	YUMAN, HECTOR
963	RUIZ, EDGAR M
969	TORRES, LUIS A
978	MOSHASSUCK CEMETERY & CREMATORY
981	ESPINAL, EVELIN A
985	FRYE, ROBERT J
500	LOPEZ, CARLOS
991	ADAMS, ROBIN
001	DUNN, TRACIE
	FARRELL, ANN
	MOULAY, LINDA
995	DURAND, ROBIN L
1005	OCCUPANT UNKNOWN,
1011	ALMEIDA, LENIRA
	ELSAYED, NIZAR M
	LOUCHLIN, CHELSEA
1017	COSTA, LAURINDO R
1023	OCCUPANT UNKNOWN,
1037	CARRASQUILLO, ERNESTO
1044	THIBEAULT, ROBERT L
1051	KHOUT GAS
1060	GAMBOA, DANIEL
1063	M & G AUTOMOBILE REPAIR LONSDALE
1064	OCONNER, ALAN E
1071	IRWIN, KIMBERLY A
1072	LAZIEH, THOMAS J
1089	BAKER, PATRICIA
	DAWLEY, ADAM
	FLEURANTIN, FITO
1090	GILBERT, K
1092	LEBLANC, ROBERT W
1093	DELAHOZ, EDGARDO E

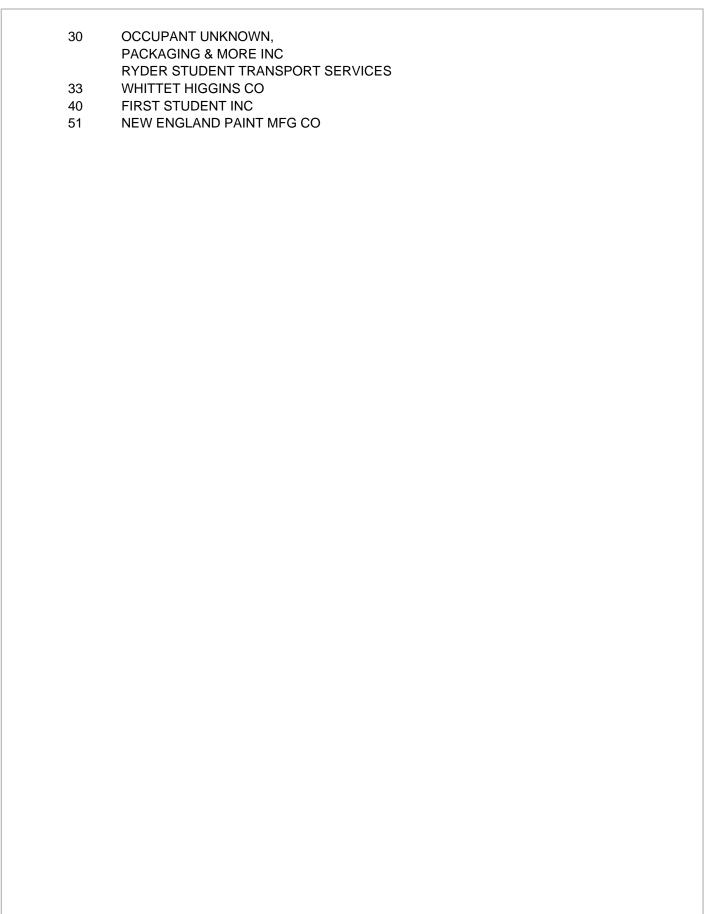
1093	MOREIRA, JOSE J
1095	RAMIREZ, CONSUELO
1098	BENSON, STEVEN J
1100	BENSON, WILLIAM
1101	CENTRAL FALLS LOCKSMITH GOLD STAR
	LIFETIME LOCKSMITH
	OCCUPANT UNKNOWN,
1103	GILBERT, ELIZABETH
1107	MCCANN, EDWARD J
1109	ARMOUSH, CHRIS M
1115	FORTES, GAMALIEL D
1117	RODRIGUES, ALBERTO M
1121	APPIAH, KWASI
1123	DEBURGO, GEORGETTE
1133	BARBOSA, JOSHUA
	GEOFFROY, ANNE M
1135	CARNEIRO, RICHARD R
	NOLASCO, FRED
1139	ANTAYA, JOANNA A
	DIAZ, JOSHUA
	OWOEYE, OLATUNDE O
	PEARSON, TAMMY
	VIEIRA, JESSICA
1140	ISSA, DANI J
1145	ALVES, JULIA D
	ALVES, MONICA
	AMADO, LAURA B
	MONTOYA, JOHN
	PIRES, WILSON
1150	PEGUERO, RAFAEL T
1151	SIMOES, LUIS M
	VIEIRA, MARIA C
1154	ALONSO, JORGE E

HIGGINSON AVE 2010

30 51	PACKAGING & MORE NEW ENGLAND PAINT MFG CO

LONSDALE AVE 2010

	LONSDALE AVE 2010	
534	DOMINGOS, ISILDA	
536	SILVA AGENCY	
546	LAMA, MARIA M	
556	MCKITCHEN, JOHN A	
560	EDWARDS, SHEILA	
	GUEYE, MOUHAMADOU	
	IBIKUNLE, AKINTUNDE	
	KANE, SHEIKH T	
	RENE, ESTHENOR	
564	PAYAN, EUSTACIO	
575	HOPEBUFFINTON PACKAGING GROUP	
576	BOTELHO, ANA	
580	IBANEZ, MARIO R	
	LOPEZ, SINDHIA	
584	DOSSANTOS, ANNA	
586	LOPES, ADRITO	
	NDONGUE, DEMBA	
590	MOLINA, E	
	ROQUE, AMARILYS	
597	CONTROL HARDWOOD FLOOR INC	
	J R TILE SHOP	
601	CHIQUIS MUFFLER SHOP	
602	FURTADO, DANIEL C	
606	GAILLARD, JAVIER	
610	PEREIRA, RONY	
612	DEPINA, ANILTON	
616	BAPTISTA, MARIA	
	CRESPO, GABRIEL	
	ENCARNACION, GLENNYS	
	MORI, JAIME	
618	BANUCHI, ELIZABETH	
619	ALTMAN, ADRIENNE A	
623	ROBIN, ERNEST E	
626	SAL, VITORIA	
	SALAKO, DANIEL O	
627	BROTHERS CLEANERS SVC	
	LANDAVERDE, JOSE E	
633	APONTE, ANGEL	
	AVILES, ARAMIS	
	COELHO, MARIA M	
	FLORES, SELVIN	
	SANTOS, LOUIS	
636	SAMS CC	
645	ACOSTA, REBECCA	
646	PALIN, LIONEL O	
650	LEVESQUE, NORMAN E	
656	APONTE, GERALDO	
	BECKER, CHARLES	
	DAVIS, K	
	DUMAS, ELAINE J	


	,
0=0	
656	FARIA, JASON B
	LOPEZ, FRANCI
	MASTERSON, ANTONY
	WASHBURN, JEAN
672	BORO, MANUELA
	CABRAL, LUZ A
	LAGUNA, ADRIANA
07.4	LUCARIO, GUADALUPE
674	TREMBLAY, DEAN M
676	TREMBLAY, EUGENE A
677	ROARO, RUBEN
679	ACS AUTO
004	LONDSALE AUTO SALES & REPAIR
684	MIRA, JOSE
687	DESCHAMPS, MARIA
000	GIRALDO, ALEXANDER
690 705	GRAJALES, HUMBERTO
705	GONCALVES, DOMIN GONSALVES, ADALB
	· ·
	MONTEIRO, PEDRO D RODRIGUES, SONIA
710	CHURCHILL, DONNA
710	RAMIREZ, LUIS
	SANTIAGO, EUGENIO M
720	BETTERS, GEORGE
120	CLOUTIER, ROBERT J
725	ESCOBOR, B
720	PINEDA, JOSE
726	BATRES, JOSE
. 20	JOPI, BILLY O
	ORITIZ, N
734	BETTERS, JENNY
	DESJARDIN, J
	MIRANDA, CARLOS
	YULFO, ANTHONY
738	ANKOMA, BAFFOUR
743	SETARO, PAUL A
	SUTARO, NICOLE
756	CARNICARIA INTL MEAT MARKET
769	GARANT, GARY R
773	BEST EASTERN RESTAURANT
791	EL SALVADORENO RESTAURANT
	LIMOGES, DONNA
	OLDTIME DONUT SHOP
	PEREZ, ISAMEL
	SANTOS, KEN
	TOUPIN, AMANDA
800	BURGER KING
824	B & L AUTO SALES
840	DASELVA, JOAO

	20110071227112 2010 (001114)	
0.40	DEDDITO, ANIOELMO	
840	DEBRITO, ANSELMO	
	GOMES, MELISSA	
	MONZON, ANIBAL	
846	AVILES, JOSE O	
851	LOPES, HILARIO	
853	GOMES, DULCE G	
857	RAMOS, LUIS	
859	LOPES, MARIA F	
	MENDES, RAQUEL	
860	VELEZ, MARIO	
861	BRENTON, LINDA	
	GIBBS, MARCUS	
	TITUS, LEONARD	
862	GOMES, JOHN S	
	HERNANDEZ, ELVIN	
	VARGAS, OSWALDO	
863	FUENTES, JOHN	
	GONZALEZ, MARIA	
	GRAY, JOHN	
	STRAUS, MELISSA D	
868	GIBBS, JONISHA	
	GONSALVES, BRYAN	
	MARTINEZ, JOCELYN	
	MONTES, SEIBAH	
	RAYMOND, BRIAN	
	SEVERINO, EUSEBIA	
	VALENTINO, LOUIS	
	WANDA, AGOSTO	
869	LEWIS, DAVID	
	ORTIZ, ZULAIKA	
871	ESTRADA, GUS	
	GONZALEZ, LUZ	
	RIVERA, JUANA	
872	DEPINA, JOAO	
873	BAPTISTA, SIDALI S	
	GOMES, VITALINA	
874	ROCHA, MARIA	
875	OCCUPANT UNKNOWN,	
876	RABEIRO, AUTILIA	
879	DUARTE, VERA	
	TAVARES, DANIEL B	
881	OCCUPANT UNKNOWN,	
883	CERILLO, MARIA	
884	ALISSON & KEVINS HAIR SALON	
901	CHRIST THE REDEEMER ACADEMY	
	HOLY SPIRIT RELIGIOUS EDUC	
904	XELAPAN BAKERY	
909	ST ELIZABETH ANN SETON ACADEMY	
914	XTREME COMPUTERS & WIRELESS	
918	MELODY, ROJAS G	

918	NICHOLS, GARY
	PETERS, ROBERT
922	CHAVEZ, GRACIELA
	FERNANDEZ, CARLOS A
	YUMAN, HECTOR
963	RUIZ, EDGAR M
969	OCCUPANT UNKNOWN,
978	MOSHASSUCK CEMETERY
985	GARCIA, ELSA
	LOPEZ, CARLOS
	RENDON, GABRIEL J
	VILLASENOR, A
991	ADAMS, ROBIN
	BELMONT, PATTI
	CRAGNOTTI, DANIEL
	MCLAUGHLIN, KELLIE
995	OCCUPANT UNKNOWN,
1011	ESTRADA, EDWIN J
	KHALIL, WISSAM
	LOUCHLIN, CHELSEA
	PUERTA, FABIONA
	RAMOS, EUGENIO
1035	CUEVAS, GLENNYS
1044	THIBEAULT, ROBERT L
1051	KHOUT GAS
1054	A MALL LOCKSMITH SVC
	AAA LOCKSMITH INC
1060	OCCUPANT UNKNOWN,
1063	M & G AUTO REPAIR
1064	OCONNER, ALAN E
1071	IRWIN, KIMBERLY A
1072	LAZIEH, THOMAS J
1088	CASTILLO, EVA
	ECHEVERRY, JULIO C
	GULLON, E
1089	FLEURANTIN, FITO
	VARGAS, TASHIRA
1090	GILBERT, K
1092	LEBLANC, ROBERT W
1093	CORREA, HILARIO
1095	RAMIREZ, CONSUELO
1098	BENSON, STEVEN J
1100	BENSON, WILLIAM
1101	ELEGANCIA UNISEX
1103	ACOSTA, JOSE
	MOREAU, CHARLES C
1107	MCCANN, EDWARD J
1109	OCCUPANT UNKNOWN,
1115	OCCUPANT UNKNOWN,
1117	RODRIGUES, SONIA M

1121	SOUCY, NOELLA T
1123	VASQUEZ, AWILDA
1133	CARNEVALE, LESLIE
1135	CARNEIRO, RICHARD R
1136	A LITTLE BIT COUNTRY
	CREST DISTRIBUTORS
1139	PEARSON, TAMMY
	SOARES, ELIZABETH
	TEJADA, RALPHIE
	VASQUEZ, JOSE
	VIEIRA, JOSE
1145	ALVES, JULIA
	ALVES, PEDRO J
	MONTOYA, JOHN
1150	PEGUERO, MARTIZA R
1151	ALVES, C
	FREIRE, JENNIFER V
1154	ALONSO, JORGE E

HIGGINSON AVE 2005

LONSDALE AVE 2005

	201027(22 700	
534	DOMINGOS, ISILDA	
546	ABREU, ERNESTO B	
556	MCKITCHEN, JOHN A	
560	GUEYE, MOUHAMADOU	
	KANE, SHEIKH	
	LY, MOHMANED S	
	MACHADO, JOSE	
	NDIR, ELHADJI	
	YATTARA, MARIE H	
575	BUFFINTON CO INC F H	
	F H BUFFINTON CO INC	
576	BOTELHO, ANA	
580	IBANEZ, MARIO R	
	LOPEZ, SINDHIA	
586	GAVILANEZ, PIERRE A	
590	ROQUE, A	
601	COLUMBIA MUFFLERS	
602	FURTADO, DANIEL C	
606	GAILLARD, JAVIER	
	GUTIERREZ, FLOR	
610	BARROS, PAULO M	
612	PEREIRA, CLAUDIA	
616	HERNANDEZ, DANIEL E	
619	ALTMAN, ADRIENNE E	
623	OCCUPANT UNKNOWN,	
626	SALAKO, DANIEL O	
627	ESCOBAR, JORGE A	
632	MITCHELL, K	
636	HETU, JARED	
645	RAMIREZ, JUANA R	
646	PALIN, LIONEL O	
650	LEVESQUE, NORMAN E	
656	AUBIN, B	
	CRUZ, ELAINE	
	HERNANDEZ, MIGUEL	
	ORTIZ, ALEZ	
670	TORRES, LOUISA	
672	BOROR, JORGE E	
	LUCARIO, GUADALUPE	
674	QUINONEZ, AURA OCCUPANT UNKNOWN,	
674 675	LOPEZ, LUIS A	
676	OCCUPANT UNKNOWN,	
677	BENITEZ, ALBERTO	
679	ACS AUTO	
019	LONSDALE AUTO	
684	YOUNG, PAUL R	
687	GIRALDO, CLAUDIA	
690	GRAJALES, HUMBERTO	
705	GONSALVES, ADALB	
. 00		

	201105/122 /112 2000 (Goill d)
710	ALVISURES, SANTIAGO
	SANTIAGO, EUGENIO
720	FERREIRA, JOAO R
725	ROMERO, HECTOR
726	FUENTES, JAVIER
	LIMA, JUAN J
	MORA, TERESA
	OJOPI, BILLY
	ORITIZ, N
734	ARMOUSH, JO A
	BETTERS, ELIZABETH
	MIRANDA, S
	PIRES, EUGENIA
	YULFO, ANTHONY
	YULFO, RUBEN R
738	TORRES, WILSON
743	BARTLETT, LORIE
	HIGHAM, CRYSTAL A
	HIGHAN, WOODSON E
	UNITED PERSONAL SERVICES INC
756	CARNICARIA INTL MEAT MARKET
	SIGN CORP
768	STANTON JAMES PST 5 AMERICA LEGI
769	GARANT LANDSCAPES SERVICES
	GARANT, GARY R
771	ROGER J GARANT DESIGNS
791	BEST EASTERN RESTAURANT
	EL SALVADORENO RESTAURANT
	ELLENA, C
	GARCIA, LUIS G
	OLDTIME DONUT SHOP
	PARE, JOAN
	VIERA, JOHN M
800	BURGER KING
819	JC AUTO REPAIR
824	B & L AUTO SALES
	REALTY LLC
838	DELGADO, TEODORA
840	COUTINHO, NEUSA
	DELGADO, TEODORA
846	AVILES, J
851	BAKARE, DOROTHY
	LOPES, HILARIO
853	GOMES, DULCE G
859	LOPES, MARIA F
860	ROBERT, JACQUELINE M
861	BRIERLY, J
	DORAN, MICHAEL
	MOREJON, LINDA L
	TITUS, LEONARD

	· ,	
960	VALENZUELA HOMEDO	
862 863	VALENZUELA, HOMERO LAMBERT, AIME J	
868	ALMONTE, M	
000	BARRERA, MATILDE	
	BORGOS, MARGARITA	
	BROWN, SHIRLEY	
	CORTEZ, M	
	DAVIS, CYNTHIA M	
	FRECHETTE, MELLISSA	
	MELIA, RAYMOND	
	RIVERA, MARIANELLA	
	TORRES, JOSE L	
	WILLIAMS, THERESA	
869	ASERMELY, V	
871	OCCUPANT UNKNOWN,	
872	CRUZ, C	
873	DAROSA, JOSE S	
	GOMES, VITALINA	
	ROSA, JOSE S	
	VAQUERANO, ANA M	
875	CARVALHO, ARTEMISA	
876	DEPINA, MARCELINO A	
070	LUANGXAY, GLORIA	
879	SILVA, ANDRE	
881	OCCUPANT UNKNOWN,	
883	GOMES, JULIETTA M GONCALVES, HENRIQUE	
	YEPES, CESAR	
884	ADONAIS, CAPILO	
004	ALISONS AND KEVINS HAIR SALON	
900	METAL SPRAYING CO INC	
904	XELAPAN BAKERY	
909	DIOCESE OF PROVIDENCE	
	SAINT ELIZABETH ANN SETON ACADEMY	
914	EXTREME COMPUTERS	
	EXTREME COMPUTERS IN WIRELESS	
918	EXTREME COMPUTERS LLC	
	GILL, JOSEPH F	
	GRULLON, LUCIANO	
	JARAMILLO, LUIS	
	MELODY, ROJAS G	
922	CABRERA, OLGA	
	FERNANDES, CARLOS A	
000	MARIA BARROS INC	
963	RUIZ, EDGAR M	
969 079	TORRES, CHRISTIAN	
978 985	MOSHASSUCK CEMETERY & CREMATORY RENDON, GABRIEL J	
900	RIOS, CLAUDIA J	
	ROSARIO, GERDRUDIS	
	neo. and, outside	

004	ADONITE CUDISTI A
991	APONTE, CHRISTI A
	FONTAINE, LYNNETTE
	LEISTRITZ, MICHELLE
	MCLAUGHLIN, KELLIE
	MOORE, A
	SARDINHA, STEFANIE
	SILVIA, STACEY
995	FRECHES, ADRIANO
1005	CEBALLOS, ROSARIO P
1011	CASTANEDA, MIRNA
	ISSA, JONATHAN
	PUERTA, RAMIRO
1023	KEEFE, R C
1035	KEEFE FUNERAL HOME
1039	LOPEZ, MARTHA L
1044	THIBEAULT, ROBERT L
1051	LONSDALE MOBIL
1054	AAA LOCKSMITH INC
1060	ROQUE, STEVEN J
1063	M AND G AUTO REPAIR INC
1064	OCONNOR, MARY F
1072	LAZIEH, THOMAS
1088	ECHEVERRY, JULIO
	FELICIANO, LESLIE
	GRENE, MARK D
	GULLON, E
1089	ALAMO, L
	BAKARE, ABDUL
	KEOUGH, THOMAS P
	PYTKA, TINA
1090	WEISS, EDWARD
1092	LEBLANC, ROBERT W
1093	ANDREWS, MICHAEL E
1095	OCCUPANT UNKNOWN,
1098	OCCUPANT UNKNOWN,
1100	OCCUPANT UNKNOWN,
1103	MOREAU, CHARLES C
	PET A GREE GROOMING INC
1107	MCCANN, EDWARD J
1115	CELAYA, JESUS I
	FORTES, GAMALIEL D
1121	ANDRADE, GEORGETTE A
1123	CHECE, PAT
1133	CASTANEDA, HERBERT N
1135	OCCUPANT UNKNOWN,
1136	CREST TILE DISTRIBUTORS
1139	CADAVID, GLORIA
	GUERRA, BERNARDO
	OWOEYE, OLATUNDE O
	VALLECILLA, MANUEL

	LONSDALE AVE	2005	(Cont a)	
1140	DAN ISSA			
	OCCUPANT UNKNOWN,			
1145	ALVES, PEDRO G			
	GARVEY, FRANCIS X			
1149	FREIRE, MARIA M			
1150	PEGUERO, RAFAEL T			
1151	ALVES, C			
	VIEIRA, MARIA C			
1154	ALONSO, JORGE E			
1101	ALONGO, GORGE E			

HIGGINSON AVE 2000

30 33 51	PACKAGING & MORE WHITTET HIGGINS COMPANY SCREW PRODS NEW ENGLAND PAINT MANUFACTURING CO INCORPORATED

LONSDALE AVE 2000

	LONODALL AVE 2000
534	DOMINGOS, ISILDA
536	SILVA AGENCY REAL ESTATE
	SILVA, EDWARD D
546	MOLLOCK, FRANCES
556	MCKITCHEN, JOHN A
565	SOUCY, SOPHIA N
576	PEREIRA, V
580	SMITH, P
586	DOSSANTOS, ANNA
590	GANETO, JOSE
	MENDEZ, M
	PATRICIO, C M
	ROQUE, A
602	FURTADO, DANIEL
606	OCHOA, OMAIRA
611	OCCUPANT UNKNOWN,
612	MARTINEZ, A
616	SANCHEZ, EDMUNDO
619	ALTMAN, A
626	DALOMBA, A
627	GARCIA, R
	ORTEGA, CARMEN
	OTREGA, DIANA
633	SANTANA, J
636	PICHE, ROBERT
645	RAMIREZ, JUANA
646	PALIN, LIONEL
650	LEVESQUE, NORMAN E
656	STOEPKER, EVA
672	ALVAREZ, FREDY
	BOROR, JORGE
074	QUINONEZ, AURA
674	DORAN, RAYMOND
675	BARROS, MANUAL
	GONZALES, ALFONSO
	GRAEMIGER, DANE MENDEZ, JOSE
676	,
676 679	TREMBLAY, DEAN M FONSECA, JOSE
079	LONSDALE AUTO SALES & REPAIR
684	YOUNG, PAUL
687	CALDERON, SONIA
007	ESPINAL, F
	GIRALDO, JOHN
690	PEREZ, M
695	WEST SIDE SOCIAL & ATHLETIC CLUB
705	DOS, MARIA L
, 55	GONZALZES, A
	PENA, M D
710	DUPRE, SUSAN

	201105/122 /112 2000 (00111 a)
700	OLOUTIED DOMALD
720	CLOUTIER, RONALD
	MIRANDA, ANTONIO
725	FORTIN, R
726	RIVERA, I
734	OCCUPANT UNKNOWN,
738	OCCUPANT UNKNOWN,
743	HIGHAM, C
756	CARNICARIA INTERNATIONAL MEAT MARKET
768	STANTON JAMES POST 15
769	GARANT ROGER J DESIGNS
704	GARANT, GARY R
791	BEST EASTERN RESTAURANT
	KOZUSKO, JAMIE
000	VIERA, JOHN
800	BURGER KING FAMILY RESTAURA
819	B & L MACHINE INCORPORATED
004	MONTGOMERY WILLIAM
824	BNL SALES
844	EXPRESS WIRELESS
851	LOPES, HILARIO
853	GOMES, D
856	RILEY, T
857	OCCUPANT UNKNOWN,
859	OCCUPANT UNKNOWN,
860	AIELLO, MILESP
861	HOCKENHULL, LAURETT
	POSADA, P M
962	SHUNNEY, J
862 863	OCCUPANT UNKNOWN,
868	LAMBERT, AIME J ALICEA, J
000	BORGOSMORALES, M
	RIVERA, ROSARIO
	SANTIAGO, S
869	ASERMELY, V
872	OCCUPANT UNKNOWN,
873	MARTINS, LAURA J
070	RIBEIRO, CARLOS
874	OCCUPANT UNKNOWN,
875	DALOMBA, A
876	ESTRADA, CYNTHIA T
883	GOMES, JULIETA F
	HARBECK, ROGER R
	PARRA, LUZ A
884	MORALES CARGO EXPRESS
888	DALOMBA, JOE
900	METAL SPRAYING COMPANY
901	ST ELIZABETH ANN SETON ACADEMY
	ST MATTHEWS CONVENT
	YMCA CENTRAL FALLS SCHOOLS OUT

	,
918	LIPPE, LOUISE
922	MARTINEZ, MARIAM
	MUNOZ, JAIRO
978	MOSHASSUCK CEMETERY & CREMATORY
985	DASILVA, LINCOLN
991	CENTRO MED
	CONROY, RUSSELL
	LABONTE, SCOTT
	LAPAN, JOHN W
	MELIA, PAUL A
995	BENOIT, ALICE T
1011	GOULD, PHILIP G
	LARAMEE, WILLIAM
1023	OCCUPANT UNKNOWN,
1035	KEEFE FUNERAL HOME
1037	KEEFE, R
1039	URREGO, MARIA C
1044	CLAUSON, KENNETH L
1051	LONSDALE MOBIL
1054	A A LOCKSMITH
	A LOCKSMITH
	AAA LOCKSMITH INCORPORATED
	EMERGENCY LOCKSMITH
	LOCKSMITH AAA
	PARMENTIER, ROBERT D
	TWENTY FOUR HOUR LOCKSMITH
1060	ROQUE, GILBERT
1063	LANTIGUA, RAMON A
	MID CITY TOWING
	RAYMONDS AUTO REPAIR & TOWING
1071	BERARD PAUL REALTY
	LIZOTTE, RITA Y
1072	VICTORIA, LAZIEH
1085	MOITOSO, MANUEL J
1088	DUPUIS, J
1089	ALICEA, J
	ALIOEA, JANELLE
	ANDERSON, H
	JOSEPHS, JEANNET
1090	OCCUPANT UNKNOWN,
1092	LEBLANC, BOB
1094	BOULANGER, ARTHUR
1095	FORAN, EDWARD W
1100	OCCUPANT UNKNOWN,
1103	PET-A-GREE GROOMING
1107	MCCANN, EDWARD
1109	CORRIGAN, AMY
1114	AMBI INCORPORATED
1115	AGUDELO, A
1121	OCCUPANT UNKNOWN,

	LONSDALE AVE	2000	(Cont'd)	
1136	ALLIED TILE & MARBLE COMPANY INCORPO	RATED		
	CREST TILE DISTRIBUTORS			
1139	CONO, MARIA A			
	HART, K E			
	MARIN, MARIA			
1141	OCCUPANT UNKNOWN,			
1145	ALVES, PEDRO			
	GARVEY, FRANCIS X			
1149	FREIRE, MARIA			
1150	OCCUPANT UNKNOWN,			
1151	ALVES, C			
1154	ALONSO, NANCY HAIGHT, ALLEN			
	TIMPF, M			
	1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

HIGGINSON AVE 1995

33 51	WHITTET-HIGGINS CO, SCREW PRODS NEW ENGLAND PAINT MANUFACTURING CO INC

LONSDALE AVE 1995

534	DOMINICOS ISILDA
534	
330	SILVA, EDW D
546	
548	
556	MC KITCHEN, JOHN A, JR
560	GUZMAN, DANIEL
576	PEREIRA, V
586	MALDONADO, EMILIANO
595	GARCIA AUTO SALES
602	FURTADO, DANL
606	SIMAO, CARLOS & MIRIAM
610	PRZYBYLA, DENNIS T
	PRZYBYLA, ISABEL
611	BEDARD, RENE R
623	
626	
627	,
636	
646	
650	
656	
	OJEDA, HUGO R WILLIAMS, GREGORY K
672	
0/2	GUERRA, RENE A
674	
675	•
070	MENDEZ, JOSE
	VIEIRA, RENORTO R
676	
679	·
684	
695	
705	
	TORO, OLIVIA
710	DUPRE, RAYMOND
	WROBLEWSKI, WOJTEK
720	CLOUTIER, R
	POULIOT, D
725	FLOREZ, JULIO
	FORTIN, R
734	·
756	
769	
	GARANT REAL ESTATE
	GARANT ROGER J DESIGNS
	GARANT, GARY R
773	
791	D J'S PIZZA & RESTAURANT

LONSDALE AVE 1995 (Cont'd)

	2011057(22 7(12 1000 (0011t a)
704	OATEWAY VARIETY & RELL
791	GATEWAY VARIETY & DELI
000	VIERA, JOHN
800	BURGER KING FAMILY RESTAURANTS-CENTRAL FALLS
824	B & L MACHINE INC
	COMMERCIAL INDUSTRIAL AUCTIONEERS
00.4	MONTGOMERY, WM
834	MONTGOMERY, WM
844	MONTERIO, DOMINGO
851	LOPES, DULCE G
052	LOPES, HILARIO ALVES, MARIA
853 856	GORDON, JAIME A
857	DEOLIVEIRA, DANL G
859	TEIXEIRA, HUGO
860	ROBERT, MAURICE G
861	CULBERTSON, FRANCIS
001	HOCKENHULL, LAURETTA
862	CASEY, JAS P
863	LAMBERT, AIME J
868	BOURGAULT, WM
	BROWN, SHIRLEY
	NARKAWICH, DEAN & BRENDA
	TOWNSEND, B J
869	ASERMELY, V
871	CASPER, WILLARD JAS
872	PAZ, JORGE
873	GOMES, C
	MARTINS, LAURA J
874	ESTRADA, C
883	GOMES, JOSE
884	COQUI MINI MARKET
900	METAL SPRAYING CO
901	ST MATTHEW'S CONVENT
	ST MATTHEW-NOTRE DAME CONSOLIDATED SCHOOL
	YMCA CENTRAL FALLS SCHOOL'S OUT
914	KORN, ISADOR, LWYR
	LABROSSE LUC R INC, LWYR
918	CASTO, DEBRA
	CASTO, MELISSA
000	LABROSSE, THOS
922	MADRIGUAL, ALFREDO
978	MOSHASSUCK CEMETERY & CREMATORY WALLACE, S L
985 991	INTERMODAL TRANSPORT CO
991	LAPAN, JOHN W
1005	OSSA, JAIRO
1005	GOULD, PHILIP G
1023	HORNER, JOHN R
1025	KEEFE FUNERAL HOME
1037	KEEFE, R
. 507	

LONSDALE AVE 1995 (Cont'd)

	044	CLAUSON, KENNETH L
	051	LONSDALE MOBIL
1	054	AAA LOCKSMITH INC
		EMERGENCY LOCKSMITH
		LOCKSMITH AAA
		PARMENTIER, ROBT D
		TWENTY FOUR HOUR LOCKSMITH
1	060	ROQUE, GILBERT
1	063	BOBBY B'S
		MID CITY TOWING
1	064	MYETTE, JEAN G
1	071	LIZOTTE, ROLAND A
		MAYETTE, G
1	072	LAZIEH, THOMAS & HOLLY B
1	085	MOITOSO, MANUEL J
1	089	CHARRON, R
		JOSEPHS, JEANNETTE
		PAQUETTE, JOS
1	090	ROGERS, M
1	092	LEBLANC, ROBT
1	094	BOULANGER, ARTHUR
1	095	FORAN, EDW W
1	103	MOREAU, CHAS C
		SHEAR EXTREMZ
		SIMONEAU, RON & LUZIA
1	107	MCCANN, EDW
1	121	PHILBIN, MICHAEL J
1	133	MEALS, AMY
1	136	ALLIED TILE & MARBLE CO INC
		CREST DISTRIBUTORS
1	139	BOISCLAIR, MAURICE
		BOUCHER, WM J
		FRECHETTE, EDW
1	140	ISSA, DANL J
1	141	MORALES, JOSE S
1	145	GARVEY, FRANCIS X
		MORRISON, JOS W
		SOFORENKO, DAVID
1	149	FREIRE, MARIA
1	150	ANGEL, CARLOS & NORA
1	151	VIEIRA, C
1	154	ALONSO, GEORGE

HIGGINSON AVE 1992

30	ALMAC'S SUPERMARKETS-STORES
	IGA FOODLINER
33 51	WHITTET-HIGGINS CO, SCREW PRODS NEW ENGLAND PAINT MANUFACTURING CO INC
51	NEW ENGLAND PAINT MANOPACTORING CO INC

LONSDALE AVE 1992

		LONODALL AVL	1332
5	534	ANTONIO, ROSARIA	
		DOMINGOS, ISILDA	
5	536	SILVA AGENCY, RL EST	
		SILVA, EDW D	
		VISION REALTY INC	
	546	NEERY, STELLA	
	548	NEERY'S PUB	
	556	MC KITCHEN, JOHN A, JR	
	560	GUZMAN, DANIEL	
	576	PEREIRA, V	
	595	CROWN COLLISION CENTER INC	
6	501	CROWN AUTO SALES INC	
6	502	FURTADO, DANL	
6	606	FURDADO, DUARTE M	
6	510	PRZYBYLA, DENNIS T	
		PRZYBYLA, ISABEL	
6	511	BEDARD, RENE R	
6	518	ISADORE, JAS M	
6	619	VIOLA, S	
6	523	CONLEY, J WARREN	
6	527	CORDON, ESTUARDO	
		SERNA, A	
6	636	SAM'S C C	
6	646	PALIN, LIONEL	
6	650	LEVESQUE, NORMAN E	
6	556	BANACZUK, SENKO	
		OJEDA, HUGO R	
		PENNY, DAVID & VIKI	
6	674	DORAN, RAYMOND	
6	675	MENDEZ, JOSE	
		PALAILI, LEGEI	
6	676	ACME FLOOR SURFACING CO	
		DAVENPORT, KAROL	
6	679	J F AUTO INC	
6	584	BOSH, BILL & LISA	
6	687	SARACIN, DONNA M	
		SMITH, SUSAN J	
6	695	WEST SIDE SOCIAL & ATHLETIC CLUB	
6	697	A & A HYDRAULICS	
7	705	NAVARRO, ENRIQUE	
7	710	DUPRE, RAYMOND	
7	726	BARTHOLOMEW, JAS	
		OLIVERA, R	
7	738	MONASTESSE, GERARD J	
7	756	CARNICARIA INTL MEAT MARKET	
	768	STANTON JAS POST NO 5 AMER LEGION	
	769	GARANT LANDSCAPES SERVICES	
•	•	GARANT REAL ESTATE	
		GARANT ROGER J DESIGNS	
7	773	SHEAR ENERGY	

LONSDALE AVE 1992 (Cont'd)

	,
791	D J'S PIZZA & RESTAURANT
	ELCARRUAJE FLOWERS & GIFT SHOP
	OLDE TIME DONUT SHOP
000	VIERA, JOHN
800 824	BURGER KING FAMILY RESTAURANTS-CENTRAL FALLS B & L MACHINE INC
024	COMMERCIAL INDUSTRIAL AUCTIONEERS
	MONTGOMERY, WM
834	MONTGOMERY, WM
838	DE SOUSA, JOSE
844	BALA'S BARBER SALON
0	MONTERIO, DOMINGO
851	LOPES, DULCE G
	LOPES, HILARIO
	LOPES, MANNY
853	ALVES, MARIA
	DALOMBA, JOS
857	DEOLIVEIRA, DANL G
860	ROBERT, MAURICE G
861	CULBERTSON, FRANCIS
863	LAMBERT, AIME J
868	BOCIEK, STANLEY
	BOURGAULT, WM
	BROWN, SHIRLEY
	RODRIGUES, FELICIA
	TOWNSEND, B J
869	ASERMELY, V
871	CASPER, WILLARD JAS
873	MORRIS, JOS A
874	ESTRADA, C
875	MORRIS, M W
883 900	GOMES, JOSE METAL SPRAYING CO
900	ST MATTHEW'S CONVENT
901	ST MATTHEW S CONVENT ST MATTHEW-NOTRE DAME CONSOLIDATED SCHOOL
914	KORN ISADOR, LWYR
314	LABROSSE LUC R INC, LWYR
918	CASTO, DEBRA
310	CASTO, MELISSA
978	MOSHASSUCK CEMETERY & CREMATORY
985	WALLACE, S L
991	INTERMODAL TRANSPORT CO
	PHILLIPS, MICHAEL
1005	OSSA, JAIRO
1011	DESLAURIERS, KARL
	LIZOTTE, DEB
1023	HORNER, JOHN R
1035	KEEFE FUNERAL HOME
1037	KEEFE, R
1044	CLAUSEN , KENNETH

LONSDALE AVE 1992 (Cont'd)

	(22.2)
1051	LONGRALEMORII
1051	LONSDALE MOBIL
1054	AAA LOCKSMITH INC
	EMERGENCY LOCKSMITH
	LOCKSMITH AAA
	PARMENTIER, ROBT D
	TWENTY FOUR HOUR LOCKSMITH
1060	HOLLAND, JAS S
1063	BERARD SERVICE STATION
1064	MYETTE, JEAN G
1071	LIZOTTE, ROLAND A
1072	LAZIEH, THOMAS & HOLLY B
1085	MOITOSO, MANUEL J
1088	PETERSON, D
	SIMONEAU, RICHARD R
1089	CAMARA, L
	JOSEPHS, JEANNETTE
	SMITH, CLIFFORD L
1090	ROGERS, M
1092	LEBLANC, ROBT
1094	BOULANGER, ARTHUR
1095	FORAN, EDW W
1100	SANVILLE, WALLACE J
1103	DALUZ, D
	MOREAU, CHAS C
1107	MCCANN, EDW
1109	MC CANN, KEVIN
1114	AMBI INC
1117	SAVARY, CHAS
1121	PHILBIN, MICHAEL J
1130	CHAMPAGNE, ROGER R
1100	DUQUETTE, LEON J, SR
1135	DALY, JAS
	PEARSON, JEFFREY C
1136	ALLIED TILE & MARBLE CO INC
	CREST DISTRIBUTORS
1139	BOISCLAIR, MAURICE
	BOUCHER, WM J
	FRECHETTE, EDW
1141	MORALES, JOSE S
1145	GARVEY, FRANCIS X
1110	HORSFIELD, KRISTEN
	MORRISON, URSULA M
	SOFORENKO, DAVID
1149	FREIRE, MARIA
1143	VIEIRA, C
1150	ANGEL, CARLOS
1130	ANGEL, CARLOS ANGEL, CARLOS & NORA
	FOLLOW ME ENGLISH COURSES
1151	ZAJAC, HENRY J
1151	PIRIE, ANDREW, JR
1102	I IIIIE, / IIIIIIII VV, UIX

HIGGINSON AVE 1989

59 Carbone Albert J 727-0654 MOHASSUCK VALLEY INDUST HWY 61 Solis Julio E 725-0205 INTERSECTS Caycho 66 Cipriano John ⊚ 722-8672 Cipriano John C 728-1389 HIGH ST -FROM 210 MAIN NORTH 67 Heroux Alice A Mrs @ 723-7127 THROUGH CENTRAL FALLS TO 69 Bourre Normand A 724-1796 1345 BROAD *Barriere Edw 723-1555 ZIP CODE 02860 70 Giroux Harvey J ⊚ 723-3236 30 Tavares News Stand 725-6770 71 Dial Ricardo 40 Circular Parking parking lot Mastrogiovanni Diane SUMMER BEGINS 72 Burgos Gloria @ 84 ★ Haines Kathleen M 726-6637 ★Guiran Roberto 728-2264 85 New England Telephone (Engineering) **★Villa Amparo** 727-9550 Falla 86 Vacant 73 Moreau Lucien J 723-8334 Vacant 74±Mejia Omar 725-8791 102 Salvation Army The 723-9533 Smith Raymond 110 Monast Apartments 722-4797 77 Watkins Bsmt Pilkington John J 722-0313 101 Walsh Robt A 724-8994 **★**Malouin Diane 3 78 Saint Ephraim's Rectory 723-9095 102 No Return Doumato Abdulahad Rev 103 No Return HOOD ST BEGINS 104 Dextradeur Eric 726-6685 91 Gomes Henrique P ⊚ 722-1433 Agrela Joao 725-0722 105 No Return 106 Monast Realty Co 722-4797 93 Vacant 107 Dermanouelian Paula 726-3494 108 Kelly John 725-1380 201 Audet Lorenzo Jr 725-1494 HERALD WAY -FROM OPP 84 202 Vacant WEBSTER EASTERLY TO DEAD 203★Willis Geo 204 Gallego Leonard J 726-8662 205 Wild Hank ZIP CODE 02861 205 Wild Barry coml fishermn 99 Rhode Island Jewish Herald newspaper 206 Mularz Mary E Mrs 728-7424 724-0200 207 Summerly James F Herald Press newspaper 724-0200 208 Holtzman Reba 722-9544 301*Rooney Frances 722-4125 24 302★Kenney Mary HICKS ST -FROM 255 MINERAL 303 Mc Knight Peter SPRING AV TO DEAD END 304 Di Saia Ann C 722-6054 305 Vacant ZIP CODE 02860 306*Alix Normand 726-2191 ABBOTT INTERSECTS 307 Brown Francis A 722-2670 21 Vacant 308 Dufresne Delor A 25 Fernandes Louis G N UNION INTERSECTS Cabral Isabel 723-0653 120 Hall Institute sch 722-2003 Silva Carlos 724-2779 122 Mister B's Jean Outlet (Overflow) 27 Goff Betty L 724-6567 123 Major Electric & Supply Inc 724-7100 29 No Return 31 Moran Paula J Mrs 21 BALDWIN INTERSECTS EXCHANGE INTERSECTS 38*Laporte Michl R @ 723-1996 160 Woodlawn Gardens Apartments No Return 725-8060 **★**Marrero Angelo L 101 Burley Ruth A Mrs 40 Fernandes Ildo @ 723-8353 102 Phaneuf J Alfred 725-3283 103★Hazard Georgette 42★Arbosa Regina F 44★Chamaro Russell R 728-8113 104 Molloy Marcelle S 724-0346 46 Fortes Dominges 728-1291 105 Pierce Judith 50 ★Wood Ronald M 723-4195 106 Monteiro Louisa M 726-0451 52 Silva Frank R @ 725-6931 107 O'Neill Betty 724-8347 55 Woodlawn Baptist Church (Parking 108 Labonte Mary J Lot) 109 Bourgault Pearl COOPER BEGINS 201 Maynard Madeleine C 202 Campbell Wm F 725-8204 203 Hebert Flora 726-5472 HIGGINSON AV (CENTRAL FALLS) 204 ★Pecure Rita 722-1353 FROM 768 LONSDALE AV TO CITY 205 Silva Dorothy 206 Alberghini Harold 723-3164 207 Auger Jennie D 726-2408 **ZIP CODE 02863** 208 Goyette Alma Mrs 30 Higginson Avenue 1 G A Market 209★Richards J 726-3600 210 ★ Jocjz Peter 725-7274 211 Farrell Wm E 722-4024 33 Whittet-Higgins Co mtl prods 728-0700 53 Livco Auto Body & Sales 726-9561 301 Duclos Wm A 725-1835 302 Rzemien Montana Mrs 723-2525 51 New England Paint Manufacturing Co Inc 722-4606 303 Foster Lillian J 723-0579 Harriert Committee Color Committee Wheat Chair Cales & Dantale

Cross Street

eet Source

Polk's City Directory

LONSDALE AVE 1989

650 Levesque Normand E @ 726-0154 656*Donahue Wm A @ 725-8625 Wilson Arth 5 PARKER ENDS 672 Malo David Malo Herbert @ 674 Doran Beatrice 723-3158 675★Mendez Jose @ 728-3314 676 Gumpson Wm @ 723-9468 677★Viera Renato Dalomba Julia M 728-3731 679 J F Auto Inc used cars 722-5707 684 Pickett Norman pntr @ 728-4124 687 Smith Susan Vacant 690 Caswell Betsy Mrs @ 695 West Side Social Club 722-0555 697 West Side Social Club (Overflow) ORCHARD BEGINS 9 705★Arias Eliz Mejia ★Perez Augusino W 723-6212 **★**Molano KENDALL ENDS 710 Dupre Raymond D @ 726-5951 Dupre Lillian M Mrs 711 Vacant 720 Beauregard Marie A Mrs 723-3376 Clouthier Beatrice Beauregard Maria 725#Minikon Frank **★Wright Al** Vacant 726*Quiros Luz @ 722-2133 Vance 729 Vacant 734 Vacant 738 Monastesse Genevieve Mrs @ 724-2759 PARK ENDS 743 Gonsalves Julino J ⊚ 725-8213 ★Schofield Amy Vacant CLAREMONT ENDS 756 Carnicaria International Meat Market 728-9000 768 Stanton James Post No 5 (Am Legion) 726-9579 HIGGINSON AV BEGINS 769 Garant Roger J @ 726-5834 771 Ro-Gar Products 726-5834 773 Old Time Donuts contrs 724-3536 Rayle Printing Co Shear Energy Hair Salon 725-0230 D J's Pizza 724-0860 1 EMMETT BEGINS CROSSMAN ENDS 800 Burger King Family Restaurant 725-6622 824 B & L Machinery Co dlrs 725-2983 834 Montgomery Wm P 725-2983 838 Cabral Frank D 728-6529 840 Vacant Perry Edna 726-3064 844 Vacant 846 Goulet Armand 724-3932 HENDRICKS BEGINS 851 Lopes Halario @ 723-1486 853 Rosario Maria Mrs ★Dalomba Joseph 728-7757 854*Caban Gabriel R 856 Vacant 857 Teixeira Anna Mrs **★Burgo Julio** UIMMEV AND CTECH PIACE PURPOTO

Target Street Cro

Cross Street

<u>Source</u> Polk's City Directory

HIGGINSON AVE 1984

DI RINO AT TO DEAD BID	
ZID CODE 00000	1
ZIP CODE 02860 ABBOTT INTERSECTS	1
21 Stanley Nancy	1
*Reis Alexander	
*Pimental Patricia	
25 Ferndes Louis G	1
Cabral Isabel 723-0653	•
Silva Carlos 724-2779	
27 Campbell Betty L Mrs 728-3217	
29 Cawley Leo J 726-1436	
31 Moran Paula J Mrs 725-1912	
BALDWIN INTERSECTS	
38 Seebeck Janet © 723-3229	
Beland David 724-5831	
*Racine Harold	
40 Gibau	
42*Correia E T 724-8532	
44 Pontbriand Diane F 724-0453	
46★Case Thomas 728-1465	
50*Sarault Brian J 727-0101	
52 Silva Frank R © 726-0723	
55 Woodlawn Baptist Church (Parking Lot)	
COOPER BEGINS	
HIGGINSON AV (CENTRAL FALLS) FROM 768 LONSDALE AV TO CITY LINE	
FID CODE COMM	
ZIP CODE 02863	
30 Dumas Brothers I G A Market 726-3600	
33 Whittet-Higgins Co mtl prods 728-0700	
47 Livco Car Wash 726-9561	
53 Vacant	
Vacant	
New England Paint Manufacturing Co Inc 422-4606	
THC 422-4000	
97	,
HIGH ST —FROM 210 MAIN NORTH	1
THROUGH CENTRAL FALLS TO	1
1345 BROAD	1
IOIO DITORD	
ZIP CODE 02860	
30 Tavares News Stand 725-6770	1
40 Circular Parking parking lot	1
SUMMER BEGINS	•
56 Pawtucket Public Library Annex	
725-3714	2
84★Ormond Michl T ⊚	
64#Ormond witch I @	

Cross Street

Source

Polk's City Directory

LONSDALE AVE 1984

LONSDALE AV (CF)—Contd 645*Mc Cusker Wm *Bruce Paul *Gagnon Scott 723-4834 *Kowal John P *Kowal John P 646 Palin Clarence R ⊚ 728-5529 650 Levesque Normand E ⊚ 726-0154 656 Joseph Florence Mrs ⊚ 724-0127 *La Casse Robt Wilson Arth PARKER ENDS 672 Borges John Malo Herbert © 674 Doran Beatrice 675 Pires Domingos C ⊚ 724-7418 676 Gumpson Wm 723-9468 677 Escobar 679 J F Auto Inc used cars 722-5707 684 Pickett Norman pntr © 728-4124 687 Vacant Dias P 690 Caswell Betsy Mrs © 726-5728 695 West Side Social Club 722-0555 697 West Side Social Club (Overflow) ORCHARD BEGINS 705*Camacho Candalaria 728-9105 Dias Parfidio 724-5242 Diaz Alvario 723-0867 KENDALL ENDS 710 Dupre Raymond D ⊚ 726-5951 711 Vacant 720 Beauregard Marie Mrs 725-9826 Clouthier Beatrice 725 * Wagner Richd 726-3136 *Couture Allen Vacant 726 Bobola Rene 722-2133 Richards Ellen *Oliveira Jacqueline 729 Vacant 734 *Clement Gayle 738 Monastesse Gerard © 724-2759 PARK ENDS 743 Gonsalves Julino J ⊚ Gonsalves Julio CLAREMONT ENDS 756 Carnicaria International Meat Market 728-9000 768 Stanton James Post No 5 (Am Legion) 726-9579 HIGGINSON AV BEGINS 769 Vacant Garant Roger J ⊚ 726-5834 771 Ro-Gar Products 791 Vacant Vacant 800 Burger Chef 726-4403 EMMETT BEGINS CROSSMAN ENDS 824 B & L Machinery Co dlrs 725-2983 834 Montgomery Wm P 725-2983 838 Cabral Frank D 728-6529 840 No Return Welfare John T 844 Vacant 846 Goulet Armand © 724-3932 HENDRICKS BEGINS 851*Luz Manuel 722-7421 853 De Lumba P Rosario Luis 725-9140 854 Campeau Ernest 856 Vacant 857 Pina Armand B 727-0633 858 Vacant 859*Monteiro John B *Fonseca Joseph 724-7974
860*Robert Maurice © 722-6217
*Ross Ovila 722-4802
861*Tweedie Beverly Mrs 727-1623
862 Robert (Overflow)

HIGGINSON AVE 1979

ZIP CODE 02860 ABBOTT INTERSECTS

21★Borges Unberto L Sousa Leonido 723-3025

*Tavares Robt E

25 Harvey Richd 722-7773

★Rudolph Karen

Loarenco Carmel V Mrs 722-7774

27 Campbell Betty L Mrs 725-3217

29 Cawley Leo J 726-1436

31 Moran Paula J Mrs 725-1912 BALDWIN INTERSECTS

33★Seebeck Janet C ⊚ ★Newton Charles ⊚ Vacant

40 Rogers Alf G 723-2783

42★Lambert James C Caso Joseph F 728-8586

44 Betelho John R

46★Caso Thos

48*Dodge Michl E

48½ No Return

50 Gaipe Manuel

52 Silva Frank R @ 727-0583

55 Woodlawn Baptist Church (Parking Lot) COOPER BEGINS

63 Kaszyk Kirk D 724-7950

65 No Return

5

HIGGINSON AV (CENTRAL FALLS) FROM 766 LONSDALE AV TO CITY LINE

ZIP CODE 02863

30 First National Stores Inc 726-2736

33 Whittet-Higgins Co metal prod 728-0700

47 Livco Car Wash 726-9561

53 Crown Motor Freight 724-4150
Ryder Truck Lines 728-6206
Equipment Leasing Corp trucks leasing
724-4151

;3

Cross Street

Source

Polk's City Directory

LONSDALE AVE

1979 PARKER ENDS 672 Smallwood Allen Malo Herbert @ 724-7723 674 Pickett Norman 675 D'Carvalho Joseph ⊚ 724-7343 676 Davenport Ann ⊚ 677 Vacant 679 Ferreira Auto Sales 725-8544 684 Davenport Geo ⊚ 725-6861 687 Maccarone Louis E *Soares John Jr Vacant 690 Caswell Betsy Mrs ⊚ 726-5728 695 West Side Social Club 726-9385 697 West Side Social Club (Overflow) ORCHARD BEGINS 705★Gamocho Joao Dias Parfidio Laurens Raphael KENDALL ENDS 710 Dupre Reymond D @ 726-5951 Dargy Louis 724-0358 Miozza Gloria Mrs 711 Keg Tap Inc The 726-9681 720*Beauregard Marie Mrs Clouthier Donald 725 Vallee Woody @ *Cameren Joan E *Knowles Danl 726 Bobela Rene 722-2133 Kravchuck Barbara **★Nicholas Patrica** 729 Vacant 734 Vacant 738 Vacant PARK ENDS 743 Gonsoles Julino © 725-3439 *Gousales Julio Andrews Virginia 728-7378 CLAREMONT ENDS 756 C F Butcher Shops Inc 728-9000 768 Stanton James Post No 5 (Am Legion) 726-9579 HIGGINSON AV BEGINS 769 Genereux Wilfred A 726-0889 Ro-Gar Products real estate Garant Roger J 726-5834 771 Vacant 791 Godin Fred Auto Sales used cars Emily's Classic Cars 728-4737 Jim's Towing Service 728-4737 799 Godin Fredk 806 Burger Chef 726-4403 801 No Return 1 EMMETT BEGINS CROSSMAN ENDS 824 B & L Machinery Co dlrs 725-2983 830 Vacant 838 Fanion Ronald R 840 Vacant Welfare John T 844 Armand's Barber Shop HENDRICKS BEGINS 851*Sliney Tina M 853 Reis Doris Mrs Pina Anna 727-0899 854 Vacant 856 Vacant 857 Windsor David Scott Rose Mrs 723-3876 Rear Vacant 858 Vacant 859 Stebenne Roger F

★Mc Kenna Robt ⊚ 727-0123
860 Rondeau Geo J 728-6304 Audette Eug A 661★Melkonian David A 802★Mennier Thos J ⊚ 728-2426 863 Lambert Aime J 722-0231

HIGGINSON AVE 1974

- 27 Campbell Betty L Mrs
- 29 Cawley Leo J 726-1436
- 31 Callebaut Urban 725-0627 BALDWIN INTERSECTS
- 38 Medeiros Joseph A 726-4280 Medeiros Manuel S ⊚ 724-4194 Campanile Anthony 728-5534
- 40 Kerr Ronald F
- 42 * Girouard Stepb

Provience Dolores Mrs 728-3207

- 44 Hyde James 722-9427
- 46 Silva Edw © 724-5053
- 48 Vacant
- 48½ ★ Rene Nelson A
- 50 Resendes Eduardo
- 52 Silva Frank R © COOPER BEGINS
- 63 * Kaszyk Kim A 725-6356
- 65 Kaszyk Raymond @ 726-1132

5

HIGGINSON AV (CENTRAL FALLS) FROM 768 LONSDALE AV TO CITY LINE WD 5

ZIP CODE 02863

- 30 First National Stores Inc 726-9311
- 33 Whittet-Higgins Co screw prod 728-0700
- 47 Livco Car Wash 728-0760
- 53 Crown Motor Freight 724-4150
 Equipment Leasing Corp trucks leasing
 724-4151

27

HIGH ST —FROM 210 MAIN NORTH THROUGH CENTRAL FALLS TO 1345 BROAD WD 6

ZIP CODE 02860

- 20 Tavares James news dlr SUMMER BEGINS
- 56 Municipal Welfare Bldg 728-2000 State Dept Of Social & Rehabilitative Servs area ii ofc 728-2000 State Dept Of Pub Welfare (Pawt Ofc) 724-9140
- 84 Ereio Albert S ⊚ 722-0598

Cross Street

Source

Polk's City Directory

LONSDALE AVE 1974

LONSDALE AV (CF)-Contd

Veiga Manuel KENDALL ENDS

710 Dupre Roymond D @ 726-5951 Dargy Leuis 724-0358

Miozza Gloria Mrs

711 The Keg tavern 726-9239

720 Beauregard Marie A ⊚ 725-9826 Nanassey Mary Mrs

George Clara Mrs 725 ★ Riendeau Relph ⑤

Zuluski Louise B Mrs 726-3099

Cranshaw Raymond

726 * Bobola Rene 722-2133

729 Vacant

734 Boss Ethel Mrs 722-4957

738 Monastesse Gerard J furn repr @ 724-2759

PARK ENDS

743 Vacant

CLAREMONT ENDS

756 Vacant

768 Stanton James Post No 5 (Am Legion) 762-9579

HIGGINSON AV BEGINS

769 Genereux Wilfred A 726-0889

Garant Reger J 726-5834

771 Ro-Gar Products real est

791 Godin Fred Auto Sales Inc used cars

799 Godin Fredk @ 726-2895

860 Burger Chef 726-4403

801 Cartwright Wm 724-7936

811 Vacant

EMMETT BEGINS CROSSMAN ENDS

824 B & L Machinery Co dlrs 725-2983

830 Vacant

638 Fanion Ronald R @

840 Carpenter Ray J 728-5948

Welfare John T

844 Armand's Barher Shop HENDRICKS BEGINS

851 Benoit Noel J @ 722-4190

853 Ropoza Russell A 724-6341 Blanchet Joseph F carp 723-8206 854 Seven V's Variety 725-8953

856 State Electric Sorvice elec contr 723-4728

857 Scott Delphis J @ 723-3876

Rear Metal Spraying Co The 725-2722

859 Stebenne Roger F

Blodgett Donald J 724-0031

860 Vacant

Vacant

Shaw Donald F

861 Lamontagne Geo C 724-0035

Meharg Marie A Mrs 725-4117 863 Lambert Aime J 722-0231 Ledoux Mitchell 725-3258

RES Anartmente

<u>Target Street</u> <u>Cross</u>

Cross Street

<u>Source</u>

Polk's City Directory

HIGGINSON AVE 1971

44 Hyde James 722-9427 46 Silva Edw ⊚ 48 Aguiar Victorino 725-7151 481/2 Cactano Antonio 50 Monteiro Joseph 52 Silva Frank R ◎ COOPER BEGINS 65 Kaszyk Raymond ⊚ 726-1132 HIGGINSON AV (CENTRAL FALLS) FROM 768 LONSDALE AV TO CITY LINE WD 5 ZIP CODE 02863 30 First National Stores Inc 726-9311 43 Vacant 47 Livco Car Wash 53 Crown Motor Freight 724-4150 Equipment Leasing Corp trucks leasing 724-4151 27 HIGH ST -FROM 210 MAIN NORTH THROUGH CENTRAL FALLS TO 1345 BROAD WD 6 ZIP CODE 02860 SUMMER BEGINS 56 State Dept Of Pub Welfare (Pawt Ofc) 724-9140 84 Vacant 85 Vacant 86 Ereio Alberto S Perry Fred 88 Coffee Shoppe The 102 Salvation Army The 723-9678 110 Monast Apartments Bsmt Beland Clifford A 101 D'Ambra Gladys M Mrs 102 Arrighi Mildred 723-7655 103 Speight Stanley E 724-3107 104 Reynolds Thornton F 105 Vacant 106 Chaput Esther Mrs 107 Smith Edw 108 Boudreau Claire Mrs 201 Loomis Hannah Mrs PA6-2364 202 Morley Sarah H Mrs 203 Haight Gertrude 723-0862 204 Wilkinson Mary A Mrs 205 Donahue Joseph 206 Quilty Mary E Mrs 722-1699 207 Summerly James F 722-0253 208 Eisenherg David 794-9111

Cross Street

<u>Source</u>

Polk's City Directory

LONSDALE AVE 1971 RAND ENDS 602 Snoopers Roost antiques 723-6008 606 Boudreau Leo W 726-3427 Culbertson Francis J 722-0718 610 Nowak Realty Co Przybyla Theo J @ 724-0235 611 Racine Raymond A 724-6308 612 Harnois Philibert 722-0774 616 Fernandes Bernardino 723-0552 618 Stevenson Andrew S 722-0346 Guslin Danl J 722-5732 619 Briden Geo C @ 723-0656 623 Sweet Mildred M ◎ 722-7342 626 Michalenka Anna Mrs ⊚ Laranjo Antonio D 724-7665 627 Smith Raymond F De Marco Louis A 726-4662 Pariseau James 633 Chase Roy W Soares Marion P @ WATSON ST ENDS 636 Sam's Cafe 726-9330 Dyman Matthew G 722-0222 Dyman Saml T 722-8755 BROOK ST BEGINS 645 Dubois Leo J 722-7308 646 Palin Clarence R 726-1609 650 Levesque Normand E ◎ 726-0154 656 Joseph Manuel J @ Oliver Kenneth J 725-0473 PARKER ENDS 672 Christodalos Sharon Mrs Malo Herbert @ 674 Laurence Joseph A 675 Almeida Antonio 676 Diggle Harry 677 Dicarvalho Joseph @ 679 Vacant 684 Davenport Geo @ 725-6861 685 Gagne Arth J @ 687 Loramee Arnold Maccarone Louis E 722-5025 690 Aspinwall Ellen 726-5728 695 West Side Social Club 726-9385 ORCHARD BEGINS 697 West Side Social Club (Overflow) 705 Cote Robt A 722-3659 Joseph Manuel 725-7719 KENDALL ENDS 710 Dupre Raymond D @ 726-5951 Dargy Louis Miozza Gloria Mrs 711 Adam's Cafe tavern 726-9651 720 Beauregard Marie A ⊚ 725-9826 Landry Joseph N 724-1691 Dube Elsie Mrs 725 Stempien Adam @

Zuluski Louise B Mrs

Cameron Thos

Cross Street

Source

Polk's City Directory

LONSDALE AVE 1971

LONSDALE AV (CF)-Contd

726 Ustas Andrew

729 No Return

734 Vacant

738 Monastesse Gerard J @ 724-2759 PARK ENDS

743 Gonsalves Juvilino J ⊚ 724-0198 CLAREMONT ENDS

756 Mil-Ga Cleansers Inc 725-0348

768 Stanton James Post No 5 (Am Legion) 762-9579

HIGGINSON AV BEGINS

769 Genereux Wilfred A 726-0889 Garant Roger J 726-5834

771 Vacant

791 Godin Fred Auto Sales Inc used cars

799 Godin Fredk @ PA6-2895

800 Burger Chef 226-4403

801 Cartwright Wm 724-7936

819 Vacant

EMMETT BEGINS CROSSMAN ENDS

824 Vacant

830 Park Jobbers & Novelty Inc 726-9236

838 Lachance Cath A Mrs 722-0480

840 Spaulding Cath Mrs 723-4111 Welfare John T

844 Armand's Barber Shop HENDRICKS BEGINS

851 Beaulieu Mary Mrs @ 726-1209 853 Benoit Noel J 722-4190 Blanchet Joseph F carp 723-8206

854 Elie's Variety 856 State Electric Service elec contr 723-4728

857 Scott Delphis J @ 723-3876

Rear Metal Spraying Co The 725-2722

859 Stebenne Roger F Blodgett Donald J 724-0031

860 Jensen Aldric R 722-1184 Dumas Robt A 722-7667 Mc Cabe Robt J

861 Lamontagne Geo C 724-0035 Meharg Marie A Mrs 725-4117

863 Lambert Aime J 722-0231 Ledoux Mitchell 725-3258

868 No Return

869 Kenny Francis G @

871 Asermely Saml G ⊚ 723-8192 Campeau Marie A Mrs 726-5946

872 Nadeau Armand L 722-3178

873 Morris Thos J 723-5226 Morris Joseph A 722-7405

874 Bolduc Germain 724-3457

875 Morris Winifred Mrs ⊚ 723-1462

876 Cousineau John J @ 726-4318 CLEVELAND BEGINS

881 Vacant

883 No Return

WEST HUNT ENDS

884 Roland's Lunch (Overflow)

888 Roland's Lunch

901 Saint Matthew's Convent 723-9422 DEXTER ENDS

904 Vacant

BAGLEY BEGINS

7119363.9 Page: A47

HIGGINSON AVE 1966

COLLINS MARY M MRS 725-2602 27 0 HEARN CATH M PA3-3594 29 CAWLEY ANNIE M 726-1436 31 CALLEBOUNT URBAN PAS-0627 -- BALOWIN INTERSECTS 38 DE ROSA DONALO B . 724-2006 OUFFY WALTER J PA2-0458 SAINT PETER MARJORIE MRS 726-4223 42 KELLY MARY PA3-1384 ELLIOTT JOHN R ● PA6-2769 44 HYDE JAMES M PA2-9247 46 HOEGEN MARTIN A 725-8809 47 PIZZO LAURA MRS 48 VACANT 48% VACANT 49 DESROCHERS CECILE MRS PA2-6389 50 SILVA FRANCISCO R • PA2-7117 52 SULLIVAN JAMES E PAS-1038 49 JONES ROBT S 725-6284 --- COOPER BEGINS 63 VACANT 65 KASZYK RAYMOND . PA7-1132 HIGGINSON AV (CENTRAL FALLS)-FROM 768 LONSOALE AV TO CITY LINE WO REX'S COAT & SUIT CO INC CLOTHING MFRS PA5-6950 FIRST NATIONAL STORES 726-9311 W B REALTY THRIFTY T CAR WASH INC • 724-5280 HIGH ST -FROM 191 MAIN NORTH THROUGH CENTRAL FALLS TO 1345 BROAD WO 6 ALSO WDS 1 AND 2 (CENTRAL COUNTING HOUSE THE 4 LITTLE ACORN BOOK SHOP PAS-5S33 VACANT 7 GARONER BUILDING FLOORS 20 FL M A C FINANCE PLAN INC LOANS PA2-5410 ROOMS 21 ADAMS DRUG CD (STGE) 22 VACANT 23 CASPERINI TULIO

Polk's City Directory

LONSDALE AVE 1966

411		189
LONS	DALE AV (CF) CONTO	18
	VACANT	1000
689	LABBE GED C	8
	HOWARD MARGT P MRS PA2-1101 BOUTHELETTE GEO	
	ASPINWALL ELLEN PA6-5728	8
	WEST SIDE SOCIAL CLUB	8
	PA6-9385	a
696	PEARSON'S VARIETY VARIETY PA6-9019	8
<u></u> 0	RCHARO BEGINS	
	WEST SIDE SOCIAL CLUB	8
	(OVERFLOW)	8
705	JOSEPH MANUEL	8
	KELLY PHYLLIS J MRS	-
	ENDALL ENDS	8
	BRADY WM B	8
	ADAMS CAFE TAVERN PAG-9651	8
	BEAURECARD MARIE A . PA5-9826	9
	LANDRY JOSEPH PA5-9282	
725	SAINT PIERRE STELLA A MRS STEMPIEN ADAM •	9
, 25	LITTLE BERT B 722-0839	
	VACANT	-
726	STATE ELECTRIC SERVICE	9
	PA3-4728 BONNELL CONALO J	9
	SMYTHE WM 723-4728	9
	PETERSON NELS W 724-3857	
	VACANT	9
	MC NAMARA JAMES G	9
	MONASTESSE GERARD J •	
.50	PA4-2759	9
	ARK ENCS	
743	GONSALVES JUVILIND • PA3-9236	9
	CLAREMONT ENOS	1
	MIL-GAT CLEANSERS INC	1
	PA5-0348	9
768	STANTON JAMES POST NO 5 (AMERICAN LEGION)	
	IGGINSON AV BEGINS	9
	GENERELX WILFRED A PA6-0889	
	GARANT ROGER J PA5-0491	
771	GARACE DOORS PAS-0491	1
791	GODIN FRED AUTO SALES INC	1
	USED CARS	1
	GODIN FREDK • PA6-2895	1
800	SAINT MATTHEW'S BOY SCOUT	i
E	MMETT BEGINS	I
801	PROSSER THOS G PA3-4797	1.
	GOBEIL CELINA MRS	1
	UNIVERSAL REBUILDERS AUTO	-
02-	REPR 726-8907	1 7
	The second second	1
	MMETT BEGINS	-
	EMMETT BEGINS	1
838	LACHANCE JOSEPH S 722-3697	1
840	SPAULDING CATH MRS PA3-4111	I
844	WELFARE JOHN ARMANO'S BARBER SHOP	1
044	GOULET ARMANO 0 724-3932	1
	HENDRICKS BEGINS	I
	BEAULIEU ELPHEGE • PA6-1209	١,
853	MARCOTTE ALBINA MRS PA2-3080 BLANCHET JOSEPH F PA3-8206	100
854		1
856		1
857	METAL SPRAYING CO THE PA5-2722	
	SCOTT DELPHIS J • PA3-3876	1
859	STEBENNE ROGER F PA2-7514	
	SAINT ONGE ROGER 724-3917	
	NO RETURN COE WM A 725-4258	1
	LAMONTAGNE GED J	1
	MEHARG MARIE A MRS PA5-4117	1
862	VACANT	1

Target Street Cross Street Source Polk's City Directory

HIGGINSON AVE 1961 ranow worman w 9∆Ishmael Dorothy M Mrs Abbott crosses 21 △ Desautell Leo A ⊚ McKinley Helen R Mrs ③ 25△Abrams Lillian Mrs △ Coyle Veronica M ↓ Wilson Jos P 27△O'Hearn Cath M McArdle Jas J r-29 Cawley Annie M Baldwin crosses 38∆Livingston Marion T I 0 △Duffy Walter J StPeter Marjorie Mrs 40 Vacant 42∆Bourgeois Sarah A Mrs @ A Winterbottom Arth 44∆Hyde Jas M 46△ Caldarone Gaetano 47△Buteau Allen N 48 Drake Grace Mrs △Conway Vera Mrs 494 Curran Fred

50∆Silva Frank ⊚

51 Davenport Wm E

52∆Sullivan Jas E

Cooper begins

63 Vacant

65∆Kaszyk Raymond ⊚

59

HIGGINSON AVENUE (Central Falls)— From 800 Lonsdale av to City Line wd 5 0∆Rex Coat & Suit Co Inc @ mfrs

7119363.9 Page: A50

<u>Target Street</u> <u>Cross Street</u> <u>Source</u>

✓ - Polk's City Directory

LONSDALE AVE 1961

676∆ Poynter Saml 677∆Giblin Helen E Mrs ⊚ Kelly John 679∆Blackstone Motors 684∆ Davenport Geo ⊚ 685 Gagne Arth J ⊚
687 No Return
689 Labbe Geo C
Robidou Alf J
690∆Aspinwall Ellen
695∆West Side Republican Social Club 696∆ Pearson Bros variety Orchard begins 705∆Dubois Roger E Landry Roland T AJoseph Manuel KendaIl ends 710∆Charette Arth ∆Morissette Hermas A 💿 719∆Adam's Cafe 720∆Beauregard Marie A ∆McCorie Helen ∆Brisson Jos 725∆Stempien Adam ⊚ △Augustine Mary Mrs 726 Stedjick Stanislaus ∆Bonnell Donald J AState Electric Service 729 Vacant 734 A Henshaw Francis J Clement Clara Mrs 738∆ Minastesse Olivine Mrs © Park ends 743∆Gonsalves Juvilino Gonsalves Danl Dias David Claremont ends 756∆ Mil-Gat Cleansers Inc 768∆James Stanton Post No 5 American Legion @ 769\(\Delta\)Generoux Wilfred A
\(\Delta\)Garant Roger J
\(\Delta\)Ro-Gar Products
791 Godin Fred Auto Sales used cars 799 Godin Fredk 800 StMathieu's Boy Scout Troup Higginson av begins 801∆Prosser Thos G Gobeil Celina Mrs 819∆Midway Flying A Scrvice 824∆Watt Bros Inc trucktrucking ⊚ rear∆Central Falls Public Works Dept Filtration Plant Emmett begins Crossman ends 838 Roy Antonin J 840 Elderkin Edmund J 844 Goulet Albert Armand's Barber Shop ∆Goulet Armand ⊚ Hendricks begins 851∆Beaulieu Elphege ⊚ 853∆Marcotte Alonzo 853 Blanchet Francis 854∆George's Market

Polk's City Directory

LONSDALE AVE 1957

564¢Knowlton Mary E Mrs 725△Stempien Adam ⊚ 5644Knowlton Mary E Mrs
North Gladys
4Hannon Mary Mrs
Clitton st begins
5764Potter Clara J Mrs
Johnson Martha E Mrs
4Carter Wm W ©
5804McNaught Jas F
4Maynard Ernest J
5844Russell Lillian Mrs
Hargreayes John T Augustine Mary Perry Jos 726 Sledjick Mary K Mrs © Smyth Wm
734 Aenshaw Francis J
Henshaw Ephraim J ©
AClayton Geo 7384Monastesse Olivine Mrs Hargreaves John T 5864Heathcote Chas Park st ends 743 Gonsalves Juvilino © Gonsalves Danl 590 Dutton Andrew 592 Vacant Claremont st ends Barber av begins 6010B & S Super Service 7564Mil-Gat Cleansers 768 American Legion, James Stanton Post No 5 ©
769AProulx Robt A
AGarant Roger J
791 Godin Auto Sales used cars 611△Jeffrey David △Brown Wilson 799 Godin Fredk Godin Alf Rand ends Hand ends
612 Lepine Antoine
6164Howard Jas W ©
6184Collier Allan
619 Mojzesz Josephine A ©
6234Sweet Mildred M ©
626 Michalenka Platon ©
4StPierre Leo
6274Ryfa Jos P jr
Byrne Rose ©
Bouthillette Geo J
633 Conner Roht N 800 StMathieu's Boy Scout Troup 801 Duquette Gedeon J 812 Central Falls Filtration Plant 81940wl's Tydol Station Crossman st ends 8244Watt Bros trucking Emmett st begins 838⊅Elderkin Edwin J 633 Conner Robt N
Davey Jos D
Watson st ends
636 Sam's Cafe **ACaouette** 840 Beaudry Rose Mrs © 844 Goulet Armand barber 845 Lee's gas sta ARenasiewiez Mary Mrs ⊚ ADyman Mathew G Hendricks st begins 851△Beaulieu Elphege © Brook st begins
645\(^Area Rennick Jas H jr McCaffrey Agnes M \end{area}
646\(^Area Tetlow Zachariah \end{area}
Anield Jos G
650\(^Area Bedard Geo J \end{area}
656\(^Area Fortier Odias plmbr h \end{area} 8534Marcotte Alonzo 4Pothier Helen Mrs Depth of the Potential Articles Area Alachapee Ins. S. Articles Area Articles Area Articles Area Articles Area Articles A △Fournier Roland E Galligan Gladys ALachance Jos S 861 Mongeau Bernard Parker st ends 672\(^Laliberte\) Omer \(^{\text{O}}\)
674\(^{\text{D}}\) Brewer Eva Mrs
675\(^{\text{H}}\) Unt John F Duckworth Calvin C 862 Roe Ellery T jr 863 Lambert Aime ALedoux Mitchell jr 676△Poynter Saml 677△Giblin Helen E Mrs © 868△Paulhus Laura Mrs 677 Giblin Helen E Mrs
Kelly John
679 Lonsdale Mfg furn reprs
Blackstone Motors
684 Davenport Geo ©
685 Gagne Arth J ©
689 Labrecque Geo H
Massey Conrad J
Aducharme Jos △StJean Jos AStJean Jos
AMillette Adolphe
Laquerre Jos
869 Kenny Michl ©
871 Asermely Saml G
Campeau Henry R
873 Canavan Robt L
AMorris Martin J jr
AMorris Jos A
874ALambert Zepherin ©
Choinard Albert A
875AMorris Winifred Mrs Massey Conrad J
ADucharme Jos
690Aspinwall Jas ©
695AWest Side Republican
Social Club
696APearson Bros variety
705ABerard Hector M ©
Joseph Janet H
ALefebyre Roland
Kendall st ends
Orchard st begins
710 Gendron Leo 8754Morris Winifred Mrs ⊚. 8764York Printing Co Cleveland st begins 881 Vacant store
W Hunt st ends
884 Bee's Spa
901 \(^{\text{Sisters of StAnn}}\)
904 Karagianes Mino F va-710 Gendron Leo AMorrissette Hermas A riety 719△Stempien Adam liquors 720△Beauregard Marie A [©] Bagley st begins 910 Vacant store ∆Turenne Jos ∆Allen Earl 918∆Massicotte Leo P △Rodericks Frank

Cross Street

<u>Source</u>

Polk's City Directory

LONSDALE AVE 1953

697 Forester's Hall 7054Berard Hector M © Joseph Manuel Chaput Roland M Kendall st ends
Orchard st begins
710 Gendron Leo
Amorrissette Hermas A ALongtin Rene A
7194Stempien Adam liquors
720 Beauregard Marie A ◎
4Turenne Jos
Poutre Albert F
7254Stempien Adam ◎ Stempien Raymond A Perry Jos 726 Sledjick Mary K Mrs © Smyth Wm 734 Refino Earle H Henshaw Francis J Henshaw Ephraim J ⊚ 738△Monastesse Olivine Mrs Park st ends
7434Gonsalves Juvilino ©
Gonsalves Danl
Claremont st ends 768 American Legion, James Stanton Post No 5 © 769 ABattison Thos H Garant Roger J ACatineault Arth J 7914Central Falls Filling Sta
799 Godin Fredk
Godin Alf
800 StMathieu's Boy Scout
Troup 2
801 Duquette Gedeon J Davignon Alex 812 Central Falls Filtration Plant 819 Art's Tydol Station Crossman st ends Emmett st begins 8384 Crawley Patk J
840 Beaudry Rose Mrs ©
844 Goulet Armand barber
845 Oscar's gas sta
Hendricks st begins
851 Barthelemy Albert
8534 Minasian Stephania Mrs
4 Pothier Helen Mrs
854 First National Stores
Inc gros Inc gros 856 Vacant store
Railton Mary Mrs
8574Metal Spraying Co The
AScott Delphis ©
859 Scott Marcel J
Corriveau Albert
8604Coe Wm A
ALachance Jos S
861 Mongeau Bernard
Mongeau Lucien
8624Roe Ellery T ir
863 Lefebvre Laura Mrs
ACampeau Louis N
868 O'Connell Wm J
APaulhus Laura Mrs
ABedard Yvonne Mrs
Laquerre Jos
Millette Adolphe
Harbeck Rose Mrs
869 Kenny Michl ©
871 Asermely Saml G
Campeau Henry R 856 Vacant store

<u>Source</u>

Polk's City Directory

LONSDALE AVE 1948

Watson st ends 636⊅Renasiewicz Mary Mrs liquors h © Diman Max Brook st begins 6564Fortier Odias plmbr h △Bloomer Wm E Parker st ends 672△Laliberte Omer ⊚ 674 Mayall Irving 675△Hunt John F 676△Poynter Saml 6774Giblin Patk J ◎ 683△LaDuke Motor Sales 684 Davenport Geo ◎ 685 Gagne Arth J © 689 Cormier Cecil J Charland Jos △Happenny Peter T 690 Aspinall Jas ⊚ 695 West Side Republican Social Club

696 Pearson Bros
697 Forester's Hall
705 Chaput Roland M

ABerard Hector M

Output

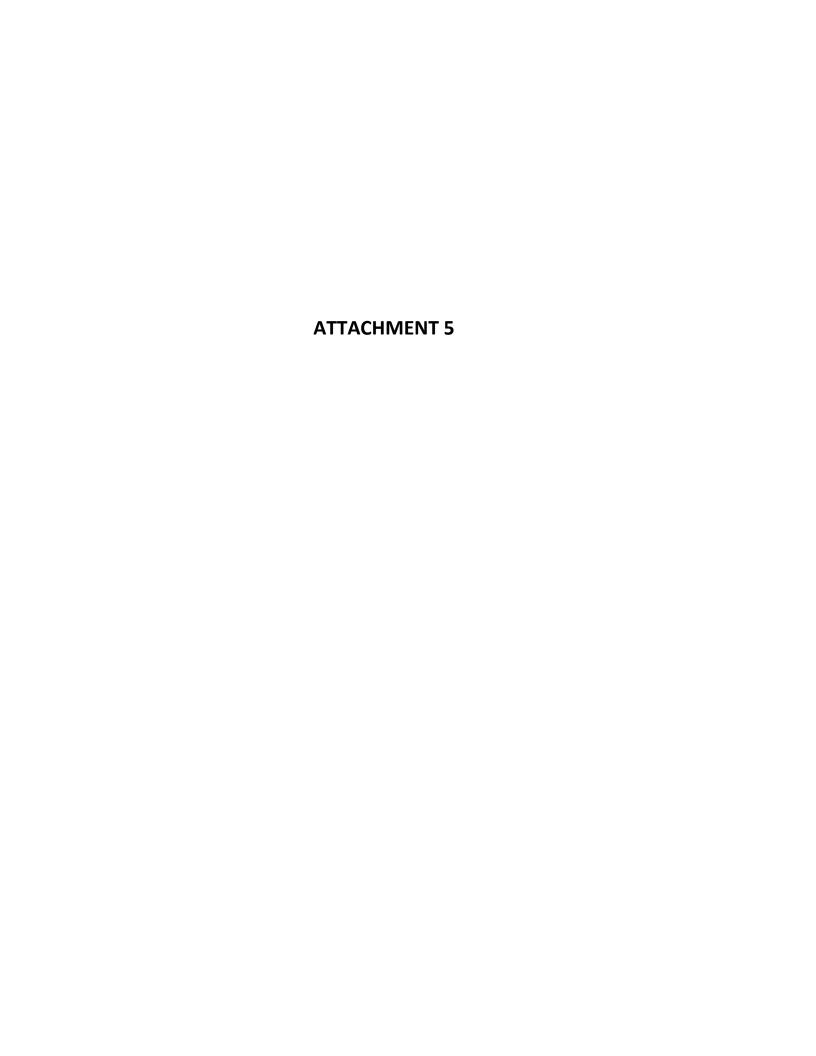
Description: △Kearney Jas A Kendall st ends Orchard st begins 710 Forand Fred L Longtin Amelia Mrs ALongtin Rene A 7194Stempien Adam liquors 720 Beauregard Marie A @ Poutre Albert F Turenne Jos 725△Stempien Adam © Moon Mary A Mrs Moreau Annie Mrs 726 Renaud Flora M Mrs Sledjick Mary K Mrs © 734 Henshaw Ephraim J © Henshaw Francis J Henshaw John E 738△Monastesse Olivine Mrs Park st ends 743△Gonsalves Juvilino © Gonsalves Danl Claremont st ends 7684American Legion, James Stanton Post No 5 7694Battison Thos H Fortier Ernest J Joinville Theo 791 Central Falls Filling Sta 799 Godin Alf © Godin Armand E
800 StMathieu's Boy Scout
Troop 2 801 Greaves Jas Cloutier Wilfred

Polk's City Directory

LONSDALE AVE 1943

656 Bl Fc F 672 Pa O' 674 Mc 675 Lc 676 Pc 677 Gi 679 W 684 Da 685 Fa 689 Pe	atuszek Jos Brook st begins CCaffrey Agnes M © Orman Wm A Etlow Zachariah © ield Jos G Oomer Wm E Ortier Odias © Parker st ends Arfitt Clifton Brien Edwd J CAdams Ellen Mrs Ord Grace Mrs Oynter Saml iblin Patk J © Vest Side Fuel gas sta avenport Geo © arrell Louis J Eggy's Beauty Parlor Ormier Cecil J	791 799 800 801 812 819 824 834 838 840	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout Troop 2 Greaves Jas Howe Fredk D Central Falls Filtration Plant Gilbane F Inc gas sta Crossman st ends Watt Bros trucking Emmett st begins Lupton John A Hill Edw McKenna Frank A Goulet Armand barber
656 Bl Fc F 672 Pa O' 674 Mc 675 Lc 676 Pc 677 Gi 679 W 684 Da 685 Fa 689 Pe	CCaffrey Agnes M © crman Wm A ctlow Zachariah © deld Jos G doomer Wm E crtier Odias © carker st ends arfitt Clifton Brien Edwd J cAdams Ellen Mrs cord Grace Mrs cynter Saml delin Patk J © cest Side Fuel gas sta avenport Geo © arrell Louis J eggy's Beauty Parlor	791 799 800 801 812 819 824 834 838 840	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout Troop 2 Greaves Jas Howe Fredk D Central Falls Filtration Plant Gilbane F Inc gas sta Crossman st ends Watt Bros trucking Emmett st begins Lupton John A Hill Edw McKenna Frank A
656 Bl Fc F72 Pa O' 674 Mc 675 Lc 676 Pc 677 Gi 679 W 684 Da	CCaffrey Agnes M © orman Wm A etlow Zachariah © ield Jos G loomer Wm E ortier Odias © Parker st ends arfitt Clifton Brien Edwd J eAdams Ellen Mrs ord Grace Mrs oynter Saml iblin Patk J © Jest Side Fuel gas sta	791 799 800 801 812 819 824	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout Troop 2 Greaves Jas Howe Fredk D Central Falls Filtration Plant Gilbane F Inc gas sta Crossman st ends Watt Bros trucking Emmett st begins Lupton John A
656 Bl Fc P 672 Pa O' 674 Mc 675 Lc 676 Pc 677 Gi 679 W	CCaffrey Agnes M © crman Wm A ctlow Zachariah © ield Jos G loomer Wm E crtier Odias © Carker st ends arfitt Clifton Brien Edwd J cAdams Ellen Mrs cord Grace Mrs cynter Saml liblin Patk J © Test Side Fuel gas sta	791 799 800 801 812 819	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout Troop 2 Greaves Jas Howe Fredk D Central Falls Filtration Plant Gilbane F Inc gas sta Crossman st ends Watt Bros trucking Emmett st begins
656 Bl Fc F 672 Pa O' 674 Mc 675 Lc 676 Pc	Grook st begins cCaffrey Agnes M © crman Wm A ctlow Zachariah © ield Jos G loomer Wm E crtier Odias © Carker st ends arfitt Clifton Brien Edwd J cAdams Ellen Mrs cord Grace Mrs	791 799 800 801 812 819	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout Troop 2 Greaves Jas Howe Fredk D Central Falls Filtration Plant Gilbane F Inc gas sta Crossman st ends Watt Bros trucking
656 Bl Fc F 672 Pa O' 674 Mc 675 Lc 676 Pc	Grook st begins cCaffrey Agnes M © crman Wm A ctlow Zachariah © ield Jos G loomer Wm E crtier Odias © Carker st ends arfitt Clifton Brien Edwd J cAdams Ellen Mrs cord Grace Mrs	791 799 800 801 812 819	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout Troop 2 Greaves Jas Howe Fredk D Central Falls Filtration Plant Gilbane F Inc gas sta Crossman st ends
656 Bl Fo F0 672 Pa O' 674 Mo 675 Lo	Caffrey Agnes M © crman Wm A ctlow Zachariah © ield Jos G loomer Wm E crtier Odias © Carker st ends arfitt Clifton Brien Edwd J cAdams Ellen Mrs	791 799 800 801 812	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout Troop 2 Greaves Jas Howe Fredk D Central Falls Filtration Plant Gilbane F Inc gas sta
656 Bl Fo F 672 Pa O' 674 Mc	Brook st begins cCaffrey Agnes M © orman Wm A ctlow Zachariah © ield Jos G loomer Wm E ortier Odias © Parker st ends arfitt Clifton Brien Edwd J cAdams Ellen Mrs	791 799 800 801 812	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout Troop 2 Greaves Jas Howe Fredk D Central Falls Filtration Plant Gilbane F Inc gas sta
656 Bl Fo P 672 Pa	Brook st begins cCaffrey Agnes M © orman Wm A etlow Zachariah © ield Jos G loomer Wm E ortier Odias © Parker st ends arfitt Clifton	791 799 800 801 812	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout Troop 2 Greaves Jas Howe Fredk D Central Falls Filtration Plant
656 Bl	Brook st begins cCaffrey Agnes M © orman Wm A etlow Zachariah © ield Jos G loomer Wm E ortier Odias © Parker st ends	791 799 800	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout Troop 2 Greaves Jas Howe Fredk D Central Falls Filtration
656 Bl	Brook st begins cCaffrey Agnes M © orman Wm A etlow Zachariah © ield Jos G loomer Wm E ortier Odias ©	791 799 800	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout Troop 2 Greaves Jas
656 Bl	Brook st begins cCaffrey Agnes M © orman Wm A etlow Zachariah © ield Jos G loomer Wm E	791 799 800	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout Troop 2
	Brook st begins cCaffrey Agnes M © orman Wm A etlow Zachariah © ield Jos G	791 799	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf StMathieu's Boy Scout
	Brook st begins cCaffrey Agnes M © orman Wm A etlow Zachariah ©	791 799	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta Godin Alf
	Brook st begins cCaffrey Agnes M © orman Wm A	791	Coyle Wm Davenport Jas Langley Zella Mrs © Central Falls Filling Sta
No	Brook st begins cCaffrey Agnes M ©		Coyle Wm Davenport Jas Langley Zella Mrs ©
		769	Coyle Wm Davenport Jas
E		769	
	otuggole Too		Stanton Fusi No a
	liquors h ©	100	Stanton Post No 5
	enasiewicz Mary Mrs	768	Claremont st ends American Legion, James
T.	Watson st ends	747	Vacant
	onner Robt N avey Jos D		Gonsalves Danl
	ugg Walter F	743	Gonsalves Juvilino
	alo Leo A		Park st ends
	yrne Rose ⊚		n
	Pierre Leo	100	© Althur I J
626 M	ichalenka Platon ©	738	Henshaw Gladys Mrs Monastesse Arthur T J
623 Sa	anSouci Omer J		Henshaw Francis J
	eer Fredk A	734	Henshaw Ephraim J @
	oward Harold		Adamski Vincent
618 C	oward Jas W [©] ollier Allan		⊚ *
	eane Pierce J		Sledjurick Mary C Mrs
	Rand ends	726	Renaud Randolph E
	legg Mary J Mrs		Moreau Annie Mrs
611 R	ockliffe Emily Mrs 🛛	, 20	Moon Mary A Mrs
610 Zi	elinski Andrew ©	725	Stempien Adam ©
St	John Myra		Turenne Jos
606 Be	ousquet Albert L	120	Beauregard Marie A Poutre Albert F
	eller Jos gro		Stempien Adam liquors
	Barber av begins	710	Longtin Rene
	wolek's Mkt		Forand Fred L
	elley Walter F wolek Walter	710	Longtin Albini
ESC TO	allahan John W	144 (4.700)	Orchard st begins
	ibbons John F		Kendall st ends
	cNaught Jas F		Maddock Albert
580 W	Vilkins Horace	.00	Little Lillian F ©
K	elley John W	705	Heaton Richd
	arter Wm W ©	697	Pearson John P variety Forester's Hall
	Cilition st begins	606	
TA	onroy Andrew J ove Alex B ©	090	Club
	iller Jos	695	Aspinall Jas © West Side Republican
	arlow Chas H	000	Northup Herbert C
°FGC P	alana Louis		Levesque Jos E
556 A	niska Kazima ◎	Buil	ding—Con

NGINEERING GENERAL


Cross Street

<u>Source</u>

Polk's City Directory

LONGDALE AVE 4020

LONSDALE AVE 1938 PAWTUCKET-CENTRAL FALLS HOUSE Lonsdale Av-Con 720 Beauregard Celenise 548 Vacant Mrs Taylor Walter 556 Chevalier Lorenzo J Oniska Kazima ® 725 Stempien Adam © 560 Roberts Percy
White Jos N
564 Desplaines Edgar D
Hannon Wm J
Love Alex B © Moon Mary A Mrs Moreau Annie Mrs 726 StLaurent Leo Sledjurick Mary C Mrs Clifton st begins 576 Carter Wm W ® Adamcik Vincent 734 Henshaw Ephraim J @ Henshaw Francis J MacIntosh John D StLaurent Stasia Mrs 580 Hanson Henry G 738 Monastesse Arthur T J Wilkins Horace 584 Gibbons John F Park st ends Collier Allan 743 Pearson Wm 747 Portugese Mission 586 LeFebvre Albert 769 Langley Warthaniel ©
Howard Merle W Mrs
Cople Wm
701 Central Falls Fills 590 Leach Robt 592 First National Stores Inc gros Barber av begins 602 Teller Jos gro 606 Barber Louise Mrs Waters Jas F 791 Central Falls Filling Sta 799 Godin Alf [®] 800 StMathieus Athletic 610 Langevin Geo N ® 611 Rockliffe Emily Mrs © Clegg Mary J Mrs Assn 612 Derouin Leo P 616 Smith Gilbert W 801 Greaves Jas Mongeau Henry 618 Tomlinson Harriet Mrs Valentine Frank Emmett st begins Crossman st ends 619 Teer Fred A 623 Wade John T © 824 Ledoux Michell service sta 626 Michalenka Talia
StPierre Leo Watt Bros trucking rear Central Falls Filtration StPierre Leo
627 Bednarski Stanley
Byrne Rose ©
DiScuillo Peter
632 Same as 636 do
633 Conner Robt N
Reilly Wm H
Watson st ends Plant 830 Emmett Mortimer © 832 Vacant 838 Hill Emma Mrs 840 Kennedy Jas 844 Goulet Armand barber 846 Vacant 036 Renasiewicz Simon li-Hendricks st begins quors h · Morin Chas F 851 Fisher Jas I 853 Pothier Roland R
Hindle Saml
854 First National Stores Brook st begins 645 Hackett Araletta G Mrs McCaffrey Agnes M © 646 Tetlow Zachariah © Nield Jos G Inc gros 856 Vacant 857 Vacant 858 Daigle Peter Reid Julia Mrs 859 Corriveau Albert 656 Vacant Parker st ends 672 Poynter Saml Horan Margt J Mrs © 674 McAdams Peter 675 Lord John 676 Kuszewski Stanley 677 Giblin Patk J Haigh Carl 863 Demers Oza R Lefebvre Chas J 868 Bedard Yvonne Mrs Jacob Mary Mrs 679 Vacant 684 Kennedy J Raymond © 685 Farrell Louis J 689 Donovan Thos G © Levesque Jos A Harbeck Rosanna Mrs Harbeck Rosanna Mr Laquerre Jos Paulhus Wilfred J Robinson Hugh 869 Kenny Michl © 871 Gagnon Alcide C Campeau Henry R 873 Diamontopolos Nick Smith Grace Mrs Tully Patk J West Hunt st ends 874 Lambert Zepherin j Northup Herbert Aspinall Jas © 695 West Side Republican Club 696 Pearson John J variety 697 Forester's Hall 705 Heaton Richd Little Lillian F © Smith Howell J Kendall st ends Orchard st begins 874 Lambert Zepherin jr 💿 Lambert Edmund 875 Morris Martin J © 710 Longtin Albini Forand Fred L 876 Lambert Bros gros Donahue Alice M Fanning Thos Gauthier Arthur 719 Stempien Adam liquors 878

PHASE I ENVIRONMENTAL SITE ASSESSMENT & LIMITED SUBSURFACE INVESTIGATION

756 & 770 Lonsdale Avenue Assessor's Plat 9, Lots 26 & 203 Central Falls, Rhode Island

Prepared for:

Thomas E. Deller, AICP
City of Central Falls
Department of Planning and Economic Development
1280 High Street
Central Falls, Rhode Island

Prepared by:

SAGE Environmental, Inc. 301 Friendship Street Providence, Rhode Island 02903

SAGE Project #S4350

December 21, 2022

TABLE OF CONTENTS

EXECU	JTIVE	SUMMARY	
FIND	INGS		V
OPIN	NONS		VI
Con	CLUSIO	N	ıx
1.0	INT	RODUCTION	
1.1		POSE	
1.2		PE OF SERVICES	
1.3		IFICANT ASSUMPTIONS	
1.4		IAL TERMS AND CONDITIONS	
1.5		RELIANCE	
1.6		ATIONS	
1.7		4 GAPS	
2.0		BJECT PROPERTY DESCRIPTION	
3.0		ER PROVIDED INFORMATION	
3.1		RONMENTAL LIENS OR ENVIRONMENTAL LAND USE RESTRICTION (ELUR)	
3.2		IALIZED KNOWLEDGE	
3.3		JATION REDUCTION FOR ENVIRONMENTAL ISSUES	
3.4		NER, PROPERTY MANAGER AND OCCUPANT INFORMATION	
3.5		SON FOR PERFORMING PHASE I	
3.6		VIOUS ENVIRONMENTAL ASSESSMENTS	
4.0		CORDS REVIEW	
4.1		RONMENTAL RECORD SOURCES (FEDERAL AND STATE)	
	!.1.1	Subject Property Related Records Review/Discussion	
	i.1.2	Surrounding Locations Related Records Review/Discussion	
	1.1.3	Non-Geocoded Records Review Summary	
	_	NICIPAL RECORDS AND FILE REVIEWS	
	1.2.1	Chain-Of-Title Records	
	1.2.2	Fire Department	
	1.2.3	Building and Zoning Records	
	1.2.4	Public Works Records	
		SICAL SETTING	
	l.3.1	Geology and Hydrology	
	1.3.2	Priority Resources GIS Map	
		ORICAL USE INFORMATION ON THE SUBJECT PROPERTY AND ADJOINING PROPERTIES	
	1.4.1	Sanborn Maps	
	1.4.2	Aerial Photographs	
-		Historical Topographic Maps	
	1.4.4	Local Street Directories	
5.0	SU	BJECT PROPERTY RECONNAISSANCE	
5.1		HODOLOGY AND LIMITING CONDITIONS	
5.2		ERAL SUBJECT PROPERTY SETTING & SUBJECT PROPERTY RECONNAISSANCE OBSERVATIONS	
	5.2.1	Notable Subject Property Walkover Conditions	
_	5.2.2	Interior Inspection	
_	5.2.3	Exterior Inspection	
6.0	_	POR ENCROACHMENT SCREEN VIA ASTM E2600-15	
6.1		1 SCREENING EVALUATION	
6.2		2 SCREENING EVALUATION	

7.0	INTERVIEWS	19
7.1	Interview with Owner	19
7.2	INTERVIEW WITH LOCAL GOVERNMENT OFFICIALS	19
7.3	Interview with Others	19
8.0	ADDITIONAL SERVICES	19
8.1	GROUND PENETRATING RADAR SURVEY	19
8.2	ENVIRONMENTAL SETTING AND SOIL/GROUNDWATER REGULATORY CLASSIFICATION	20
8.3	SOIL BORING ADVANCEMENT / GROUNDWATER MONITORING WELL INSTALLATIONS	20
8.4	SOIL SAMPLING ANALYTICAL RESULTS	
8.5	GROUNDWATER SAMPLING	
8.6	GROUNDWATER ELEVATION SURVEY	
8.7	GROUNDWATER SAMPLING ANALYTICAL RESULTS	25
9.0	FINDINGS & CONCLUSIONS	27
9.1	FINDINGS	27
9.2	OPINIONS	28
9.3	CONCLUSIONS	30
10.0	SIGNATURES AND QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONALS	31
11.0	LIMITATIONS	31
12.0	REFERENCES	32

APPENDICES

ENDICES	
Figures	
Photographs	
Appendix 1	EDR Report
Appendix 2	Subject Property Municipal Records
Appendix 3	EDR Sanborn Maps
Appendix 4	Historical Aerial Photographs
Appendix 5	Historical Topographic Maps
Appendix 6	EDR City Directory Report
Appendix 7	Soil Boring/Monitoring Well Construction Logs
Appendix 8	Analytical Report and Chain of Custody Documentation (Soil)
Appendix 9	Analytical Report and Chain of Custody Documentation (Groundwater)

EXECUTIVE SUMMARY

This report presents the findings of a Phase I Environmental Site Assessment (ESA) and Limited Subsurface Investigation (LSI) conducted by SAGE Environmental, Inc. (SAGE) of two (2) parcels addressed as 756 & 770 Lonsdale Avenue in Central Falls, Rhode Island (Assessor's Plat 9, Lots 26 & 203) (hereinafter, "Subject Property"). This Phase I ESA was performed in conformance with the scope and limitations of the American Society for Testing and Materials (ASTM) Designation E1527–21: Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process and the United States Environmental Protection Agency's (U.S. EPA's) All Appropriate Inquiries (AAI) Rule under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), 40 CFR § 312 (2022). Any exceptions to or deletions from this practice are described in Section 1.6 of this report titled "Deviations."

The results of the Phase I ESA opined that the following findings constituted Recognized Environmental Conditions (RECs) in connection to the Site:

- Former Subject Property Use: According to historical directory descriptions, the Subject Property was formerly occupied by Mil-Gat Cleansers Inc., a suspect dry-cleaning operation, between at least 1957 to 1971 at Lot 203. Dry-cleaning facilities often utilize hazardous solvents as part of normal operations and have historically resulted in releases of hazardous chlorinated volatile organic compounds to the subsurface due to poor handling/housekeeping practices. Given this information and the lack of former investigations at the Subject Property, this finding was identified as a REC;
- Former Subject Property Structure: Lot 26 of the Subject Property was formerly occupied by an American Legion Hall between at least 1938 to 2005. While this historical use is unlikely to have impacted the Subject Property subsurface, the heating source for this structure was unknown, and it is possible that the heating source for this structure was a fuel oil underground storage tank (UST). Based on this information and the lack of former investigations of the Subject Property, this finding was identified as a REC; and
- ➤ Historical Filling/Landfilling Activities: Historical aerial depictions of the Subject Property indicate potential filling activities within the surrounding area and the Subject Property between at least 1939 to circa 1972. Additionally, observations during a UST closure at the Subject Property in 2018 indicated that while soils were observed to contain urban fill materials, no stains or odors were identified. The Rhode Island Department of Environmental Management (RIDEM) noted that the soils were from a previous landfill; however, no soil samples were collected or submitted for laboratory analysis. Furthermore, during this assessment, Mr. Faria, the Subject Property owner, indicated that the Subject Property and surrounding area were formerly utilized as a landfill. Urban fill materials often consist of coal, coal ash, brick, slag, and other components that may contain oil or hazardous materials (OHM), such as polycyclic aromatic hydrocarbons (PAHs). Given this information, this finding was identified as a REC.

Based on the listed RECs, a Limited Subsurface Investigation (LSI) was performed to evaluate subsurface conditions. Further details of the LSI are provided in Section 8.0 of this report.

On October 20, 2022, SAGE oversaw a Ground Penetrating Radar (GPR) survey across the Subject Property to determine whether an anomaly consistent with a UST was present at the Subject Property. All walkable areas were surveyed during this assessment, and no anomalies consistent with a UST were identified.

In summary, the LSI included seven (7) soil borings, five (5) of which were completed as groundwater monitoring wells. Additionally, one (1) pre-existing monitoring well along the southeastern boundary of the Subject Property was sampled as part of this investigation. Select borings were initially advanced to two (2) feet below surface grade (BSG) to characterize surficial soils in anticipation of the redevelopment of the Subject Property as a school prior to being advanced to greater depths.

Results of soil sample analysis indicate the presence of several semi-volatile organic compounds (SVOCs), metals, and total petroleum hydrocarbons (TPH) in excess of the applicable RIDEM Method 1 Residential Direct Exposure Criteria (R-DEC) in both surficial soils and soils greater than two (2) feet below surface grade (BGS). Several contaminants were also identified in excess of the RIDEM Method 1 Industrial/Commercial Direct Exposure Criteria (I/C-DEC).

The groundwater monitoring wells were subsequently sampled for volatile organic compounds (VOCs). Results identified two (2) wells with chlorinated VOC (CVOC) detections, though no contaminants were identified in excess of the RIDEM GB Groundwater Objectives (GB-GWOs). These detections are consistent with the former Subject Property use as a drycleaning facility. Based on the low-level concentrations of these materials, it is likely that the contamination is due to incidental spills associated with typical operations. While these detections are below applicable GB-GWOs, these contaminants are volatile in nature. A Vapor Encroachment Condition (VEC) exists based on CVOC impacts to groundwater at the Subject Property. The presence of a VEC was determined by comparing the groundwater concentrations to MassDEP GW-2 Standards, which apply to groundwater that is considered a potential source of indoor air contamination via a vapor intrusion pathway. RIDEM does not have a vapor intrusion guidance document but has been amenable to utilizing MassDEP standards as a screening tool for vapor intrusion concerns as described in the MassDEP Vapor Intrusion Guidance. Two (2) of the three (3) CVOCs detected were identified at concentrations above the MassDEP GW-2 Standards. Additionally, groundwater is within fifteen (15) feet of the ground surface and thirty (30) feet horizontally from both a planned school and existing occupied structure, which is another consideration for vapor intrusion concerns in the MassDEP vapor intrusion guidance. As such, these groundwater impacts are considered a potential source of indoor air contamination and a VEC cannot be ruled out. SAGE recommends that vapor mitigation be included as part of the eventual remedial design associated with the proposed school building to prevent impacts to indoor air.

The soil conditions identified at the Site, including the presence of SVOCs, metals, and TPH in excess of the applicable RIDEM Method 1 R-DEC and/or I/C-DEC, constitute a release to the environment at the Subject Property as defined by the RIDEM Remediation Regulations. Accordingly, upon the owner and/or operator of the Site obtaining knowledge of these findings, reporting is required to the RIDEM Office of Land Revitalization and Sustainable Materials Management by the Responsible Party within 15 days of receiving such knowledge. Note that the Subject Property would also be subject to the Industrial Property Remediation and Reuse Act, which has additional public involvement requirements for properties that have a proposed reuse as a school.

The following table summarizes the conclusions of this Phase I ESA and should be reviewed in conjunction with the entire report.

Plat/Lot	Assessor's Plat 9, Lots 26 & 203
Subject Property	0.68 of an acre
Area	
Current Subject	The Subject Property is currently improved with one (1) structure occupied by a butcher
Property Usage	shop and associated parking area.
Historical Subject Property Usage/ Research Notes	Information reviewed to evaluate historical Subject Property use included that maintained by City offices as well as historical aerial photographs, Sanborn Fire Insurance Maps, historical topographic maps, and historical address directories. These resources indicate that the northern portion of the Subject Property was previously improved with an industrial/commercial structure. Historical Sanborn Maps first depict this structure in 1949, and the structure is labeled as American Legion Home. Historical aerial depictions indicate that this structure was present in 1939, and it appeared to have been razed in 2011 historical
	aerials. Historical directory descriptions indicate that this structure was occupied by American Legion, James Stanton Post No. 5 between 1938 and 2005. This structure is not listed in historical directories after 2005.
	Additionally, Sanborn Map depictions indicate that the southern portion of the Subject Property was developed with a storefront dating back to at least 1984. This structure is apparent in 1962 historical aerials, which is consistent with the reported year of this structure's construction of 1953, according to information obtained from the Central Falls Tax Assessor's online database. Historical directory descriptions for this portion of the Subject Property indicate that this structure was occupied by Mil-Gat Cleansers, Inc. beginning in 1957 through at least 1971. In 1979, this structure was listed as being occupied by CF Butcher Shops, Inc. Beginning in 1989, the Subject Property was listed as Carnicaria International Meat Market and was later listed as International Meat Market beginning in 2014.
	Finally, RIDEM documentation for the Subject Property indicates that there was previously a 1,000-gallon fuel oil no. 2 UST located at the Subject Property. This UST was reportedly closed by removal on November 21, 2018. During the UST closure, soils within the tank grave were noted to be urban fill related to a previous landfill. No odors or staining was reported. The UST was noted as having pitting, though no holes were reported. Soil samples were not required for this UST closure. The Closure Certificate for this UST is dated November 26, 2018.
Zoning	The Subject Property is zoned as General Commercial District (C-2).
Subject Property	The Subject Property is accessible via Lonsdale Avenue and Higginson Avenue.
Access	
Structure Description	According to the Central Falls Tax Assessor's online database, the Subject Property is improved with a single-story commercial/market style structure constructed slab-on-grade with a wood plank exterior, with a flat roof structure and a tar and gravel roof cover.
Year Built	According to information obtained from the Central Falls Tax Assessor's online database, the Subject Property structure was constructed circa 1953.
Subject Property	Subject Property surfaces consist of the building footprint and paved parking/driveway

Surfaces	areas.
Sanitary Sewer	According to the Narragansett Bay Commission, the Subject Property is serviced by the
	municipal sewer system. A date of connection was not provided.
Heating Source	According to information obtained from the Central Falls Tax Assessor's online database,
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	the Subject Property structure is heated by natural gas.
Water	According to the Pawtucket Water Supply Board, the Subject Property is serviced by the
	municipal water system. A date of connection was not provided.
Use of Adjoining	Adjoining properties consist of:
Properties	A restaurant to the north;
	Residences to the south;
	Residences to the east; and
	A recreational area to the west.
Groundwater	GB, which is defined as groundwater that is presumed not suitable for use as a public or
Classification	private drinking water supply without prior treatment.
State & Federal	A public records search was conducted by SAGE through an Environmental Data Resources,
Records Notes	Inc. (EDR) FirstSearch Report. The Subject Property is listed as an UST facility.
	Several surrounding properties were identified and selected for additional review:
	> 781 Lonsdale Avenue is identified as a UST facility;
	> 800 Lonsdale Avenue is identified as a UST facility;
	97 Crossman Street is identified as a UST facility; and
	10 Higginson Avenue is identified as a State Hazardous Waste Site (SHWS).
	Based on a review of available information, it is unlikely that these listings have impacted
	the Subject Property. Further information is provided in Section 4.1.
Subject Property	Interior Subject Property Walkover Notes
Walkover Notes	During the interior walkover, SAGE observed the Subject Property to be utilized as a meat market and grocery store. Several floor drains were observed within the
Notes	meat processing areas and appeared to receive liquid wastes from processing raw
	meat (i.e., blood) as well as condensate from the refrigerator units/displays. The
	Subject Property owner indicated that these floor drains are connected to the
	municipal sewer system, and the wastewater authority requires routine sampling
	of the materials entering the drains to ensure no contaminants are entering the
	municipal sewer system. Based on this information, it is unlikely that this finding
	has impacted the Subject Property; and
	An area of diesel exhaust fluid (DEF) and cleaning material storage was observed
	within the Subject Property structure. Visual observation of these materials indicated that they were stored with good housekeeping practices, and evidence
	of a release or threat of release of oil or hazardous materials (OHM) was not
	identified.
	Exterior Subject Property Walkover Notes
	During the exterior walkover, SAGE observed a groundwater monitoring well near
	the southeastern boundary of the Subject Property. No other significant
	observations were identified. As detailed in this report, this well was sampled for
	VOCs as part of additional investigation at the Subject Property. Results of this
	analysis did not identify contaminants of concern in excess of laboratory detection

	limits.
Limited Subsurface Investigation	On October 20, 2022, SAGE oversaw a GPR survey across the Subject Property. Results of the survey did not identify any anomalies consistent with that of a UST. Additionally, SAGE oversaw the installation of seven (7) soil borings, five (5) of which were converted to groundwater monitoring wells. Soils were sampled for a combination of semi-volatile organic compounds (SVOCs), Priority Pollutant 13 Metals (PP13), total petroleum hydrocarbons (TPH), and volatile organic compounds (VOCs). Results of these analyses identified several SVOCs, arsenic, lead, and TPH in excess of RIDEM R-DEC. No contaminants were identified above the RIDEM GB Leachability Criteria (GB-LC). Additionally, during the Subject Property walkover, SAGE identified one (1) pre-existing groundwater monitoring well along the southeastern boundary of the Subject Property. SAGE collected a sample from this well on October 20, 2022 for analysis of VOCs. No VOCs were detected in this sample above laboratory detection limits.
	On October 28, 2022, SAGE returned to the Subject Property to conduct groundwater sampling of the five (5) newly-installed wells. Groundwater was sampled for VOCs, and a groundwater survey was conducted. Results of the groundwater survey indicated that groundwater flows toward the west/northwest. Three (3) VOCs were detected in a combination of two (2) of the five (5) groundwater monitoring wells, though results were well below RIDEM GB Groundwater Objectives (GB-GWOs). No VOCs were detected above laboratory detection limits in any of the remaining three (3) wells. This information is further discussed in Section 8.0 of this report.
Deviations	The lien search required by Section 312.25 of the AAI Rule was not performed during the course of this assessment. During the local records review, a cursory search for environmental liens was conducted; however, such information was not found and/or provided by the User. Please note this review is limited and is not intended to suffice a full search or a level of diligence commensurate with a title company. If such detailed evaluation is required, this service can be provided outside of the subject scope.

ASTM E1527-21 DEFINITIONS OF A RECOGNIZED ENVIRONMENTAL CONDITION (REC), CONTROLLED REC (CREC), AND HISTORICAL REC (HREC)

A Recognized Environmental Condition (REC) is defined by the ASTM Standard Practice E1527-21 as (1) the presence of hazardous sub-stances or petroleum products in, on, or at the subject property due to a release to the environment; (2) the likely presence of hazardous substances or petroleum products in, on, or at the subject property due to a release or likely release to the environment; or (3) the presence of hazardous substances or petroleum products in, on, or at the subject property under conditions that pose a material threat of a future release to the environment.

Other forms of RECs evaluated as part of this assessment include Historical REC (HRECs) and Controlled REC (CRECs). HRECs are a previous release of hazardous substances or petroleum products affecting the subject property that has been addressed to the satisfaction of the applicable regulatory authority or authorities and meeting unrestricted use criteria established by the applicable regulatory authority or authorities without subjecting the subject property to any controls (for example, activity and use limitations or other property use limitations). CRECs are RECs that affected the subject property that have been addressed to the satisfaction of the applicable regulatory authority or authorities with

hazardous substances or petroleum products allowed to remain in place subject to implementation of required controls (for example, activity and use limitations or other property use limitations).

FINDINGS

The following summarizes key findings of the Phase I ESA based on observations during the Subject Property walkover, review of existing historical resources, and interviews with current or past owners. Included in the summary are known or suspected RECs, CRECs, HRECs and *de minimis* conditions. (A *de minimis* condition is defined as a condition related to a release that generally does not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. (A condition determined to be *de minimis* is not a REC nor a CREC).

Suspected RECs and *de minimis* conditions at the Subject Property:

- Floor drains: During the interior walkover, SAGE observed several floor drains that received waste liquid from processing raw meat (i.e., blood) and condensate from the refrigerator units/displays;
- ➤ **DEF and cleaning material storage:** An area of diesel exhaust fluid (DEF) and cleaning material storage was observed within the Subject Property structure;
- ➤ **Groundwater monitoring well:** During the exterior walkover, SAGE observed a groundwater monitoring well near the southeastern boundary of the Subject Property;
- Former Subject Property Use: According to historical directory descriptions, the Subject Property was formerly occupied by Mil-Gat Cleansers Inc., a suspect dry-cleaning operation, between at least 1957 to 1971 at Lot 203;
- Former Subject Property Structure: Lot 26 of the Subject Property was formerly occupied by an American Legion Hall between at least 1938 to 2005;
- Former UST: The current structure was formerly heated by one (1) 1,000-gallon fuel oil no. 2 UST. According to available documentation, this UST was closed by removal on November 21, 2018; and
- ➤ Historical Filling/Landfilling Activities: Historical aerial depictions of the Subject Property indicate potential filling activities within the surrounding area and the Subject Property between at least 1939 to circa 1972. Additionally, observations during a UST closure at the Subject Property in 2018 indicated that while soils were observed to contain urban fill materials, no stains or odors were identified. RIDEM noted that the soils were from a previous landfill; however, no soil samples were collected or submitted for laboratory analysis. Furthermore, during this assessment, Mr. Faria, the Subject Property owner, indicated that the Subject Property and surrounding area were formerly utilized as a landfill.

ASTM E2600-15 VAPOR ENCROACHMENT SCREEN

During this assessment, SAGE also conducted a Vapor Encroachment Screen (VES) via ASTM E2600-15. Based upon the results of the Tier II Screening, SAGE has determined a Vapor Encroachment Condition (VEC) exists based on the findings of the LSI, which included low-level VOCs in groundwater. The presence of a VEC was determined by comparing the groundwater concentrations to MassDEP GW-2 Standards,

which apply to groundwater that is considered a potential source of indoor air contamination via a vapor intrusion pathway. RIDEM does not have a vapor intrusion guidance document but has been amenable to utilizing MassDEP GW-2 standards as a screening tool for vapor intrusion concerns as described in the MassDEP Vapor Intrusion Guidance. Two (2) of the three (3) CVOCs detected were identified at concentrations above the Massachusetts Department of Environmental Protection (MassDEP) GW-2 Standards. Additionally, groundwater is within fifteen (15) feet of the ground surface and thirty (30) feet horizontally from both a planned school and existing occupied structure, which is another consideration for vapor intrusion concerns in the MassDEP vapor intrusion guidance. As such, a VEC cannot be ruled out.

OPINIONS

Based upon the results of this assessment and the ASTM E1527-21 definitions of a REC, HREC, and CREC, the following opinions have been developed by SAGE along with a rationale for such determinations.

Non-REC Findings:

- Floor drains: The Subject Property owner indicated that these floor drains are connected to the municipal sewer system, and the wastewater authority requires routine sampling of the materials entering the drains to ensure no contaminants are entering the municipal sewer system. Based on this information, it is unlikely that this finding has impacted the Subject Property;
- > **DEF and cleaning material storage:** Visual observation of the DEF and cleaning materials indicated that they were stored with good housekeeping practices, and evidence of a release or threat of release of oil or hazardous materials (OHM) was not identified. As such, it is unlikely this finding has impacted the Subject Property;
- ➤ **Groundwater monitoring well:** As detailed in this report, this well was sampled for VOCs as part of additional investigation at the Subject Property. Results of this analysis did not identify contaminants of concern in excess of laboratory detection limits. As such, it is unlikely that this finding has impacted the Subject Property;
- Former Subject Property Structure: While this historical use of the former structure is unlikely to have impacted the Subject Property subsurface, the heating source for this structure was unknown, and it is possible that the heating source for this structure was a fuel oil UST. Based on this information and the lack of former investigations of the Subject Property, this finding was identified as a REC. As part of additional investigation of the Subject Property, detailed within this report, SAGE conducted a ground penetrating radar (GPR) survey within the area of the former structure to determine whether a subsurface anomaly consistent with a UST was present. Results of this survey did not identify a subsurface structure consistent with a UST. Based on this information, it is unlikely the former structure has had an objectionable impact on the Subject Property's subsurface; and
- Former UST: During the former UST closure by removal, no holes or corrosion were observed. RIDEM documented that the UST was pitted. While soils were observed to contain urban fill materials, no stains or odors were identified. RIDEM noted that the soils were from a previous landfill; however, as no evidence of a release from the UST was identified, no soil samples were required by the RIDEM. This property received a Closure Certificate on November 26, 2018. Based on this information, it is unlikely that this UST has impacted the Subject Property.

REC Findings:

- > Former Subject Property Use: Dry-cleaning facilities often utilize hazardous solvents as part of normal operations and have historically resulted in releases of hazardous CVOCs to the subsurface due to poor handling/housekeeping practices. Given this information and the lack of former investigations at the Subject Property, this finding was identified as a REC. During the additional subsurface investigation conducted as a follow-up to the Phase I ESA, two (2) of five (5) groundwater monitoring wells were found to have low levels of CVOCs above laboratory detection limits. While these compounds are compliant with the applicable GB Groundwater Objectives (GB-GWOs), this finding constitutes a REC as the detected compounds are volatile in nature. A Vapor Encroachment Condition (VEC) exists based on VOC) impacts to groundwater at the Subject Property. The presence of a VEC was determined by comparing the groundwater concentrations to MassDEP GW-2 Standards, which apply to groundwater that is considered a potential source of indoor air contamination via a vapor intrusion pathway. RIDEM does not have a vapor intrusion guidance document but has been amenable to utilizing MassDEP GW-2 standards as a screening tool for vapor intrusion concerns as described in the MassDEP Vapor Intrusion Guidance. Two (2) of the three (3) CVOCs detected were identified at concentrations above the MassDEP GW-2 Standards. Additionally, groundwater is within fifteen (15) feet of the ground surface and thirty (30) feet horizontally from both a planned school and existing occupied structure, which is another consideration for vapor intrusion concerns in the MassDEP vapor intrusion guidance. As such, these groundwater impacts are considered a potential source of indoor air contamination and a VEC cannot be ruled out. As such, SAGE recommends that vapor mitigation be included as part of the eventual remedial design with the proposed school building to prevent impacts to indoor air.; and
- ➤ Historical Filling/Landfilling Activities: Urban fill materials often consist of coal, coal ash, brick, slag, and other components that may contain oil or hazardous materials (OHM), such as polycyclic aromatic hydrocarbons (PAHs). Given this information, this finding was identified as a REC. During the additional subsurface investigation conducted as a follow-up to the Phase I ESA, several PAHs, lead, arsenic, and TPH were identified in soils above the RIDEM Method 1 -DEC. These contaminants are consistent with urban fill materials and are likely the result of historical landfilling activities. As such, this finding constitutes a REC. To mitigate the risk to human health and the environment, SAGE recommends that Subject Property soils be encapsulated with a RIDEM-approved engineered cap and an Environmental Land Use Restriction (ELUR) and Soil Management Plan (SMP) be recorded for the property to restrict activities at the Site that will prevent risk of exposure to the contaminants of concern.

HREC Findings:

Conditions indicative of an HREC were not identified during the course of this assessment.

CREC Findings:

> Conditions indicative of a CREC were not identified during the course of this assessment.

CONCLUSION

Based on the above findings, a Limited Subsurface Investigation (LSI) was performed to evaluate subsurface conditions. Further details of the LSI are provided in Section 8.0 of this report.

On October 20, 2022, SAGE oversaw a Ground Penetrating Radar (GPR) survey across the Subject Property to determine whether an anomaly consistent with a UST was present at the Subject Property. All walkable areas were surveyed during this assessment, and no anomalies consistent with a UST were identified.

In summary, the LSI included seven (7) soil borings, five (5) of which were completed as groundwater monitoring wells. Additionally, one (1) pre-existing monitoring well along the southeastern boundary of the Subject Property was sampled as part of this investigation. Select borings were initially advanced to two (2) feet below surface grade (BSG) to characterize surficial soils in anticipation of the redevelopment of the Subject Property as a school prior to being advanced to greater depths.

Results of soil sample analysis indicate the presence of several semi-volatile organic compounds (SVOCs), metals, and total petroleum hydrocarbons (TPH) in excess of the applicable RIDEM Method 1 Residential Direct Exposure Criteria (R-DEC) in both surficial soils and soils greater than two (2) feet below surface grade (BGS). Several contaminants were also identified in excess of the RIDEM Method 1 Industrial/Commercial Direct Exposure Criteria (I/C-DEC).

The groundwater monitoring wells were subsequently sampled for volatile organic compounds (VOCs). Results identified two (2) wells with chlorinated VOC (CVOC) detections, though no contaminants were identified in excess of the RIDEM GB Groundwater Objectives (GB-GWOs). These detections are consistent with the former Subject Property use as a drycleaning facility. Based on the low-level concentrations of these materials, it is likely that the contamination is due to incidental spills associated with typical operations. While these detections are below applicable GB-GWOs, these contaminants are volatile in nature. A Vapor Encroachment Condition (VEC) exists based on CVOC impacts to groundwater at the Subject Property. The presence of a VEC was determined by comparing the groundwater concentrations to MassDEP GW-2 Standards, which apply to groundwater that is considered a potential source of indoor air contamination via a vapor intrusion pathway. RIDEM does not have a vapor intrusion guidance document but has been amenable to utilizing MassDEP standards as a screening tool for vapor intrusion concerns as described in the MassDEP Vapor Intrusion Guidance. Two (2) of the three (3) CVOCs detected were identified at concentrations above the MassDEP GW-2 Standards. Additionally, groundwater is within fifteen (15) feet of the ground surface and thirty (30) feet horizontally from both a planned school and existing occupied structure, which is another consideration for vapor intrusion concerns in the MassDEP vapor intrusion guidance. As such, these groundwater impacts are considered a potential source of indoor air contamination and a VEC cannot be ruled out. SAGE recommends that vapor mitigation be included as part of the eventual remedial design associated with the proposed school building to prevent impacts to indoor air.

The soil conditions identified at the Site, including the presence of SVOCs, metals, and TPH in excess of the applicable RIDEM Method 1 R-DEC and/or I/C-DEC, constitute a release to the environment at the Subject Property as defined by the RIDEM *Remediation Regulations*. Accordingly, upon the owner and/or

operator of the Site obtaining knowledge of these findings, reporting is required to the RIDEM Office of Land Revitalization and Sustainable Materials Management by the Responsible Party within 15 days of receiving such knowledge. Note that the Subject Property would also be subject to the *Industrial Property Remediation and Reuse Act*, which has additional public involvement requirements for properties that have a proposed reuse as a school.

1.0 Introduction

1.1 Purpose

This report presents the findings of a Phase I Environmental Site Assessment (ESA) and Limited Subsurface Investigation (LSI) conducted of two (2) parcels addressed as 756 & 770 Lonsdale Avenue in Central Falls, Rhode Island (Assessor's Plat 9, Lots 26 & 203) (hereinafter, "Subject Property"). The purpose of this assessment is to identify "Recognized Environmental Conditions" (RECs) associated with the Subject Property. The term recognized environmental conditions is defined by the ASTM Standard Practice E1527-21 as (1) the presence of hazardous sub-stances or petroleum products in, on, or at the subject property due to a release to the environment; (2) the likely presence of hazardous substances or petroleum products in, on, or at the subject property due to a release or likely release to the environment; or (3) the presence of hazardous substances or petroleum products in, on, or at the subject property under conditions that pose a material threat of a future release to the environment.

Other forms of RECs evaluated as part of this assessment include Historical REC (HRECs) and Controlled REC (CRECs). HRECs are a previous release of hazardous substances or petroleum products affecting the subject property that has been addressed to the satisfaction of the applicable regulatory authority or authorities and meeting unrestricted use criteria established by the applicable regulatory authority or authorities without subjecting the subject property to any controls (for example, activity and use limitations or other property use limitations). CRECs are RECs that affected the subject property that have been addressed to the satisfaction of the applicable regulatory authority or authorities with hazardous substances or petroleum products allowed to remain in place subject to implementation of required controls (for example, activity and use limitations or other property use limitations).

A *de minimis* condition is defined as a condition related to a release that generally does not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. (A condition determined to be *de minimis* is not a REC nor a CREC).

1.2 Scope of Services

This assessment was prepared in accordance with generally acceptable engineering practices utilizing the American Society for Testing and Materials (ASTM) Designation E1527–21: Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process. As such, it meets the requirements set forth in the United States Environmental Protection Agency's (U.S. EPA's) All Appropriate Inquiries (AAI) Rule under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), 40 CFR. § 312 (2022).

The scope of this investigation does not include ASTM defined exclusions such as radon, asbestos, biological agents, lead-based paint (LBP), mold, lead in drinking water, wetlands, regulatory compliance, cultural and historical resources, industrial hygiene, health and safety, ecological resources, endangered species, indoor air quality or high voltage power lines.

1.3 Significant Assumptions

The file and data review were limited to information obtained by SAGE Environmental, Inc. (SAGE) from prior reports, and the offices for the City of Central Falls. The Subject Property reconnaissance description

is based upon the condition of the Subject Property on the day it was observed. The Subject Property was observed by walking the property.

1.4 Special Terms and Conditions

No special terms or conditions were agreed upon for the completion of this report.

1.5 User Reliance

This ESA and report have been prepared on behalf of, and for the exclusive use of, City of Central Falls. This report and the findings herein shall not, in whole or in part, be disseminated or conveyed to any other party, nor used by any other party in whole or in part, without the prior written consent of SAGE. However, SAGE acknowledges and agrees that our client may convey this report to potential developers, lenders and title insurers associated with the current development or financing of the Subject Property.

1.6 Deviations

This investigation was performed in general accordance with ASTM E1527-21 and AAI with the following deviation. The lien search required by Section 312.25 of the AAI final rule was not performed during the course of this assessment.

During the local records review, a cursory search for environmental liens was conducted; however, such information was not found and/or provided by the User. Please note this review is limited and is not intended to suffice a full search or a level of diligence commensurate with a title company. If such detailed evaluation is required, this service can be provided outside of the subject scope.

1.7 Data Gaps

SAGE did not identify the presence of significant data gaps (as defined in §312.10 of AAI final rule and §12.7 of ASTM E1527-21).

2.0 SUBJECT PROPERTY DESCRIPTION

A map depicting the Subject Property on the "Pawtucket, Rhode Island Quadrangle" United States Geological Survey (USGS) 7.5-minute topographic map is included as **Figure 1**; a Subject Property Plan, depicting the approximate Subject Property boundary and pertinent Subject Property features, is included as **Figure 2**; and a map showing the Rhode Island Department of Environmental Management (RIDEM) Groundwater Classification, nearby wells, nearby wetlands and rare and endangered species habitats is included as **Figure 3**. Subject Property photographs are included in the **Photographs Appendix**.

Table 1
Subject Property Description
756 & 770 Lonsdale Avenue
Central Falls, RI

Plat/Lot	Assessor's Plat 9, Lots 26 & 203
Subject Property	0.68 of an acre

Area				
Current Subject	The Subject Property is currently improved with one (1) structure occupied by a butcher			
Property Usage	shop and associated parking area.			
Information reviewed to evaluate historical Subject Property use included that may be City offices as well as historical aerial photographs, Sanborn Fire Insurance historical topographic maps, and historical address directories. These resources that the northern portion of the Subject Property was previously improved industrial/commercial structure. Historical Sanborn Maps first depict this structure and the structure is labeled as American Legion Home. Historical aerial depictions that this structure was present in 1939, and it appeared to have been razed in 2011 aerials. Historical directory descriptions indicate that this structure was occurrence. American Legion, James Stanton Post No. 5 between 1938 and 2005. This structure listed in historical directories after 2005.				
	Additionally, Sanborn Map depictions indicate that the southern portion of the Subject Property was developed with a storefront dating back to at least 1984. This structure is apparent in 1962 historical aerials, which is consistent with the reported year of this structure's construction of 1953, according to information obtained from the Central Falls Tax Assessor's online database. Historical directory descriptions for this portion of the Subject Property indicate that this structure was occupied by Mil-Gat Cleansers, Inc. beginning in 1957 through at least 1971. In 1979, this structure was listed as being occupied by CF Butcher Shops, Inc. Beginning in 1989, the Subject Property was listed as Carnicaria International Meat Market and was later listed as International Meat Market beginning in 2014. Finally, RIDEM documentation for the Subject Property indicates that there was previously a 1,000-gallon fuel oil no. 2 UST located at the Subject Property. This UST was reportedly closed by removal on November 21, 2018. During the UST closure, soils within the tank grave were noted to be urban fill related to a previous landfill. No odors or staining was reported. The UST was noted as having pitting, though no holes were reported. Soil samples were not required for this UST closure. The Closure Certificate for this UST is dated November 26,			
Zanina	2018.			
Zoning	The Subject Property is googgishle via Landdell Avenue and Higginson Avenue			
Subject Property Access	The Subject Property is accessible via Lonsdale Avenue and Higginson Avenue.			
Structure	According to the Central Falls Tax Assessor's online database, the Subject Property is			
Description	improved with a single-story commercial/market style structure constructed slab-on-grade with a wood plank exterior, with a flat roof structure and a tar and gravel roof cover.			
Year Built	According to information obtained from the Central Falls Tax Assessor's online database, the Subject Property structure was constructed circa 1953.			
Subject Property Surfaces	Subject Property surfaces consist of the building footprint and paved parking/driveway areas.			
Sanitary Sewer	According to the Narragansett Bay Commission, the Subject Property is serviced by the municipal sewer system. A date of connection was not provided.			
Heating Source	According to information obtained from the Central Falls Tax Assessor's online database, the Subject Property structure is heated by natural gas.			
Water	According to the Pawtucket Water Supply Board, the Subject Property is serviced by the			

	municipal water system. A date of connection was not provided.		
Use of Adjoining	Adjoining properties consist of:		
Properties	A restaurant to the north;		
	Residences to the south;		
	Residences to the east; and		
	A recreational area to the west.		

3.0 USER PROVIDED INFORMATION

An environmental questionnaire was not supplied to SAGE as part of this assessment.

3.1 Environmental Liens or Environmental Land Use Restriction (ELUR)

SAGE did not identify an environmental lien or ELUR associated with the Subject Property. Please see further details in **Section 1.6, Deviations**.

3.2 Specialized Knowledge

SAGE was not supplied with specialized knowledge for the Subject Property.

3.3 Valuation Reduction for Environmental Issues

SAGE was not made aware of a valuation reduction for environmental issues.

3.4 Owner, Property Manager and Occupant Information

SAGE was not provided with any information regarding the Owner(s), Property Manager(s), or Occupant(s) of the Subject Property by the User.

3.5 Reason for Performing Phase I

This Phase I ESA is being conducted as part of general due diligence for the anticipated redevelopment of the Subject Property as part of a school.

3.6 Previous Environmental Assessments

A previous assessment of the Subject Property was not found or made available to SAGE during the course of this assessment.

4.0 RECORDS REVIEW

4.1 Environmental Record Sources (Federal and State)

A public records search was conducted by SAGE through an Environmental Data Resources, Inc. (EDR) FirstSearch Report.¹ This report consists of a review of state and federal databases, as required by the ASTM Standard. Databases reviewed include, but are not limited to, the National Priority List (NPL), the Superfund Enterprise Management System (SEMS, formerly CERCLIS), Rhode Island State-listed hazardous

¹ The EDR Report contains information from a variety of public and government sources. The information presented in the report is limited by the information that is available. Some areas are limited due to inadequate address information and may contain government listed properties that are not mapped or mapped incorrectly. Based on these limitations, SAGE cannot be held accountable for properties that may be within the applicable radius but are not present within the EDR Report.

waste properties (SHWS), leaking underground storage tanks (LUSTs), registered underground storage tanks (USTs), and the Resource Conservation and Recovery Act (RCRA) hazardous waste generator list. A summary of the number of properties identified within ASTM radii for each category is presented below in **Table 2**, and the EDR report is presented as **Appendix 1**.

Table 2
Radius Summary
756 & 770 Lonsdale Avenue
Central Falls, RI

Database	Subject Property Inclusion	Locations within Radius of Subject Property	Research Radius from Subject Property (miles)	Non-Geocoded Locations ²
NPL	No	0	1.0	0
Delisted NPL	No	0	0.5	0
CERCLIS	No	0	0.5	0
CERCLIS NFRAP	No	1	0.5	0
State Equivalent CERCLIS (SHWS)	No	54	1.0	32
SWF	No	1	0.5	0
RCRA CORRACTS	No	2	1.0	0
RCRA non-CORRACTS TSD	No	1	0.5	0
RCRA Generators List	No	0	Subject Property and adjoining properties	0
State/Tribal UST(s)	Yes	2	Subject Property and adjoining properties	0
State/Tribal LUST(s)	No	11	0.5	3
ERNS	No	N/A	Subject Property only	0
Federal/State Brownfield(s)	No	4	0.5	0
Federal/State Institutional Control	No	5	0.5	0

Select locations described further in the following subsections.

4.1.1 Subject Property Related Records Review/Discussion

Subject Property Name:	International Meat Market
Database(s):	UST
Address:	756 Lonsdale Avenue

The Subject Property is identified as a UST facility regarding the historical presence of one (1) 1,000-gallon fuel oil no. 2 UST. According to available documentation, this UST was closed by removal on November 21, 2018, and no holes or corrosion were observed. RIDEM documented that the UST was pitted. While soils were observed to contain urban fill materials, no stains or odors were identified. RIDEM noted that the soils were from a previous landfill; however, as no evidence of a release from the UST was identified, no soil samples were required by the RIDEM. This property received a Closure Certificate on November 26, 2018.

² The EDR report also maintains a database of non-geocoded properties, which are properties that could not be spatially located in reference to distance from the Subject Property due to missing geographical information. EDR provides a summary of these properties for reference purposes. Summaries of any non-geocoded properties that were reviewed during the course of this assessment are provided in **Section 4.1.3**.

Subject Property Name: International Meat Market
--

Based on this information, it is unlikely the UST has impacted the Subject Property subsurface; however, available documentation did note urban fill conditions in the soil that may exceed RIDEM's Residential Direct Exposure Criteria (R-DEC). As such, this finding constitutes a REC.

4.1.2 Surrounding Locations Related Records Review/Discussion

As part of the surrounding area review, SAGE evaluated select locations within the radius report and reviewed files maintained by the RIDEM Office of Land Revitalization and Sustainable Materials Management for select properties. Summaries of these reviews have been provided below.

Identified Property:	J & J Investment
Database(s):	UST
Address:	781 Lonsdale Avenue
Distance:	86 feet northeast
Gradient:	Topographically Upgradient

This property is identified as a UST facility regarding the historical presence of one (1) 1,000-gallon gasoline UST and two (2) 2,000-gallon gasoline USTs. According to available documentation, these USTs were purged of their contents and closed by removal on December 12, 1985, with oversight by the Central Falls Fire Department. Furthermore, RIDEM issued a Closure Certificate for these USTs on December 11, 1985. No evidence of a release was noted in the available documentation. Based on this information, it is unlikely that these USTs have impacted the Subject Property.

Identified Property:	Janco Company
Database(s):	UST
Address:	800 Lonsdale Avenue
Distance:	65 feet north
Gradient:	Topographically Crossgradient

This property is identified as a UST facility regarding two (2) historical 3,000-gallon diesel USTs. According to available documentation, these USTs were closed on November 14, 1985 as part of redevelopment of the property for a proposed restaurant. The RIDEM issued a Closure Certificate for these USTs on November 14, 1985. No other documentation was identified in a review of records at the RIDEM; however, given that these USTs received a Closure Certificate from the RIDEM, it is unlikely this listing has impacted the Subject Property.

Identified Property:	Holiday Auto Annex
Database(s):	UST
Address:	97 Crossman Street
Distance:	450 feet north/northeast
Gradient:	Topographically Crossgradient

This property is identified as a UST facility regarding a historical 500-gallon waste oil UST that was reportedly closed by removal on February 28, 1992. A Closure Certificate was issued for this listing on February 28, 2022, and this document indicated that no contamination was evident. Based on this information, it is unlikely this listing has impacted the Subject Property.

4.1.3 Non-Geocoded Records Review Summary

A total of 37 unplottable properties were identified in the radius report.

Based on a review of information available in the radius report, further investigation of select properties was performed through a review of available files maintained by the RIDEM Office of Land Revitalization and Sustainable Materials Management, as summarized below.

Identified Property:	Proposed Central Falls School
Database(s):	SHWS
Address:	10 Higginson Avenue
Distance:	Adjacent west
Gradient:	Topographically Crossgradient

This property is identified as a SHWS regarding impacts to soil consisting of SVOCs, metals, and TPH in excess of applicable RIDEM R-DEC. These impacts were identified as part of a limited subsurface investigation for redevelopment of the property as a school facility. No contaminants of concern were identified in groundwater in excess of GB-GWOs, and groundwater flow direction was found to be toward the west/southwest, away from the Subject Property. According to the Release Notification Form, these impacts were a result of historic filling activities at the property, similar to that of the Subject Property. Based on the limited impacts to soils and the source of impacts (i.e., historic filling), it is unlikely that the contamination at this property has resulted in contamination at the Subject Property.

4.2 Municipal Records and File Reviews

4.2.1 Chain-Of-Title Records

Title records were reviewed at the Subject Property City Hall and via the Subject Property City on-line Land Title Records database. This information is provided for historical purposes only and is not intended for legal purposes. The current owner of the Subject Property is Faria Holdings, LLC., who took ownership of the Subject Property on 7/25/2019 (958/265 [Plat 9, Lot 203] and 958/267 [Plat 9, Lot 26]). Previous ownership is included in **Table 3.** Copies of the field cards are included in **Appendix 2**.

Table 3
Owner Chronology
756 & 770 Lonsdale Avenue
Central Falls, RI
Assessor's Plat 9, Lots 26 & 203

Plat/Lot	Grantee	Date of Transfer	Book/Page
Both Parcels	Faria Holdings, LLC.	7/25/2019	958/265 (Plat 9, Lot 203) and 958/267 (Plat 9, Lot 26)
	Odete B. Faria	3/9/2018	928/170
9/203	Manuel M. Faria	6/14/2006	665/263
	Francisco V. & Rosa M. Diniz, Benjamin	10/25/1983	221/177

Plat/Lot	Grantee	Date of Transfer	Book/Page
	E. & Maria E. Barcelos		
	Eric R. & Theresa B. Nordquist	Not listed	Not listed
	Jesse B. & Jason B. Faria	1/13/2010	775/340
9/26	City of Central Falls	2/24/2009	755/61
3/20	James Stanton Post No. 5 American Legion Inc.	Not listed	Not listed

4.2.2 Fire Department

SAGE contacted the Subject Property City Fire Prevention Office to determine if that office maintained information regarding possible USTs located at the Subject Property and prior incidents (i.e., spills or fires) that could have caused a release of oil or hazardous materials to the environment.

The Fire Prevention staff indicated that no records relating to petroleum products, spills, or hazardous materials were identified for the Subject Property at their office.

4.2.3 Building and Zoning Records

SAGE personnel contacted the Subject Property City Building/Zoning Department in an effort to obtain information relative to the Subject Property. The Building/Zoning Department provided a copy of the following permit, which is included in **Appendix 2**:

A demolition permit for the demolition of 768/770/774 Lonsdale Avenue dated March 22, 2010. This former building use is listed as a hall.

4.2.4 Public Works Records

SAGE personnel contacted the Subject Property City Public Works Department in an effort to obtain information relative to the Subject Property. The Public Works Department provided information regarding the sewer and water connections at the Subject Property. According to the Narragansett Bay Commission, the Subject Property is serviced by the municipal sewer system. According to the Pawtucket Water Supply Board, the Subject Property is serviced by the municipal water system. A date of connection was not provided for either utility.

4.3 Physical Setting

The Subject Property is situated at approximately 61 feet above mean sea level (MSL). The Subject Property slopes toward the east/northeast.

4.3.1 Geology and Hydrology

The Flood Insurance Rate Map (FIRM) for the Subject Property was reviewed online through the Federal Emergency Management Agency (FEMA), and the geologic information was reviewed through USGS. A summary of this information can be found below in **Table 4**.

Table 4 Geology and Hydrology Information 756 & 770 Lonsdale Avenue Central Falls, RI

Bedrock:	Pnbr, Rhode Island formation	
Terrane:	Avalon	
Subterranean:	Esmond-Dedham	
Rock Type:	Stratified	
Age: Pennsylvanian		
Surficial Geology: Outwash		
Waterbodies:	1,600 feet east of Moshassuck River; 2,800 feet south of Valley Falls Pond/Scott	
waterboules.	Pond; 1.05 miles west of Blackstone River	
FIRM:	44007C0194J, effective on 10/02/2015	
Flood Zone:	Zone X (unshaded), which is defined as an area of minimal flood hazard, with a	
11000 20110.	less than 0.2% annual chance of flooding.	

4.3.2 Priority Resources GIS Map

Based on a review of maps obtained from the Rhode Island Geographic Information System (RIGIS) database for the Subject Property and vicinity, groundwater at the Subject Property and immediate surrounding area is classified as GB, which is defined as groundwater that is presumed not suitable for use as a public or private drinking water supply without prior treatment.

Additionally, the Subject Property is located within five-hundred feet of a deciduous forested wetland to the west.

4.4 Historical Use Information on the Subject Property and Adjoining Properties

Historical research was conducted through data providers and at State and Subject Property City agencies. Historical information sources researched include aerial photographs, Sanborn maps, historical topographic maps, and historical address directories.

4.4.1 Sanborn Maps

Sanborn map coverage was found to exist for the Subject Property and immediately surrounding area as summarized in **Table 5** below. Copies of the maps are attached as **Appendix 3**.

Table 5 Sanborn Descriptions 756 & 770 Lonsdale Avenue Central Falls, RI

Year	Subject Property Description	Surrounding Property Descriptions	
1890	A portion of the Subject Property is not depicted in	North: Property to the north of the Subject	
	this Sanborn map. The portion that is depicted	Property appears to be vacant.	
	appears to be vacant property.	South: Property to the south of the Subject	
		Property is not depicted.	

Year	Subject Property Description	Surrounding Property Descriptions			
		East: Property to the east of the Subject Property appears to be utilized as a residential dwelling. West: Property to the west of the Subject Property is not depicted.			
1902	The Subject Property appears to be vacant.	North: Property to the north of the Subject Property appears to be vacant. South: Property to the south of the Subject Property appears to be occupied by residential dwellings. East: Property to the east of the Subject Property appears to be occupied by residential dwellings. West: Property to the west of the Subject Property appears to be vacant.			
1923	No significant changes to the Subject Property were observed.	North: No significant changes were observed. South: No significant changes were observed. East: A large garage/automobile storage area appears to have been constructed to the east of the Subject Property. West: No significant changes were observed.			
1949	The northern portion of the Subject Property appears to be improved with a structure labeled "American Legion Home."	North: Property to the north appears to be improved with a structure labeled as "Club House" and a garage. Property to the northeast appears to be utilized as a filling station, with a number of gasoline tanks on the southern and western side of the property. South: No significant changes were observed. East: No significant changes were observed. West: No significant changes were observed.			
1984	In addition to the structure on the northern portion of the Subject Property, the southern portion of the Subject Property appears to be improved with a storefront.	North: No significant changes were observed. South: No significant changes were observed. East: No significant changes were observed. West: No significant changes were observed.			

4.4.2 Aerial Photographs

Historical aerial photographs were viewed online using ArcGIS's Historic Aerial Mapper (https://www.arcgis.com/home/item.html?id=1dcafa7631154874bf78b408351afb9e) for the years 1939, 1951-52, 1962, 1972, 1981, 1988, 1997, 2008, 2011, 201, 2018, 2019, 2020, 2021, and 2022. A summary of the Subject Property and surrounding property descriptions is below. Copies of the photographs are attached as **Appendix 4**.

Table 6 Historical Aerial Descriptions 756 & 770 Lonsdale Avenue Central Falls, RI

Year	Subject Property Description	Surrounding Property Descriptions
1939	The Subject Property appears to be improved with an industrial/commercial style structure along the northern portion of the property. The remainder of the Subject Property appears to be vacant/cleared land.	North: Property to the north appears to be improved with a small structure. South: Property to the south appears to be improved with several structures. East: Property to the east appears to be improved with a number of residential style structures. West: Property to the west appears to be vacant land with potential filling activities.
1951-52	No significant changes to the Subject Property were observed.	North: Property to the north appears to be improved with a potential residential style structure. South: Property to the south appears to be improved with several potential residential style structures. East: Property to the east appears to be improved with a number of residential style structures. West: No significant changes were observed.
1962	The southern portion of the Subject Property now also appears to be improved with a potential industrial/commercial style structure.	North: Higginson Avenue appears to have been constructed to the north of the Subject Property. Beyond that, there appears to be an industrial/commercial facility to the north of the Subject Property. South: No significant changes were observed. East: No significant changes were observed. West: No significant changes were observed.
1972	No significant changes to the Subject Property were observed.	North: The parking lot associated with the property to the north appears to have been reconfigured and appears to be smaller than depicted in the previous aerial. South: No significant changes were observed. East: No significant changes were observed. West: Property to the west appears to have been developed as a sports complex with a baseball diamond, basketball court, soccer field, and a small structure (field house) and parking lot.
1981	No significant changes to the Subject Property were observed.	No significant changes were observed.
1988	No significant changes to the Subject Property were observed.	North: The industrial/commercial structure to the north of the Subject Property appears to

Year	Subject Property Description	Surrounding Property Descriptions		
		have an addition constructed along the northern portion of the original structure. Additionally, an industrial/commercial style structure appears to have been developed to the northeast of the Subject Property. South: No significant changes were observed. East: No significant changes were observed. West: No significant changes were observed.		
1997	No significant changes to the Subject Property were observed.	No significant changes were observed.		
2008	No significant changes to the Subject Property were observed.	No significant changes were observed.		
2011	The previously identified structure along the northern portion of the Subject Property appears to have been razed. No other significant changes were observed.	No significant changes were observed.		
2014	No significant changes to the Subject Property were observed.	No significant changes were observed.		
2018	No significant changes to the Subject Property were observed.	No significant changes were observed.		
2019	No significant changes to the Subject Property were observed.	No significant changes were observed.		
2020	No significant changes to the Subject Property were observed.	No significant changes were observed.		
2021	No significant changes to the Subject Property were observed.	No significant changes were observed.		
2022	No significant changes to the Subject Property were observed.	No significant changes were observed.		

4.4.3 Historical Topographic Maps

Historical topographic maps were provided by EDR for the years 1889, 1894, 1915, 1921, 1938, 1942, 1944, 1949, 1970, 1975, 1979, 1987, 1996, 2012, 2015, and 2018. A summary of the Subject Property and surrounding property descriptions is below. Copies of the maps are attached as **Appendix 5**.

Table 7
Historical Topographic Map Descriptions
756 & 770 Lonsdale Avenue
Central Falls, RI

Year	Subject Property Description	Surrounding Property Descriptions
1889	The Subject Property appears to be vacant land.	North: Property to the north appears to be
		vacant.
		South: Property to the south appears to be
		improved with a structure.
		East: Property to the east appears to be vacant.

Year	Subject Property Description	Surrounding Property Descriptions			
		West: Property to the west appears to be vacant.			
1894	No significant changes were observed.	No significant changes were observed.			
1915	No significant changes were observed.	North: A railroad path appears to have been constructed just to the north of the Subject Property. South: No significant changes were observed. East: No significant changes were observed. West: No significant changes were observed.			
1921	No significant changes were observed.	No significant changes were observed.			
1938	No significant changes were observed.	North: The aforementioned railroad path is no longer apparent. South: The aforementioned structure(s) are no longer apparent. East: No significant changes were observed. West: Property to the west is depicted as a wetland area.			
1942	No significant changes were observed.	No significant changes were observed.			
1944	No significant changes were observed.	No significant changes were observed.			
1949	No significant changes were observed.	No significant changes were observed.			
1970	No significant changes were observed.	No significant changes were observed.			
1975	No significant changes were observed.	No significant changes were observed.			
1979	No significant changes were observed.	No significant changes were observed.			
1987	No significant changes were observed.	North: Property to the northwest appears to be improved with several structures. South: No significant changes were observed. East: No significant changes were observed. West: Property to the west appears to be improved with a structure.			
1996	No significant changes were observed.	North: No structures are apparent on property to the north/northwest. South: No significant changes were observed. East: No significant changes were observed. West: Property to the west appears to be depicted as a wetland area.			
2012	No significant changes were observed.	North: No significant changes were observed. South: No significant changes were observed. East: No significant changes were observed. West: Property to the west is no longer depicted as a wetland area.			
2015	No significant changes were observed.	North: No significant changes were observed. South: No significant changes were observed. East: No significant changes were observed. West: No significant changes were observed.			
2018	No significant changes were observed.	North: No significant changes were observed. South: No significant changes were observed. East: No significant changes were observed.			

Year	Subject Property Description	Surrounding Property Descriptions
		West: No significant changes were observed.

4.4.4 Local Street Directories

A City directory search was conducted through EDR. Directories were reviewed beginning in 1938 and in approximate five-year intervals through the most current listing. The following is the result of this research.

<u>Table 8</u>
Historical Directory Descriptions
756 & 770 Lonsdale Avenue
Central Falls, RI

Year	Owner		
2017	744 Lonsdale Avenue: Not listed		
	756 Lonsdale Avenue: International Meat Market		
	768 Lonsdale Avenue: Not listed		
	770 Lonsdale Avenue: Not listed		
2014	744 Lonsdale Avenue: Not listed		
	756 Lonsdale Avenue: International Meat Market		
	768 Lonsdale Avenue: Not listed		
	770 Lonsdale Avenue: Not listed		
2010	744 Lonsdale Avenue: Not listed		
	756 Lonsdale Avenue: Carnicaria International Meat Market		
	768 Lonsdale Avenue: Not listed		
	770 Lonsdale Avenue: Not listed		
2005	744 Lonsdale Avenue: Not listed		
	756 Lonsdale Avenue: Carnicaria International Meat Market Sign Corp.		
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion		
	770 Lonsdale Avenue: Not listed		
2000	744 Lonsdale Avenue: Not listed		
	756 Lonsdale Avenue: Carnicaria International Meat Market		
	768 Lonsdale Avenue: James Stanton Post 15		
	770 Lonsdale Avenue: Not listed		
1995	744 Lonsdale Avenue: Not listed		
	756 Lonsdale Avenue: Carnicaria International Meat Market		
	768 Lonsdale Avenue: Not listed		
	770 Lonsdale Avenue: Not listed		
1992	744 Lonsdale Avenue: Not listed		
	756 Lonsdale Avenue: Carnicaria International Meat Market		
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion		
	770 Lonsdale Avenue: Not listed		
1989	744 Lonsdale Avenue: Not listed		
	756 Lonsdale Avenue: Carnicaria International Meat Market		
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion		
	770 Lonsdale Avenue: Not listed		
1984	744 Lonsdale Avenue: Not listed		
	756 Lonsdale Avenue: Carnicaria International Meat Market		

Year	Owner
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1979	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: CF Butcher Shops Inc.
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1974	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Vacant
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1971	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Mil-Ga Cleansers Inc.
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1966	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Mil-Gat Cleansers Inc.
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1961	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Mil-Gat Cleansers Inc.
	768 Lonsdale Avenue: James Stanton Post No. 5 American Legion
	770 Lonsdale Avenue: Not listed
1957	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Mil-Gat Cleansers
	768 Lonsdale Avenue: American Legion, James Stanton Post No. 5
	770 Lonsdale Avenue: Not listed
1953	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Not listed
	768 Lonsdale Avenue: American Legion, James Stanton Post No. 5
1040	770 Lonsdale Avenue: Not listed
1948	744 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Not listed
	768 Lonsdale Avenue: American Legion, James Stanton Post No. 5 770 Lonsdale Avenue: Not listed
1042	744 Lonsdale Avenue: Not listed
1943	756 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: American Legion, James Stanton Post No. 5
	770 Lonsdale Avenue: Not listed
1938	744 Lonsdale Avenue: Not listed
1330	756 Lonsdale Avenue: Not listed
	756 Lonsdale Avenue: Not listed 768 Lonsdale Avenue: American Legion, James Stanton Post No. 5
	770 Lonsdale Avenue: Not listed
	770 Londadic Avenue. Not listed

Copies of the directories are included in **Appendix 6**.

5.0 Subject Property Reconnaissance

5.1 Methodology and Limiting Conditions

On September 29, 2022, Ms. Lacy Reyna of SAGE conducted a Subject Property reconnaissance. Accessible areas of the Subject Property were observed by walking. The adjoining properties were observed from roadways and from the Subject Property boundaries.

The Subject Property walkover was conducted to observe the possible indication of releases of petroleum products or hazardous materials. A plan depicting the approximate parcel boundaries and pertinent Subject Property features observed during the walkover has been provided as **Figure 2**, and photographs of the Subject Property are included in the **Photographs Appendix**.

5.2 General Subject Property Setting & Subject Property Reconnaissance Observations

The Subject Property consists of two (2) parcels that comprise of approximately 0.68 of an acre. The parcels are zoned for commercial use; adjacent lots are zoned for commercial, residential, and park uses. Currently, the Subject Property building is being used as an international meat market. According to publicly available information, the parcels were most recently owned by Faria Holdings, LLC.

5.2.1 Notable Subject Property Walkover Conditions

The following notable conditions were observed during the Subject Property reconnaissance. **Table 9** below identifies specific conditions noted in ASTM E1527-21 Section 9.4. Conditions that were identified at the Subject Property are described in **Sections 5.2.2 and 5.2.3.**

<u>Table 9</u>

Notable Subject Property Conditions

756 & 770 Lonsdale Avenue

Central Falls, RI

Feature		Interior			Exterior	
Unoccupied Spaces	Yes □	No ☑	N/A □	Yes □	No ☑	
Hazardous Materials	Yes □	No ☑	N/A □	Yes □	No ☑	
Petroleum Products	Yes □	No ☑	N/A □	Yes □	No ☑	
Storage Tanks	Yes □	No ☑	N/A □	Yes □	No ☑	
Pools of Liquid	Yes □	No ☑	N/A □	Yes □	No ☑	
Sumps	Yes □	No ☑	N/A □	Yes □	No ☑	
Floor Drains	Yes ☑	No □	N/A □	Yes □	No ☑	
Drums	Yes □	No ☑	N/A □	Yes □	No ☑	
Unidentified Containers	Yes □	No ☑	N/A □	Yes □	No ☑	
Indications of Possible Polychlorinated Biphenyl (PCB)-Containing Equipment	Yes □	No ☑	N/A □	Yes □	No ☑	
Stains or Corrosion	Yes □	No ☑	N/A □	Yes □	No ☑	
Odors	Yes □	No ☑	N/A □	Yes □	No ☑	
Solid Waste	Yes □	No ☑	N/A □	Yes □	No ☑	
Pits, Ponds or Lagoons	Yes □	No ☑	N/A □	Yes □	No ☑	
Stressed Vegetation	Yes □	No ☑	N/A □	Yes □	No ☑	

Feature	Interior			Exterior	
Wells	Yes □	No ☑	N/A □	Yes ☑	No □
Indications of Prior Environmental Investigation/Remediation	Yes □	No ☑	N/A □	Yes ☑	No □
Wastewater Discharge	Yes □	No ☑	N/A □	Yes □	No ☑

5.2.2 Interior Inspection

- During the interior walkover, SAGE observed the Subject Property to be utilized as a meat market and grocery store. Several floor drains were observed within the meat processing areas and appeared to receive liquid wastes from processing raw meat (i.e., blood) as well as condensate from the refrigerator units/displays. The Subject Property owner indicated that these floor drains are connected to the municipal sewer system, and the wastewater authority requires routine sampling of the materials entering the drains to ensure no contaminants are entering the municipal sewer system. Based on this information, it is unlikely that this finding has impacted the Subject Property; and
- ➤ An area of diesel exhaust fluid (DEF) and cleaning material storage was observed within the Subject Property structure. Visual observation of these materials indicated that they were stored with good housekeeping practices, and evidence of a release or threat of release of oil or hazardous materials (OHM) was not identified.

5.2.3 Exterior Inspection

➤ During the exterior walkover, SAGE observed a groundwater monitoring well near the southeastern boundary of the Subject Property. No other significant observations were identified. As detailed in this report, this well was sampled for VOCs as part of additional investigation at the Subject Property. Results of this analysis did not identify contaminants of concern in excess of laboratory detection limits.

6.0 VAPOR ENCROACHMENT SCREEN VIA ASTM E2600-15

Under the ASTM E1527-21 standard, vapor impacts must now be considered, similar to the way potential soil and groundwater impacts have been evaluated in the past. ASTM Designation E2600 – 15 Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions (2015) provides a method of identifying a vapor encroachment condition (VEC), which is the presence or likely presence of chemicals of concern (COC) vapors in sub-surface of the Subject Property caused by the release of vapors from contaminated soil or groundwater either on or near the Subject Property. The Vapor Encroachment Screen (VES) process is a two-tiered screening process.

The conclusion³ of a VES is (1) a VEC exists at the Subject Property; or (2) a VEC does not exist at the Subject Property; however, the determination that a VEC exists at the Subject Property does not necessarily represent an REC.

³ The VES is intended to reduce, but not eliminate, uncertainty regarding whether or not a VEC exists in connection with the Subject Property, and evaluations conducted during the course of this VES are intended to be non-exhaustive. Additionally, the performance of an invasive Tier 2 Screen is not within the Scope of an ASTM Phase I ESA and is considered an Additional Service.

-

6.1 Tier 1 Screening Evaluation

The purpose of a Tier 1 Screening Evaluation in conjunction with the Phase I ESA is to evaluate whether a VEC exists at the Subject Property by using information collected during the course of the Phase I ESA process. Information evaluated for the Tier 1 Screen includes past, present, and anticipated usage and oil and/or hazardous material usage at the Subject Property, the Subject Property's geological and hydrogeological setting, the presence or potential presence of preferential pathways for contaminant migration, and environmental records for the Subject Property and surrounding properties.

The VES Guide recommends reviewing environmental records for properties within 1/10-mile of the Subject Property to evaluate whether a VEC exists from petroleum hydrocarbon COCs, and a radius of 1/3-mile surrounding the Subject Property to evaluate whether a VEC exists from any other volatile non-petroleum hydrocarbon COCs. **Table 10**, below summarizes the number of properties identified within the target VES search distance. This information was obtained through a review of records provided in the EDR report.

Table 10
Tier 1 Screening Table Summary
756 & 770 Lonsdale Avenue
Central Falls, RI

Database	Subject Property Inclusion	Non-Petroleum Contaminated Properties (1/3-mile Search Radius)	Petroleum Contaminated Properties (1/10-mile Search Radius)
NPL	No	0	0
CERCLIS	No	0	0
State Equivalent CERCLIS	No	1	1
SWF	No	0	0
RCRA – SUBJECT PROPERTY ONLY	No	N/A	N/A
RCRA CORRACTS	No	0	0
RCRA non-CORRACTS	No	0	0
State/Tribal USTs – SUBJECT PROPERTY ONLY	Yes	N/A	N/A
State/Tribal LUSTs	No	0	0
ERNS	No	0	0
Federal/State Brownfields	No	1	0
Federal/State Institutional Control – SUBJECT PROPERTY ONLY	No	N/A	N/A

Based upon the results of the Tier 1 Screen, a VEC exists based on the listings identified within the search radius as well as the historical use of the property as a drycleaning facility.

6.2 Tier 2 Screening Evaluation

If a VEC is found to exist for the Subject Property during the performance of the Tier 1 Screen, a Tier 2 invasive or non-invasive Screen may be conducted to obtain greater certainty of the presence of a VEC. A non-invasive Tier 2 Screen applies numeric screening criteria to existing soil, soil gas, and/or groundwater analytical data for the Subject Property and/or surrounding properties and evaluates the influence of off-Subject Property contaminated properties with respect to existing information pertaining to known COCs

and known or inferred direction of groundwater flow. A Tier 2 invasive Screen involves the collection of soil, soil gas, and/or groundwater analytical data at the Subject Property.

Based on the information obtained during the course of this assessment and the conclusion of the Tier 1 Screen, a VEC exists at the Subject Property. As such, SAGE conducted an invasive Tier 2 Screening Evaluation to obtain greater certainty of this conclusion. The invasive Tier 2 Screening Evaluation consisted of both soil boring and monitoring well installation throughout the Subject Property. These activities and the results of the investigation are further described in **Section 8.0** of this report. Based upon the results of the Tier 2 invasive screen, a VEC exists based on CVOC impacts to groundwater at the Subject Property. Two (2) of the three (3) CVOCs detected were identified at concentrations above the MassDEP GW-2 Standards, which apply to groundwater that is considered a potential source of indoor air contamination *via* the vapor intrusion pathway. Given that groundwater is within fifteen (15) feet of the ground surface and thirty (30) feet horizontally from both a planned school and existing occupied structure, these groundwater impacts are considered a potential source of indoor air contamination. While the contaminants of concern do not exceed the applicable RIDEM GB-GWOs, given the detected concentrations and volatile nature of these compounds, a VEC cannot be ruled out.

7.0 Interviews

7.1 Interview with Owner

The current Subject Property Owner, Mr. Faria, was contacted in person on September 29, 2022 and provided information about the Subject Property that has been incorporated into this assessment.

7.2 Interview with Local Government Officials

Local government officials were interviewed as part of this assessment, including staff at the City of Central Falls Fire Prevention Office and local offices. Information provided during these interviews has been incorporated into this assessment.

7.3 Interview with Others

No other person with any personal knowledge of the Subject Property was interviewed.

8.0 Additional Services

8.1 Ground Penetrating Radar Survey

A GPR survey was performed to investigate whether an underground storage tank (UST) was present on the Subject Property, as the heating source for a former Subject Property structure was unknown and potentially a fuel oil UST. On October 20,2022, SAGE personnel were present to oversee the GPR survey completed by Advanced Technologies Utility Locating Corp. of Rehoboth, Massachusetts. The GPR survey was performed along the accessible areas of the Site identified on **Figure 2**. No anomalies consistent with a UST were identified during this survey.

Please note that GPR surveys are interpretive and do not, in all cases, guarantee the presence or absence of a UST. A GPR survey is a non-invasive investigatory tool that is used to identify the need for and/or location of future investigative efforts. The GPR survey is limited to the areas which were scanned and

walkable during the Subject Property survey.

8.2 Environmental Setting and Soil/Groundwater Regulatory Classification

Based on a review of maps obtained from the Rhode Island Geographic Information System (RIGIS) database for the Subject Property and vicinity, groundwater at the Subject Property and immediate surrounding area is classified as GB. According to RIDEM, GB groundwater is defined as groundwater that is presumed not suitable for use as a public or private drinking water supply without prior treatment. Additionally, the Subject Property is not located within any resource areas or protected open spaces. A copy of the RIGIS map is included as **Figure 3**.

Additionally, given an Environmental Land Use Restriction (ELUR) does not exist at the Subject Property, the RIDEM soil data herein has been compared to the Method 1 Residential Direct Exposure Criteria (R-DEC) and GB Leachability Criteria (GB-LC).

The following sections summarize the work performed. The LSI was focused upon the areas of concern noted on the attached **Figure 2**, which were developed based on the findings of the Phase I ESA.

8.3 Soil Boring Advancement / Groundwater Monitoring Well Installations

Prior to advancing soil borings at the Subject Property, SAGE marked the area to be investigated and contacted DigSafe such that underground utilities could be marked prior to commencement of field work. SAGE returned to the Subject Property on October 20, 2022, to oversee the advancement of seven (7) soil borings (SE-101 through SE-107) by SAGE Enviro-Tech Drilling Services utilizing a track-mounted Geoprobe® rig. Boring locations are depicted on **Figure 2**. A summary of boring placement rationale is provided in **Table 1**.

While advancing the borings, continuous soil samples were collected in approximate two to five-foot intervals. All collected samples were field screened for the presence volatile compounds in the form of total volatile organic vapor (TVOV) *via* the jar headspace method using a photoionization Detector (PID) equipped with a 10.6 millivolt lamp calibrated to 100 parts per million by volume (ppmv) isobutylene standard. TVOV screening values are summarized below in **Table 1**, below.

Table 11

Boring Placement Rationale and TVOV Screening Results
756 & 770 Lonsdale Avenue
Central Falls, Rhode Island

SE-101(MW)	Boring ID	Boring Placement Rationale	Depth (Feet BSG)	TVOV Result (ppmv)
Presumed upgradient side of Subject				
Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility.	00_()			
Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility.				
Property near building formerly utilized as a drycleaning facility. 10-13 13-15 NR 13-15 NR 15-17 ND 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR 17-20 NR		, •		
SE-102(MW) SE-103 SE-1		Property near building formerly		
SE-102(MW) SE-102(MW) Near central portion of the Subject		utilized as a drycleaning facility.		
17-20				
Near central portion of the Subject				
Near central portion of the Subject	CE 102/N4\A\			
Near central portion of the Subject Property and presumed 4-5 NR	SE-102(IVIVV)			
Property and presumed 4-5 NR		Name and a language of the Colling		
downgradient of former Subject 9-10 NR 10-13* NR 13-15 NR ND 12-2 NR 2-3* 5.5 NR ND 10-11* 3.0 NR 10-11* 3.0 11-15 NR ND 12-15 NR ND ND ND ND ND ND ND		=		
Property structure.				
10-13* ND		-		
SE-103 SE-103 O-1		Property structure.		
SE-103				
1-2			13-15	NR
Near presumed downgradient edge of the Subject Property boundary.	SE-103		_	
Near presumed downgradient edge of the Subject Property boundary.				NR
Of the Subject Property boundary. 5-7			2-3*	5.5
T-10		Near presumed downgradient edge	3-5	NR
SE-104(MW) Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning former Subject Property structure. SE-105(MW) Presumed downgradient side of Subject Property structure. SE-106(MW) Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning former Subject Property structure. S-9		of the Subject Property boundary.	5-7	2.2
SE-104(MW)			7-10	NR
SE-104(MW)			10-11*	3.0
Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. SE-105(MW) SE-105(MW) SE-105(MW) Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. SE-106(MW) Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility. SE-107 Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility. Presumed upgradient side of Subject 3-5 NR Presumed upgradient side of Subject 3-5 NR Property near building formerly utilized as a drycleaning facility. Property near building formerly utilized as a drycleaning facility. Property near building formerly 10-14 ND 10-14 ND 10-14 ND 10-14 ND 10-14 ND 10-14 ND NR			11-15	NR
Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. SE-105(MW) SE-105(MW) SE-105(MW) Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. SE-106(MW) Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility. Presumed upgradient side of Subject Property near building formerly Utilized as a drycleaning facility. Presumed upgradient side of Subject Property near building formerly Utilized as a drycleaning facility. Presumed upgradient side of Subject Property near building formerly Utilized as a drycleaning facility. Presumed upgradient side of Subject Property near building formerly Utilized as a drycleaning facility. Presumed upgradient side of Subject Property near building formerly Utilized as a drycleaning facility. Presumed upgradient side of Subject Property near building formerly Utilized as a drycleaning facility. Presumed upgradient side of Subject Property ND	SE-104(MW)		0-2*	ND
Subject Property near building formerly utilized as a drycleaning facility. SE-105(MW) SE-106(MW) SE-106(MW) SE-106(MW) SE-106(MW) SE-106(MW) SE-107 SE-108 S			2-4	ND
Subject Property near building formerly utilized as a drycleaning facility.		_	4-5	NR
SE-105(MW) 9-10 NR 10-12* ND 12-15 NR SE-105(MW) 12-15 NR ND 12-15 NR ND 12-15 NR ND 12-15 NR ND 1-2 NR 2-3 ND NR 10-14* 3.6 14-15 NR ND 10-14* ND 10-11* ND 11-15 NR ND 11-15 NR SE-107 SE-107 O-1 ND 12-2 NR ND 12-3 ND NR 10-11* ND 11-15 NR ND 11-16* NR ND 11-15* NR ND 11-16* NR ND 11-16* NR ND 11-16* NR ND 11-16* NR ND 11-15*				
SE-105(MW) 10-12* ND 12-15 NR SE-105(MW) 0-1* ND 1-2 NR ND 1-2 NR ND 1-2 NR ND 1-2 NR ND ND ND ND ND ND ND		-		
12-15		facility.		
SE-105(MW)				
1-2	SF_105(N/N/)			
Within approximate location of former Subject Property structure. Within approximate location of former Subject Property structure. Se-106 (MW) Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. SE-107 SE-107 SE-107 Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. SE-107 SE-107 Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility. Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility. Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility. NR ND NR ND NR NR ND NR NR NR	36-103(14144)			
Within approximate location of former Subject Property structure. September 10-14* SE-106(MW) Presumed downgradient side of Subject Property near building facility. SE-107 SE-107 SE-107 Within approximate location of Subject Property structure. SE-108 Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. SE-107 SE-107 SE-107 SE-107 Presumed upgradient side of Subject Property near building formerly SE-107 Presumed upgradient side of Subject SE-107 NR Property near building formerly SE-100 NR 10-14 ND 10-14 ND 10-14 ND NR				
former Subject Property structure. Section Former Subject Property structure. Section Subject Property near building formerly utilized as a drycleaning facility. Section Sec		Within approximate location of		
9-10				
10-14* 3.6 14-15 NR		Tormer Subject Property Structure.		
SE-106(MW) Presumed downgradient side of Subject Property near building facility. SE-107 Presumed downgradient side of Subject Property near building facility. SE-107 Presumed downgradient side of Subject Property near building facility. Description of Subject Property near building formerly utilized as a drycleaning facility. Presumed upgradient side of Subject Property near building formerly Utilized as a drycleaning facility. Description of Subject Property near building formerly Utilized as a drycleaning facility. Description of Subject Property NR				
SE-106(MW) Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. SE-107 SE-107 O-2* ND 4-5 NR 5-9 ND 9-10 NR 10-11* ND 11-15 NR SE-107 O-1 ND 1-2 NR 2-3 ND Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility. Property near building formerly utilized as a drycleaning facility. ND 10-14 ND 10-14 ND 10-14 ND 10-14 ND 11-15 NR				
Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. SE-107 Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. SE-107 Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility. Property near building formerly Utilized as a drycleaning facility. Property near building formerly To-10 NR	05.405/2.000			
Subject Property near building formerly utilized as a drycleaning facility. SE-107 SE-107 Presumed downgradient side of Subject Property near building formerly utilized as a drycleaning facility. SE-107 Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility. Property near building formerly To NR 10-14 NR 10-14 NR 10-14 NR NR NR NR NR NR NR NR NR N	SE-106(MW)			
Subject Property near building formerly utilized as a drycleaning facility. SE-107 SE-108 SE-107 SE-107 SE-108 SE-107 SE-108 SE-107 SE-108 SE-107 SE-108 SE-107 SE-108 SE-108 SE-109 SE-109 SE-100 S		Presumed downgradient side of		
formerly utilized as a drycleaning facility. SE-107 SE-108 SE-107 SE-107 SE-108 SE-108 SE-107 SE-108		_		
SE-107 SE-107 NR 10-11* ND 11-15 NR				
SE-107 SE-107 O-1 11-15 NR O-1 ND 1-2 NR 2-3 ND Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility. ND NR 10-11 ND NR 10-14 ND 10-14 ND 11-15 NR		-		
SE-107 O-1 1-2 NR 2-3 ND Presumed upgradient side of Subject Property near building formerly utilized as a drycleaning facility. NR 10-14 ND 10-14 ND 11-2 NR 10-14 ND NR				
1-2 NR 2-3 ND Presumed upgradient side of Subject 3-5 NR Property near building formerly utilized as a drycleaning facility. 7-10 NR 10-14 ND 14-15 NR				
Presumed upgradient side of Subject 3-5 NR Property near building formerly 5-7 ND utilized as a drycleaning facility. 7-10 NR 10-14 ND 14-15 NR	SE-107			
Presumed upgradient side of Subject 3-5 NR Property near building formerly utilized as a drycleaning facility. 7-10 NR 10-14 ND 14-15 NR				NR
Property near building formerly 5-7 ND utilized as a drycleaning facility. 7-10 NR 10-14 ND 14-15 NR				ND
utilized as a drycleaning facility. 7-10 NR 10-14 ND 14-15 NR		Presumed upgradient side of Subject	3-5	NR
10-14 ND 14-15 NR		Property near building formerly	5-7	ND
14-15 NR		utilized as a drycleaning facility.	7-10	NR
			10-14	ND
				NR
15-17* ND			15-17*	ND

BSG=Below surface grade

ND=Non-detect (<1ppmv)

NR=No recovery

*=Submitted for laboratory analysis

From the collected soil samples, subsurface conditions were observed, and lithology consisted predominantly of well graded sands, gravelly sands, little or no fines.

Groundwater was encountered at depths ranging from 10 to 15 feet BSG throughout the Subject Property. Further soil lithology observations are provided in soil boring/monitoring well installation logs included as **Appendix 7**.

Of the seven (7) borings, five (5) were completed as permanent groundwater monitoring wells as follows: SE-101(MW), SE-102(MW), SE-104(MW), SE-105(MW) and SE-106(MW).

8.4 Soil Sampling Analytical Results

Soil samples were collected from each of the seven (7) of the borings, placed in a cooler on ice and transported under chain-of-custody protocol to a State-certified laboratory for select analysis of semivolative organic compounds (SVOCs) *via* EPA Method 8270D, total petroleum hydrocarbon (TPH) *via* EPA Method 8100M, volatile organic compounds (VOCs) *via* EPA Method 8260C and Resource Conservation Recovery Act (RCRA) 8 total metals.

As depicted in **Table 2** below, several SVOCs, arsenic, lead, and TPH were detected above RIDEM Residential Direct Exposure Criteria (R-DEC). No exceedances of GB Leachability Criteria (GB-LC) were identified. Please note that only analytes detected above laboratory detection limits are included in **Table 2**. A complete list of analytes tested for is included in the laboratory analytical report, along with Chain-of-Custody documentation, which is included as **Appendix 8**.

<u>Table 12</u> **Detected Soil Analytical Results Summary** 756 & 770 Lonsdale Avenue Central Falls, Rhode Island

Sample ID/Depth	SE-101 (MW)	SE-102 (MW)	SE-103	SE-103	SE-104 (MW)	SE-104 (MW)	SE-105 (MW)	SE-105 (MW)	SE-106 (MW)	SE-106 (MW)	SE-107	RIDEM	RIDEM
Date	0-2	10-13	2-3	10-11	0-2	10-12	0-1	10-14	0-2	10-11	15-17	Method 1	Method 1
	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022	R-DEC	GB-LC
Analyte	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result		
Semivolatile organic compounds (mg/kg)													
Acenaphthene	<0.133	NA	<1.4	<1.53	0.856	1.08	<0.687	NA	<0.695	<0.138	NA	43	NE
Acenaphthylene	<0.133	NA	<1.4	<1.53	0.738	<0.779	<0.687	NA	<0.695	<0.138	NA	23	NE
Anthracene	<0.133	NA	<1.4	1.7	2.79	2.62	<0.687	NA	<0.695	<0.138	NA	35	NE
Benzo(a)anthracene	<0.133	NA	<1.4	5.88	6.19	6.07	<0.687	NA	<0.695	<0.138	NA	0.9	NE
Benzo(a)pyrene	0.167	NA	<1.4	5.47	6.5	5.09	<0.687	NA	<0.695	<0.138	NA	0.4	NE
Benzo(b)fluoranthene	0.246	NA	<1.4	6.69	7.88	6.11	<0.687	NA	0.802	<0.138	NA	0.9	NE
Benzo(g,h,i)perylene	0.17	NA	<1.4	4.27	5.45	3.18	<0.687	NA	<0.695	<0.138	NA	0.8	NE
Benzo(k)fluoranthene	<0.133	NA	<1.4	2.42	3	2.04	<0.687	NA	<0.695	<0.138	NA	0.9	NE
Chrysene	0.154	NA	<1.4	5.76	6.21	7.03	<0.687	NA	<0.695	<0.138	NA	0.4	NE
Dibenz(a,h)anthracene	<0.133	NA	<1.4	<1.53	1.12	<0.779	<0.687	NA	<0.695	<0.138	NA	0.4	NE
Dibenzofuran	<0.133	NA	<1.4	<1.53	<0.695	1.02	<0.687	NA	<0.695	<0.138	NA	NE	NE
Fluoranthene	0.171	NA	<1.4	9.99	11.1	13.2	0.783	NA	0.945	<0.138	NA	20	NE
Fluorene	<0.133	NA	<1.4	<1.53	0.891	0.998	<0.687	NA	<0.695	<0.138	NA	28	NE
Indeno(1,2,3-cd)pyrene	0.146	NA	<1.4	3.98	5.21	2.99	<0.687	NA	<0.695	<0.138	NA	0.9	NE
Naphthalene	<0.133	NA	<1.4	<1.53	1.38	1.08	<0.687	NA	<0.695	<0.138	NA	54	NE
Phenanthrene	<0.133	NA	<1.4	5.71	7.71	16.3	<0.687	NA	<0.695	<0.138	NA	40	NE
Pyrene	0.235	NA	<1.4	11.8	12.7	18	0.955	NA	1.1	<0.138	NA	13	NE
Total Metals (mg/kg)							-	_	-	_			
Antimony	<0.75	NA	<0.74	<0.82	<0.75	2.76	<0.72	NA	1.44	<0.78	NA	10	NE
Arsenic	2.27	NA	4.64	10.4	2.29	11.8	3.41	NA	2.26	<1.18	NA	7	NE
Cadmium	0.65	NA	1.25	6	<0.57	11.2	0.96	NA	0.93	<0.59	NA	39	NE
Chromium	6.62	NA	13.3	49.6	8.03	98.3	11	NA	6.35	2.34	NA	NE	NE
Copper	10.5	NA	21.1	302	11.8	198	13	NA	30	3.59	NA	3100	NE
Lead	58.3	NA	29	325	41.2	417	23.1	NA	86.9	3.44	NA	150	NE
Nickel	5.92	NA	8.45	38.3	5.11	74.1	10.1	NA	5.66	2.22	NA	1000	NE
Zinc	39	NA	43.1	490	63.2	324	38.4	NA	62.4	8.1	NA	6000	NE
Mercury	<0.164	NA	0.162	<0.181	0.524	<0.177	<0.172	NA	0.182	<0.162	NA	23	NE
Total Petroleum Hydrocarbons (mg/kg)													
Total Petroleum Hydrocarbons	31	<31	1060	954	65	232	75	<31	135	38	<31	500	2500
Volatile Organic Compounds (mg/kg)	< RL	< RL	< RL	< RL	< RL	< RL	< RL	< RL	< RL	NA	< RL	Various	Various

Cells with this color indicate: Cases where a reporting limit is not sufficiently low for evaluating compliance with one or more of the limits provided.

Cells with this color indicate: Cases where the analyte was detected but is within the limits provided.

Cells with this color indicate: Cases where the analyte concentration violates one or more of the limits provided. (The violated limits are colored as well.)

<x: Indicates analyte concentration not detected at or above specified laboratory reporting limit (x)</p>

NE: Standard not established for this substance

NA: Not analyzed.

8.5 Groundwater Sampling

During the Subject Property walkover for the Phase I ESA, SAGE observed one (1) pre-existing monitoring well along the southeastern boundary of the Subject Property. During initial LSI activities, SAGE sampled this monitoring well for VOCs on October 20, 2022. This monitoring well was labeled as MW-1 to indicate that the well was pre-existing and installed by others. On October 28, 2022, SAGE returned to the Subject Property to complete a round of groundwater sampling from the five (5) newly installed monitoring wells. The monitoring well locations are identified on **Figure 2**.

Prior to sample collection, SAGE gauged each well utilizing a Geotech® Electronic Interface Probe to determine depth to groundwater and to assess the groundwater surface to evaluate for the potential presence of non-aqueous phase liquid (NAPL). NAPL was not detected during well gauging of any of the wells sampled. Next, each well was purged with a peristaltic pump to remove fine-grained sediments utilizing a modified version of the EPA Region 1 Standard Operating Procedure titled "Low Stress (low-flow) Purging and Sampling Procedure for the Collection of Groundwater Samples" from Monitoring Wells" Revision 3, July 19, 2010, which included the removal of a minimum of three static well volumes prior to sample collection in the vicinity of the well screen and allow the free flow of groundwater into the well. Additionally, a Geotech Portable Turbidity Meter was utilized throughout groundwater purging to ensure the turbidity of each sample was less than 5 Nephelometric Turbidity Units (NTUs) to ensure an adequate amount of water had been purged.

8.6 Groundwater Elevation Survey

During the October 28, 2022, groundwater sampling event, a relative groundwater elevation survey was performed to determine the approximate groundwater flow direction. Using an arbitrary benchmark of 100 feet, each well was surveyed to establish relative elevations. Based on the elevation survey, groundwater at the Site appears to flow in an east to southeasterly direction. Groundwater contours are depicted on **Figure 2**. A summary of the groundwater gauging and elevation survey has been provided in **Table 3**.

Table 13
Groundwater Gauging Results
756 & 770 Lonsdale Avenue
Central Falls, Rhode Island

Well#	Well Dia.	MP Elevation	Depth To Product	Depth to Water (ft)	Equivalent Head Elev.	
SE-101(MW)	1	103.42		14.62	88.80	
SE-102(MW)	1	97.92		12.34	85.58	
SE-104(MW)	1	97.40		12.14	85.26	
SE-105(MW)	1	97.94		11.81	86.13	
SE-106(MW)	1	102.17		13.83	88.34	

^{— =} No separate-phase petroleum detected

Once purged, groundwater samples were collected from each monitoring well, placed in a cooler on ice, and transported under chain-of-custody protocol to a State-certified laboratory for VOCs analysis.

8.7 Groundwater Sampling Analytical Results

As depicted in **Table 14**, below, three (3) targeted VOCs were detected at concentrations above laboratory detection limits; however, all results were found to be well below applicable RIDEM Method 1 GB Groundwater Objectives (GB-GWOs). A complete list of analytes tested for is included in the laboratory analytical reports, along with Chain-of-Custody documentation, which is included as **Appendix 9**.

<u>Table 14</u>
Detected Groundwater Analytical Results Summary
756 & 770 Lonsdale Avenue
Central Falls, Rhode Island

Sample ID/Date	MW-1	SE-101 (MW)	SE-102 (MW)	SE-104 (MW)	SE-105 (MW)	SE-106 (MW)	RIDEM			
	10/20/2022	10/28/2022	10/28/2022	10/28/2022	10/28/2022	10/28/2022	Method 1	RIDEM		
Analyte	Sample Result	Sample Result	Sample Result	Sample Result	Sample Result	Sample Result	GB-GWOs	GB UCLs		
Volatile Organic Compounds (ug/l)										
trans-1,2-Dichloroethene	<1	<1	<1	3	<1	<1	2800	79000		
cis-1,2-Dichloroethene	<1	<1	<1	29	<1	<1	2400	69000		
Tetrachloroethene	<1	30	<1	<1	<1	<1	150	NE		

Cells with this color indicate: Cases where the analyte was detected but is within the limits provided.

<x: Indicates analyte concentration not detected at or above specified laboratory reporting limit (x)

NE: Standard not established for this substance

9.0 FINDINGS & CONCLUSIONS

SAGE has performed a Phase I ESA of the Subject Property in general conformance with the scope and limitations of ASTM Practice E1527-21 and the EPA's AAI Rule and those exceptions identified in this report. Any exceptions to or deletions from this practice are described in **Section 1.6** of this report titled "Deviations".

9.1 Findings

The following summarizes key findings of the Phase I ESA based on observations during the Subject Property walkover, review of existing historical resources, and interviews with current or past owners. Included in the summary are known or suspected RECs, CRECs, HRECs and de minimis conditions.

Suspected RECs and de minimis conditions at the Subject Property:

- Floor drains: During the interior walkover, SAGE observed several floor drains that received waste liquid from processing raw meat (i.e., blood) and condensate from the refrigerator units/displays;
- ➤ **DEF and cleaning material storage:** An area of diesel exhaust fluid (DEF) and cleaning material storage was observed within the Subject Property structure;
- ➤ **Groundwater monitoring well:** During the exterior walkover, SAGE observed a groundwater monitoring well near the southeastern boundary of the Subject Property;
- Former Subject Property Use: According to historical directory descriptions, the Subject Property was formerly occupied by Mil-Gat Cleansers Inc., a suspect dry-cleaning operation, between at least 1957 to 1971 at Lot 203;
- Former Subject Property Structure: Lot 26 of the Subject Property was formerly occupied by an American Legion Hall between at least 1938 to 2005;
- Former UST: The current structure was formerly heated by one (1) 1,000-gallon fuel oil no. 2 UST. According to available documentation, this UST was closed by removal on November 21, 2018; and
- ➢ Historical Filling/Landfilling Activities: Historical aerial depictions of the Subject Property indicate potential filling activities within the surrounding area and the Subject Property between at least 1939 to circa 1972. Additionally, observations during a UST closure at the Subject Property in 2018 indicated that while soils were observed to contain urban fill materials, no stains or odors were identified. RIDEM noted that the soils were from a previous landfill; however, no soil samples were collected or submitted for laboratory analysis. Furthermore, during this assessment, Mr. Faria, the Subject Property owner, indicated that the Subject Property and surrounding area were formerly utilized as a landfill.

ASTM E2600-15 VAPOR ENCROACHMENT SCREEN

During this assessment, SAGE also conducted a Vapor Encroachment Screen (VES) via ASTM E2600-15. Based upon the results of the Tier II Screening, SAGE has determined a Vapor Encroachment Condition (VEC) exists based on the findings of the LSI, which included low-level VOCs in groundwater. The presence of a VEC was determined by comparing the groundwater concentrations to MassDEP GW-2 Standards, which apply to groundwater that is considered a potential source of indoor air contamination via a vapor

intrusion pathway. RIDEM does not have a vapor intrusion guidance document but has been amenable to utilizing MassDEP GW-2 standards as a screening tool for vapor intrusion concerns as described in the MassDEP Vapor Intrusion Guidance. Two (2) of the three (3) CVOCs detected were identified at concentrations above the Massachusetts Department of Environmental Protection (MassDEP) GW-2 Standards. Additionally, groundwater is within fifteen (15) feet of the ground surface and thirty (30) feet horizontally from both a planned school and existing occupied structure, which is another consideration for vapor intrusion concerns in the MassDEP vapor intrusion guidance. As such, a VEC cannot be ruled out.

9.2 Opinions

Based upon the results of this assessment and the ASTM E1527-21 definitions of a REC, HREC, and CREC, the following opinions have been developed by SAGE along with a rationale for such determinations.

Non-REC Findings:

- Floor drains: The Subject Property owner indicated that these floor drains are connected to the municipal sewer system, and the wastewater authority requires routine sampling of the materials entering the drains to ensure no contaminants are entering the municipal sewer system. Based on this information, it is unlikely that this finding has impacted the Subject Property;
- ➤ **DEF and cleaning material storage:** Visual observation of the DEF and cleaning materials indicated that they were stored with good housekeeping practices, and evidence of a release or threat of release of oil or hazardous materials (OHM) was not identified. As such, it is unlikely this finding has impacted the Subject Property;
- ➤ **Groundwater monitoring well:** As detailed in this report, this well was sampled for VOCs as part of additional investigation at the Subject Property. Results of this analysis did not identify contaminants of concern in excess of laboratory detection limits. As such, it is unlikely that this finding has impacted the Subject Property;
- Former Subject Property Structure: While this historical use of the former structure is unlikely to have impacted the Subject Property subsurface, the heating source for this structure was unknown, and it is possible that the heating source for this structure was a fuel oil UST. Based on this information and the lack of former investigations of the Subject Property, this finding was identified as a REC. As part of additional investigation of the Subject Property, detailed within this report, SAGE conducted a ground penetrating radar (GPR) survey within the area of the former structure to determine whether a subsurface anomaly consistent with a UST was present. Results of this survey did not identify a subsurface structure consistent with a UST. Based on this information, it is unlikely the former structure has had an objectionable impact on the Subject Property's subsurface; and
- Former UST: During the former UST closure by removal, no holes or corrosion were observed. RIDEM documented that the UST was pitted. While soils were observed to contain urban fill materials, no stains or odors were identified. RIDEM noted that the soils were from a previous landfill; however, as no evidence of a release from the UST was identified, no soil samples were required by the RIDEM. This property received a Closure Certificate on November 26, 2018. Based on this information, it is unlikely that this UST has impacted the Subject Property.

REC Findings:

- > Former Subject Property Use: Dry-cleaning facilities often utilize hazardous solvents as part of normal operations and have historically resulted in releases of hazardous CVOCs to the subsurface due to poor handling/housekeeping practices. Given this information and the lack of former investigations at the Subject Property, this finding was identified as a REC. During the additional subsurface investigation conducted as a follow-up to the Phase I ESA, two (2) of five (5) groundwater monitoring wells were found to have low levels of CVOCs above laboratory detection limits. While these compounds are compliant with the applicable GB Groundwater Objectives (GB-GWOs), this finding constitutes a REC as the detected compounds are volatile in nature. A Vapor Encroachment Condition (VEC) exists based on VOC) impacts to groundwater at the Subject Property. The presence of a VEC was determined by comparing the groundwater concentrations to MassDEP GW-2 Standards, which apply to groundwater that is considered a potential source of indoor air contamination via a vapor intrusion pathway. RIDEM does not have a vapor intrusion guidance document but has been amenable to utilizing MassDEP GW-2 standards as a screening tool for vapor intrusion concerns as described in the MassDEP Vapor Intrusion Guidance. Two (2) of the three (3) CVOCs detected were identified at concentrations above the MassDEP GW-2 Standards. Additionally, groundwater is within fifteen (15) feet of the ground surface and thirty (30) feet horizontally from both a planned school and existing occupied structure, which is another consideration for vapor intrusion concerns in the MassDEP vapor intrusion guidance. As such, these groundwater impacts are considered a potential source of indoor air contamination and a VEC cannot be ruled out. As such, SAGE recommends that vapor mitigation be included as part of the eventual remedial design with the proposed school building to prevent impacts to indoor air.; and
- ➤ Historical Filling/Landfilling Activities: Urban fill materials often consist of coal, coal ash, brick, slag, and other components that may contain oil or hazardous materials (OHM), such as polycyclic aromatic hydrocarbons (PAHs). Given this information, this finding was identified as a REC. During the additional subsurface investigation conducted as a follow-up to the Phase I ESA, several PAHs, lead, arsenic, and TPH were identified in soils above the RIDEM Method 1 -DEC. These contaminants are consistent with urban fill materials and are likely the result of historical landfilling activities. As such, this finding constitutes a REC. To mitigate the risk to human health and the environment, SAGE recommends that Subject Property soils be encapsulated with a RIDEM-approved engineered cap and an Environmental Land Use Restriction (ELUR) and Soil Management Plan (SMP) be recorded for the property to restrict activities at the Site that will prevent risk of exposure to the contaminants of concern.

HREC Findings:

Conditions indicative of an HREC were not identified during the course of this assessment.

CREC Findings:

> Conditions indicative of a CREC were not identified during the course of this assessment.

9.3 Conclusions

Based on the above findings, a Limited Subsurface Investigation (LSI) was performed to evaluate subsurface conditions. Further details of the LSI are provided in Section 8.0 of this report.

On October 20, 2022, SAGE oversaw a Ground Penetrating Radar (GPR) survey across the Subject Property to determine whether an anomaly consistent with a UST was present at the Subject Property. All walkable areas were surveyed during this assessment, and no anomalies consistent with a UST were identified.

In summary, the LSI included seven (7) soil borings, five (5) of which were completed as groundwater monitoring wells. Additionally, one (1) pre-existing monitoring well along the southeastern boundary of the Subject Property was sampled as part of this investigation. Select borings were initially advanced to two (2) feet below surface grade (BSG) to characterize surficial soils in anticipation of the redevelopment of the Subject Property as a school prior to being advanced to greater depths.

Results of soil sample analysis indicate the presence of several semi-volatile organic compounds (SVOCs), metals, and total petroleum hydrocarbons (TPH) in excess of the applicable RIDEM Method 1 Residential Direct Exposure Criteria (R-DEC) in both surficial soils and soils greater than two (2) feet below surface grade (BGS). Several contaminants were also identified in excess of the RIDEM Method 1 Industrial/Commercial Direct Exposure Criteria (I/C-DEC).

The groundwater monitoring wells were subsequently sampled for volatile organic compounds (VOCs). Results identified two (2) wells with chlorinated VOC (CVOC) detections, though no contaminants were identified in excess of the RIDEM GB Groundwater Objectives (GB-GWOs). These detections are consistent with the former Subject Property use as a drycleaning facility. Based on the low-level concentrations of these materials, it is likely that the contamination is due to incidental spills associated with typical operations. While these detections are below applicable GB-GWOs, these contaminants are volatile in nature. A Vapor Encroachment Condition (VEC) exists based on CVOC impacts to groundwater at the Subject Property. The presence of a VEC was determined by comparing the groundwater concentrations to MassDEP GW-2 Standards, which apply to groundwater that is considered a potential source of indoor air contamination via a vapor intrusion pathway. RIDEM does not have a vapor intrusion guidance document but has been amenable to utilizing MassDEP standards as a screening tool for vapor intrusion concerns as described in the MassDEP Vapor Intrusion Guidance. Two (2) of the three (3) CVOCs detected were identified at concentrations above the MassDEP GW-2 Standards. Additionally, groundwater is within fifteen (15) feet of the ground surface and thirty (30) feet horizontally from both a planned school and existing occupied structure, which is another consideration for vapor intrusion concerns in the MassDEP vapor intrusion guidance. As such, these groundwater impacts are considered a potential source of indoor air contamination and a VEC cannot be ruled out. SAGE recommends that vapor mitigation be included as part of the eventual remedial design associated with the proposed school building to prevent impacts to indoor air.

The soil conditions identified at the Site, including the presence of SVOCs, metals, and TPH in excess of the applicable RIDEM Method 1 R-DEC and/or I/C-DEC, constitute a release to the environment at the Subject Property as defined by the RIDEM *Remediation Regulations*. Accordingly, upon the owner and/or operator of the Site obtaining knowledge of these findings, reporting is required to the RIDEM Office of

Land Revitalization and Sustainable Materials Management by the Responsible Party within 15 days of receiving such knowledge. Note that the Subject Property would also be subject to the Industrial Property Remediation and Reuse Act, which has additional public involvement requirements for properties that have a proposed reuse as a school.

10.0 SIGNATURES AND QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONALS

This report summarizes the findings of SAGE's Phase I ESA. The Phase I ESA was based upon Subject Property reconnaissance, interviews with public and private parties as well as a review of all appropriate federal, state and local files. The information and findings contained within the Phase I Environmental Site Assessment are true and correct to the best of SAGE's knowledge.

We declare that, to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in 312.10 of 40 CFR 312.10. We have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. We have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR § 312.

Qualified professionals experienced in conducting Phase I Environmental Site Assessments have prepared this report.

12/21/2022 Date **Environmental Scientist**

Date

acob H. Butterworth 12/21/2022

Vice President

11.0 LIMITATIONS

Data obtained from public agencies, Subject Property inspections, and data mapping sources were used in the characterization of this Subject Property. The accuracy of the conclusions derived from these data is based solely on the accuracy of the data reported and/or supplied. Should information be made available concerning the Subject Property, which is not included in this report, it should be reported to SAGE so that findings, conclusions, and/or recommendations can be altered and modified (if necessary).

Events occurring on the Subject Property after on-Subject Property inspection are beyond the scope of this report. As such, SAGE makes no expressed or implied representations, warranties or guarantees regarding any changes in the condition of the premises after the date of the on-Subject Property inspection.

Any qualitative or quantitative information regarding the Subject Property, which was not available to SAGE at the time of this assessment, may result in modification(s) to the conclusions and/or representations made in this report. The Phase I ESA and VES are intended to be non-exhaustive assessments and as such, information reviewed during the assessment is limited to that which is practically reviewable as defined in ASTM E1527-21. This report is intended to reduce the uncertainty regarding the potential of a Recognized Environmental Condition to be present at the Subject Property; however, no environmental assessment can wholly eliminate uncertainty regarding the potential Recognized Environmental Conditions to be present at the Subject Property.

Due to the fact that geological and soil formations are inherently random, variable, and indeterminate (heterogeneous) in nature, the professional services and opinions provided by SAGE under our agreement are not guaranteed to be a representation of complete Subject Property conditions, which are variable and subject to change with time or as the result of natural or man-made processes. Although our services are extensive, opinions, findings, and conclusions presented are limited to and by the data supplied, reported, and obtained. Additionally, unless specified or otherwise included herein, this assessment did not include an evaluation of business environmental risk as defined in ASTM E1527-21 and non-scope considerations as identified in ASTM E1527-21. Such non-scope considerations include, but are not limited to, evaluation of asbestos-containing materials, biological agents, radon, lead-based paint, lead in drinking water, wetlands, regulatory compliance, industrial hygiene, health and safety, OSHA compliance, cultural and historic resources, ecological resources, endangered species, indoor air quality, electromagnetic fields, formaldehyde, high-voltage power lines, non-point sources or best management practices for silviculture. Under the terms of the agreement no attempt was made to determine the compliance or regulatory status of present or former owners or operators of the Subject Property with respect to federal, state, municipal, environmental, and land use laws or regulations.

SAGE has retained a copy of this report. No deletions or additions are permitted without the written consent of SAGE. This report, including the data, maps, and figures contained herein, are not suitable for use in its present form, for any ongoing or pending litigation. Use of this report in whole or in part by parties other than those authorized by SAGE is prohibited.

12.0 REFERENCES

ASTM E1527-21, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, ASTM International, West Conshohocken, PA, 2013, www.astm.org

ASTM E2600-15, Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions, ASTM International, West Conshohocken, PA, 2015, www.astm.org

Item	Date of Access	Source
"Pawtucket, Rhode Island" Quadrangle	September 16, 2022	USGS
Regulatory Database Report	September 16, 2022	EDR
Soils Information	October 3, 2022	USDA

Item	Date of Access	Source		
		Web Soil Survey		
		websoilsurvey.nrcs.usda.gov		
Groundwater Classification	October 3, 2022	RIGIS database		
Sanborn Map Report	September 16, 2022	EDR		
Aerial Photographs	September 20, 2022	ArcGIS Historical Aerial Mapper		
Street Directories	September 16, 2022	EDR		
Historical Topographic Maps	September 16, 2022	USGS		
Building Records	September 30, 2022	Subject Property City Building Department		
Fire Prevention Records	September 30, 2022	Subject Property City Fire Prevention Office		
Recorded Environmental Liens	September 30, 2022	Subject Property City Clerk's Office*		
Government Records	September 27, 2022	RIDEM		
Interviews with Owners, Operators and/or Occupants	September 29, 2022			
Reconnaissance of Subject Property and Adjoining Properties Performed by Ms. Lacy Reyna	September 29, 2022			

^{*}The lien search required by Section 312.25 of the AAI Rule was not performed during the course of this assessment. During the local records review, a cursory search for environmental liens was conducted; however, such information was not found and/or provided by the User. Please note this review is limited and is not intended to suffice a full search or a level of diligence commensurate with a title company. If such detailed evaluation is required, this service can be provided outside of the subject scope.

SOIL BORING/MONITORING WELL LOG: SE-101(MW)

PROJECT NUMBER: \$4350 DRILL METHOD: Direct Push

DRILLING DATE: 10/20/2022 SAMPLE METHOD: 5' Macrocore

LOGGED BY: SF **BORING TOTAL DEPTH: 20'**

DRILLED BY: SAGE EnviroTech Drilling Services, Inc. BORING REFUSAL: No

WEATHER CONDITIONS: Sunny 60 BORING/MW DIAMETER: 1"

SCREENING EQUIPMENT: Tiger PID LENGTH OF RISER: 10' DRILLING RIG: 3100GT LENGTH OF SCREEN: 10'

		DRILLING F	RIG: 3100G	Т	LENGTH OF SCREEN: 10'					
DEPTH (FEET BSG)	DRIVE INTERVAL (FEET BSG)	INCHES RECOVERY	SAMPLE INTERVAL (FEET BSG)	PID (PPMV)	MATERIAL DESCRIPTION (MOISTURE CONTENT, COLOR, DENSITY, CLASSIFICATION, NOTES)	LITHOLOGY GRAPHIC LOG	DTW (FEET BSG)	WEL CONSTRU (VISU.	L ICTION AL)	WELL CONSTRUCTION (DEPTH INTERVALS (BSG))
_ 0 _ 1 _ 1	0-2	24	0-2	0.2	Light brown, dry, well graded, gravelly sands, little or no fines.					
3 4	2-5	36	2-5	0.2	Light brown, dry, well graded, gravelly sands, little or no fines.					Filter Pack
6			5-7		Light brown, dry, well graded, gravelly sands, little or no fines.					
	5-10	24		0.1						Bentonite
8 			7-10		No recovery.					
11 12 13	10-15	36	10-13	0.2	Light brown, dry, well graded, gravelly sands, little or no fines.					
14 			13-15		No recovery.		15'			Filter Pack
16			15-17		Light brown, wet, sand-silt mixtures.					
16 17 18 19 20 COMMENTS:	15-20	24	17-20	0.2	No recovery.					

SOIL BORING/MONITORING WELL LOG: SE-102(MW)

LENGTH OF RISER: 10'

PROJECT NUMBER: \$4350 DRILL METHOD: Direct Push

DRILLING DATE: 10/20/2022 SAMPLE METHOD: 5' Macrocore

LOGGED BY: SF **BORING TOTAL DEPTH: 20'**

DRILLED BY: SAGE EnviroTech Drilling Services, Inc. BORING REFUSAL: No

SCREENING EQUIPMENT: Tiger PID

WEATHER CONDITIONS: Sunny 60 BORING/MW DIAMETER: 1"

DRILLING RIG: 3100GT LENGTH OF SCREEN: 10'

		DRILLING I	RIG: 3100G	Т	LENGTH OF SCREEN: 10'					
DEPTH (FET BSG)	DRIVE INTERVAL (FEET BSG)	INCHES RECOVERY	SAMPLE INTERVAL (FEET BSG)	PID (PPMV)	MATERIAL DESCRIPTION (MOISTURE CONTENT, COLOR, DENSITY, CLASSIFICATION, NOTES)	LITHOLOGY GRAPHIC LOG	DTW (FEET BSG)	WI CONSTI (VIS	ELL RUCTION UAL)	WELL CONSTRUCTION (DEPTH INTERVALS (BSG))
_ O			0-1		Brown, dry, poorly graded, gravel-sand mixtures, little or no fines.					(SEI THINE (USS))
<u> </u>	0-2	12	1-2	0.2	No recovery.	2244327444				
2 3 4	2-5	24	2-4	0.3	Brown, dry, poorly graded, gravel-sand mixtures, little or no fines.					Filter Pack
			4-5		No recovery.					
5 			5-9		Light brown, dry, well graded, gravelly sands, little or no fines.					
8	5-10	48		0.1	or no tines.					Bentonite
10			9-10		No recovery.					
10			10-13		Tan, dry, well graded, gravelly sands, little or no fines.		12'			
	10-15	36		0.2	Tan, wet, well graded, gravelly sands, little or no fines.		ľ			
13 			13-15		No recovery.					Filter Pack
16	15-20	NS	15-20	NS	Not sampled.					
COMMENTS	l	I		l	l .			100000000	12222222	

SOIL BORING/MONITORING WELL LOG: SE-103 PROJECT NUMBER: S4350 DRILL METHOD: Direct Push DRILLING DATE: 10/20/2022 SAMPLE METHOD: 5' Macrocore LOGGED BY: SF **BORING TOTAL DEPTH: 15'** DRILLED BY: SAGE EnviroTech Drilling Services, Inc. BORING REFUSAL: No WEATHER CONDITIONS: Sunny 60 BORING/MW DIAMETER: 1" SCREENING EQUIPMENT: Tiger PID LENGTH OF RISER: NA DRILLING RIG: 3100GT LENGTH OF SCREEN: NA SAMPLE INTERVAL (FEET BSG) DRIVE INTERVAL (FEET BSG) LITHOLOGY GRAPHIC LOG PID (PPMV) **MATERIAL** WELL WELL CONSTRUCTION (DEPTH INTERVALS (BSG)) DESCRIPTION CONSTRUCTION (VISUAL) (MOISTURE CONTENT, COLOR, DENSITY, CLASSIFICATION, NOTES) 0 Light brown, dry, poorly graded, gravel-sand 0-1 mixtures, little or no fines. 0-2 12 0.8 No recovery. 1-2 2 Light brown, dry, poorly graded, gravel-sand 2-3 mixtures, little or no fines. Tar paper at 3'. 3 2-5 5.5 3-5 No recovery. Light brown, dry, poorly graded, gravel-sand mixtures, little or no fines. Urban fill material 6 consiting of glass. 7 5-10 24 2.2 8 7-10 No recovery. 10' 10 Light brown, wet, well graded, gravelly sands, little 10-11 or no fines. Urban fill material consiting of glass. 11 12

No recovery.

15 COMMENTS:

13

14

THIS BORE LOG IS INTENDED FOR ENVIRONMENTAL NOT GEOTECHNICAL PURPOSES.

11-15

NS: Not Sampled; NR: No Recovery; BSG: Below Surface Grade

SOIL BORING/MONITORING WELL LOG: SE-104(MW)

LENGTH OF RISER: 10'

PROJECT NUMBER: \$4350 DRILL METHOD: Direct Push

DRILLING DATE: 10/20/2022 SAMPLE METHOD: 5' Macrocore

LOGGED BY: SF **BORING TOTAL DEPTH: 20'**

DRILLED BY: SAGE EnviroTech Drilling Services, Inc. BORING REFUSAL: No

SCREENING EQUIPMENT: Tiger PID

WEATHER CONDITIONS: Sunny 60 BORING/MW DIAMETER: 1"

DRILLING RIG: 3100GT LENGTH OF SCREEN: 10'

		DRILLING F	RIG: 3100G	T	LENGTH OF SCREEN: 10'					
DEPTH (FEET BSG)	DRIVE INTERVAL (FEET BSG)	INCHES RECOVERY	SAMPLE INTERVAL (FEET BSG)	PID (PPMV)	MATERIAL DESCRIPTION (MOISTURE CONTENT, COLOR, DENSITY, CLASSIFICATION, NOTES)	LITHOLOGY GRAPHIC LOG	DTW (FEET BSG)	WEI CONSTR (VISL	L JCTION IAL)	WELL CONSTRUCTION (DEPTH INTERVALS (BSG))
0 1 2	0-2	24	0-2	0.1	Light brown, dry, well graded, gravelly sands, little or no fines.					
2 3 4	2-5	24	2-4	0.1	Light brown, dry, well graded, gravelly sands, little or no fines. Urban fill material consisting of glass.					Filter Pack
			4-5		No recovery.					
5 			5-9		Light brown, dry, well graded, gravelly sands, little or no fines. Urban fill material consisting of glass.			**************************************		
	5-10	48		0	of no lines. Orban ill material consisting of glass.	00000				Bentonite
			9-10		No recovery.		<u>10'</u>			
10 11 12			10-12		Brown, wet, well graded, gravelly sands, little or no fines. Urban fill material consisting of glass, plastic, and fabric.					
13	10-15	24	12-15	0	No recovery.					Filter Pack
15 16 17 18 19 20 COMMENTS:	15-20	NS	15-20	NS	Not sampled.					

SOIL BORING/MONITORING WELL LOG: SE-105(MW)

PROJECT NUMBER: \$4350 DRILL METHOD: Direct Push

DRILLING DATE: 10/20/2022 SAMPLE METHOD: 5' Macrocore

LOGGED BY: SF **BORING TOTAL DEPTH: 20'**

DRILLED BY: SAGE EnviroTech Drilling Services, Inc. BORING REFUSAL: No

WEATHER CONDITIONS: Sunny 60 BORING/MW DIAMETER: 1"

SCREENING EQUIPMENT: Tiger PID LENGTH OF RISER: 10'

		DRILLING F	RIG: 3100G	T	LENGTH OF SCREEN: 10'					
DEPTH (FEET BSG)	DRIVE INTERVAL (FEET BSG)	INCHES RECOVERY	SAMPLE INTERVAL (FEET BSG)	PID (PPMV)	MATERIAL DESCRIPTION (MOISTURE CONTENT, COLOR, DENSITY, CLASSIFICATION, NOTES)	LITHOLOGY CON GRAPHIC LOG	DTW (FEET BSG)	WELL CONSTRUC (VISUAL	TION .)	WELL CONSTRUCTION (DEPTH INTERVALS (BSG))
_ 0			0-1		Tan, dry, well graded, gravelly sands, little or no fines.					
1 	0-2	12	1-2	0.1	No recovery.					
2 			2-3		Tan, dry, well graded, gravelly sands, little or no fines.					
3 	2-5	12	3-5	0.2	No recovery.					Filter Pack
5 			5-9		Light brown, dry, well graded, gravelly sands, little or no fines.					
8	5-10	48		0.1	of fid lines.					Bentonite
9			9-10		No recovery.					
10					Light brown, dry, well graded, gravelly sands, little or no fines.					
12	10-15	48	10-14	3.6	Brown, dry, sand-silt mixtures.		13'			
13					Brown, wet, sand-silt mixtures. Petroleum odor.					Filter Pack
14			14-15		No recovery.					FINEL PACK
15	15-20	NS	15-20	NS	Not sampled.					

SOIL BORING/MONITORING WELL LOG: SE-106(MW)

PROJECT NUMBER: \$4350 DRILL METHOD: Direct Push

DRILLING DATE: 10/20/2022 SAMPLE METHOD: 5' Macrocore

LOGGED BY: SF **BORING TOTAL DEPTH: 18'**

DRILLED BY: SAGE EnviroTech Drilling Services, Inc. BORING REFUSAL: No

WEATHER CONDITIONS: Sunny 60 BORING/MW DIAMETER: 1"

SCREENING EQUIPMENT: Tiger PID LENGTH OF RISER: 8'

DRILLING RIG: 3100GT LENGTH OF SCREEN: 10'

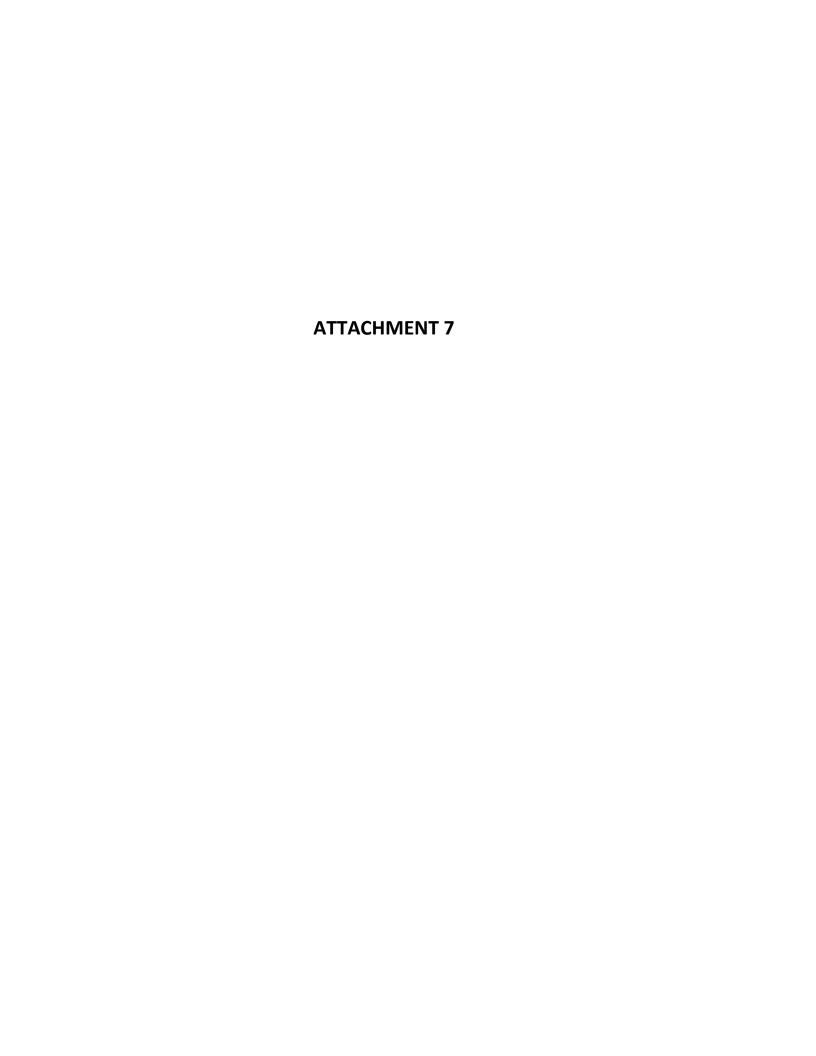
		DRILLING F	RIG: 3100G	iΤ	LENGTH OF SCREEN: 10'				
DEPTH (FEET BSG)	DRIVE INTERVAL (FEET BSG)	INCHES RECOVERY	SAMPLE INTERVAL (FEET BSG)	PID (PPMV)	MATERIAL DESCRIPTION (MOISTURE CONTENT, COLOR, DENSITY, CLASSIFICATION, NOTES)	LITHOLOGY GRAPHIC LOG	DTW (FEET BSG)	WELL CONSTRUCTION (VISUAL)	WELL CONSTRUCTION (DEPTH INTERVALS (BSG))
0	0-2	24	0-2	0.2	Brown, dry, well graded, gravelly sands, little or no fines.		0		
2 3	2-5	24	2-4	0.2	Brown, dry, well graded, gravelly sands, little or no fines. Urban fill material consisting of glass. Tan, dry, poorly graded, gravelly sands, little or no fines.		000		Filter Pack
4 5			4-5		No recovery.				
5 6 6									Bentonite
- 7 - 8	5-10	48	5-9	0.1	Tan, dry, poorly graded, gravelly sands, little or no fines.				
9			9-10		No recovery.		10'		
10 			10-11		Black, wet, well graded, gravelly sands, little or no fines. Urban fill material consisting of incinerator ash, and glass.				
12 	10-15	12	11-15	0.1	No recovery.				Filter Pack
16 17 17 18 COMMENTS:	15-18	NS	15-18	NS	Not sampled.				

PROJECT NUMBER: \$4350 DRILLING DATE: 10/20/2022 LOGGED BY: SF SCREENING EQUIPMENT: Tiger PID

SOIL BORING/MONITORING WELL LOG: SE-107

DRILL METHOD: Direct Push

SAMPLE METHOD: 5' Macrocore


BORING TOTAL DEPTH: 20'

LENGTH OF RISER: NA

DRILLED BY: SAGE EnviroTech Drilling Services, Inc. BORING REFUSAL: No

WEATHER CONDITIONS: Sunny 60 BORING/MW DIAMETER: 1"

		DRILLING F		T	LENGTH OF SCREEN: NA				
DEPTH (FEET BSG)	DRIVE INTERVAL (FEET BSG)	INCHES RECOVERY	SAMPLE INTERVAL (FEET BSG)	PID (PPMV)	MATERIAL DESCRIPTION (MOISTURE CONTENT, COLOR, DENSITY, CLASSIFICATION, NOTES)	LITHOLOGY GRAPHIC LOG	DTW (FEET BSG)	WELL CONSTRUCTION (VISUAL)	WELL CONSTRUCTION (DEPTH INTERVALS (BSG))
0			0-1		Tan, dry, well graded, gravelly sands, little or no fines.				
- 1	0-2	12	1-2	0.3	No recovery.				
_ 2			2-3		Tan, dry, well graded, gravelly sands, little or no fines.				
- 3 4 	2-5	12	3-5	0.1	No recovery.				
- 5 6 7			5-7		Tan, dry, well graded, gravelly sands, little or no fines.				
8 	5-10	24	7-10	0.1	No recovery.				
1 2 3 3 4 5 5 6 6 6 7 7 8 6 7 10 7 11 12 12 13 13 14	10-15	48	10-14	0.1	Tan, dry, well graded, gravelly sands, little or no fines.				
_			14-15		No recovery.		15'		
13 			15-17		Tan, wet, well graded, gravelly sands, little or no fines. Iron stain at 17'.		•		
15 16 17 18 19 19 19 19 19 19 19	15-20	24	17-20	0.3	No recovery.				

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 2J21011 Client Project: S4350 - 756 & 770 Lonsdale Ave

Report Date: 07-November-2022

Prepared for:

Cathy Racine SAGE Environmental 172 Armistice Blvd Pawtucket, RI 02860

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 10/21/22. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 2J21011. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
2J21011-01	SE-101 (MW) 0-2	Soil	10/20/2022	10/21/2022
2J21011-02	SE-102 (MW) 10-13	Soil	10/20/2022	10/21/2022
2J21011-03	SE-103 2-3	Soil	10/20/2022	10/21/2022
2J21011-04	SE-103 10-11	Soil	10/20/2022	10/21/2022
2J21011-05	SE-104 (MW) 0-2	Soil	10/20/2022	10/21/2022
2J21011-06	SE-104 (MW) 10-12	Soil	10/20/2022	10/21/2022
2J21011-07	SE-105 (MW) 0-1	Soil	10/20/2022	10/21/2022
2J21011-08	SE-105 (MW) 10-14	Soil	10/20/2022	10/21/2022
2J21011-09	SE-106 (MW) 0-2	Soil	10/20/2022	10/21/2022
2J21011-10	SE-106 (MW) 10-11	Soil	10/20/2022	10/21/2022
2J21011-11	SE-107 15-17	Soil	10/20/2022	10/21/2022

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

SE-101 (MW) 0-2 (Lab Number: 2J21011-01)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-102 (MW) 10-13 (Lab Number: 2J21011-02)

<u>Analysis</u>	<u>Method</u>
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C

SE-103 10-11 (Lab Number: 2J21011-04)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-103 2-3 (Lab Number: 2J21011-03)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C

Request for Analysis (continued)

SE-103 2-3 (Lab Number: 2J21011-03) (continued)

<u>Method</u>
EPA 6010C
EPA 7471B
EPA 6010C
EPA 8270D
EPA 6010C
EPA 6010C
EPA 6010C
EPA-8100-mod
EPA 8260C
EPA 6010C

SE-104 (MW) 0-2 (Lab Number: 2J21011-05)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-104 (MW) 10-12 (Lab Number: 2J21011-06)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

Request for Analysis (continued)

SE-105 (MW) 0-1 (Lab Number: 2J21011-07)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-105 (MW) 10-14 (Lab Number: 2J21011-08)

AnalysisMethodTotal Petroleum HydrocarbonsEPA-8100-modVolatile Organic CompoundsEPA 8260C

SE-106 (MW) 0-2 (Lab Number: 2J21011-09)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

Request for Analysis (continued)

SE-106 (MW) 10-11 (Lab Number: 2J21011-10)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Zinc	EPA 6010C

SE-107 15-17 (Lab Number: 2J21011-11)

<u>Analysis</u>	<u>Method</u>
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C

Method References

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: Total Metals

Sample: SE-101 (MW) 0-2 Lab Number: 2J21011-01 (Soil)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Antimony	ND		0.75	mg/kg	10/24/22	10/27/22
Arsenic	2.27		1.13	mg/kg	10/24/22	10/27/22
Beryllium	ND		0.37	mg/kg	10/24/22	10/27/22
Cadmium	0.65		0.57	mg/kg	10/24/22	10/27/22
Chromium	6.62		0.57	mg/kg	10/24/22	10/27/22
Copper	10.5		2.27	mg/kg	10/24/22	10/27/22
Lead	58.3		0.57	mg/kg	10/24/22	10/27/22
Mercury	ND		0.164	mg/kg	10/28/22	10/28/22
Nickel	5.92		0.57	mg/kg	10/24/22	10/27/22
Selenium	ND		1.13	mg/kg	10/24/22	10/27/22
Silver	ND		1.13	mg/kg	10/24/22	10/27/22
Zinc	39.0		2.3	mg/kg	10/24/22	10/27/22
Thallium	ND		0.37	mg/kg	10/24/22	10/27/22

Results: Total Metals

Sample: SE-103 2-3 Lab Number: 2J21011-03 (Soil)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Antimony	ND		0.74	mg/kg	10/24/22	10/27/22
Arsenic	4.64		1.12	mg/kg	10/24/22	10/27/22
Beryllium	ND		0.37	mg/kg	10/24/22	10/27/22
Cadmium	1.25		0.56	mg/kg	10/24/22	10/27/22
Chromium	13.3		0.56	mg/kg	10/24/22	10/27/22
Copper	21.1		2.24	mg/kg	10/24/22	10/27/22
Lead	29.0		0.56	mg/kg	10/24/22	10/27/22
Mercury	0.162		0.156	mg/kg	10/28/22	10/28/22
Nickel	8.45		0.56	mg/kg	10/24/22	10/27/22
Selenium	ND		1.12	mg/kg	10/24/22	10/27/22
Silver	ND		1.12	mg/kg	10/24/22	10/27/22
Zinc	43.1		2.2	mg/kg	10/24/22	10/27/22
Thallium	ND		0.37	mg/kg	10/24/22	10/27/22

Results: Total Metals

Sample: SE-103 10-11 Lab Number: 2J21011-04 (Soil)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Antimony	ND		0.82	mg/kg	10/24/22	10/27/22
Arsenic	10.4		1.24	mg/kg	10/24/22	10/27/22
Beryllium	ND		0.41	mg/kg	10/24/22	10/27/22
Cadmium	6.00		0.62	mg/kg	10/24/22	10/27/22
Chromium	49.6		0.62	mg/kg	10/24/22	10/27/22
Copper	302		2.47	mg/kg	10/24/22	10/27/22
Lead	325		0.62	mg/kg	10/24/22	10/27/22
Mercury	ND		0.181	mg/kg	10/28/22	10/28/22
Nickel	38.3		0.62	mg/kg	10/24/22	10/27/22
Selenium	ND		1.24	mg/kg	10/24/22	10/27/22
Silver	ND		1.24	mg/kg	10/24/22	10/27/22
Zinc	490		2.5	mg/kg	10/24/22	10/27/22
Thallium	ND		0.41	mg/kg	10/24/22	10/27/22

Results: Total Metals

Sample: SE-104 (MW) 0-2 Lab Number: 2J21011-05 (Soil)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Antimony	ND		0.75	mg/kg	10/24/22	10/27/22
Arsenic	2.29		1.13	mg/kg	10/24/22	10/27/22
Beryllium	ND		0.37	mg/kg	10/24/22	10/27/22
Cadmium	ND		0.57	mg/kg	10/24/22	10/27/22
Chromium	8.03		0.57	mg/kg	10/24/22	10/27/22
Copper	11.8		2.26	mg/kg	10/24/22	10/27/22
Lead	41.2		0.57	mg/kg	10/24/22	10/27/22
Mercury	0.524		0.160	mg/kg	10/28/22	10/28/22
Nickel	5.11		0.57	mg/kg	10/24/22	10/27/22
Selenium	ND		1.13	mg/kg	10/24/22	10/27/22
Silver	ND		1.13	mg/kg	10/24/22	10/27/22
Zinc	63.2		2.3	mg/kg	10/24/22	10/27/22
Thallium	ND		0.37	mg/kg	10/24/22	10/27/22

Results: Total Metals

Sample: SE-104 (MW) 10-12 Lab Number: 2J21011-06 (Soil)

	Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Antimony	2.76		0.86	mg/kg	10/24/22	10/27/22			
Arsenic	11.8		1.31	mg/kg	10/24/22	10/27/22			
Beryllium	ND		0.43	mg/kg	10/24/22	10/27/22			
Cadmium	11.2		0.65	mg/kg	10/24/22	10/27/22			
Chromium	98.3		0.65	mg/kg	10/24/22	10/27/22			
Copper	198		2.62	mg/kg	10/24/22	10/27/22			
Lead	417		0.65	mg/kg	10/24/22	10/27/22			
Mercury	ND		0.177	mg/kg	10/28/22	10/28/22			
Nickel	74.1		0.65	mg/kg	10/24/22	10/27/22			
Selenium	ND		1.31	mg/kg	10/24/22	10/27/22			
Silver	ND		1.31	mg/kg	10/24/22	10/27/22			
Zinc	324		2.6	mg/kg	10/24/22	10/27/22			
Thallium	ND		0.43	mg/kg	10/24/22	10/27/22			

Results: Total Metals

Sample: SE-105 (MW) 0-1 Lab Number: 2J21011-07 (Soil)

	Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Antimony	ND		0.72	mg/kg	10/24/22	10/27/22				
Arsenic	3.41		1.09	mg/kg	10/24/22	10/27/22				
Beryllium	ND		0.36	mg/kg	10/24/22	10/27/22				
Cadmium	0.96		0.55	mg/kg	10/24/22	10/27/22				
Chromium	11.0		0.55	mg/kg	10/24/22	10/27/22				
Copper	13.0		2.18	mg/kg	10/24/22	10/27/22				
Lead	23.1		0.55	mg/kg	10/24/22	10/27/22				
Mercury	ND		0.172	mg/kg	10/28/22	10/28/22				
Nickel	10.1		0.55	mg/kg	10/24/22	10/27/22				
Selenium	ND		1.09	mg/kg	10/24/22	10/27/22				
Silver	ND		1.09	mg/kg	10/24/22	10/27/22				
Zinc	38.4		2.2	mg/kg	10/24/22	10/27/22				
Thallium	ND		0.36	mg/kg	10/24/22	10/27/22				

Results: Total Metals

Sample: SE-106 (MW) 0-2 Lab Number: 2J21011-09 (Soil)

	Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Antimony	1.44		0.76	mg/kg	10/24/22	10/28/22				
Arsenic	2.26		1.16	mg/kg	10/24/22	10/28/22				
Beryllium	ND		0.38	mg/kg	10/24/22	10/28/22				
Cadmium	0.93		0.58	mg/kg	10/24/22	10/28/22				
Chromium	6.35		0.58	mg/kg	10/24/22	10/28/22				
Copper	30.0		2.32	mg/kg	10/24/22	10/28/22				
Lead	86.9		0.58	mg/kg	10/24/22	10/28/22				
Mercury	0.182		0.160	mg/kg	10/28/22	10/28/22				
Nickel	5.66		0.58	mg/kg	10/24/22	10/28/22				
Selenium	ND		1.16	mg/kg	10/24/22	10/28/22				
Silver	ND		1.16	mg/kg	10/24/22	10/28/22				
Zinc	62.4		2.3	mg/kg	10/24/22	10/28/22				
Thallium	ND		0.38	mg/kg	10/24/22	10/28/22				

Results: Total Metals

Sample: SE-106 (MW) 10-11 Lab Number: 2J21011-10 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	ND		0.78	mg/kg	10/24/22	10/28/22		
Arsenic	ND		1.18	mg/kg	10/24/22	10/28/22		
Beryllium	ND		0.39	mg/kg	10/24/22	10/28/22		
Cadmium	ND		0.59	mg/kg	10/24/22	10/28/22		
Chromium	2.34		0.59	mg/kg	10/24/22	10/28/22		
Copper	3.59		2.36	mg/kg	10/24/22	10/28/22		
Lead	3.44		0.59	mg/kg	10/24/22	10/28/22		
Mercury	ND		0.162	mg/kg	10/28/22	10/28/22		
Nickel	2.22		0.59	mg/kg	10/24/22	10/28/22		
Selenium	ND		1.18	mg/kg	10/24/22	10/28/22		
Silver	ND		1.18	mg/kg	10/24/22	10/28/22		
Zinc	8.1		2.4	mg/kg	10/24/22	10/28/22		
Thallium	ND		0.39	mg/kg	10/24/22	10/28/22		

Results: Volatile Organic Compounds

Sample: SE-101 (MW) 0-2 Lab Number: 2J21011-01 (Soil)

		Reportin	g		
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/kg	10/25/22	10/25/22
Benzene	ND	5	ug/kg	10/25/22	10/25/22
Bromobenzene	ND	5	ug/kg	10/25/22	10/25/22
Bromochloromethane	ND	5	ug/kg	10/25/22	10/25/22
Bromodichloromethane	ND	5	ug/kg	10/25/22	10/25/22
Bromoform	ND	5	ug/kg	10/25/22	10/25/22
Bromomethane	ND	5	ug/kg	10/25/22	10/25/22
2-Butanone	ND	5	ug/kg	10/25/22	10/25/22
tert-Butyl alcohol	ND	5	ug/kg	10/25/22	10/25/22
sec-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22
n-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22
tert-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/25/22	10/25/22
Carbon Disulfide	ND	5	ug/kg	10/25/22	10/25/22
Carbon Tetrachloride	ND	5	ug/kg	10/25/22	10/25/22
Chlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
Chloroethane	ND	5	ug/kg	10/25/22	10/25/22
Chloroform	ND	6	ug/kg	10/25/22	10/25/22
Chloromethane	ND	5	ug/kg	10/25/22	10/25/22
4-Chlorotoluene	ND	5	ug/kg	10/25/22	10/25/22
2-Chlorotoluene	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg	10/25/22	10/25/22
Dibromochloromethane	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dibromoethane (EDB)	ND	5	ug/kg	10/25/22	10/25/22
Dibromomethane	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,3-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,4-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,1-Dichloroethane	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dichloroethane	ND	5	ug/kg	10/25/22	10/25/22
trans-1,2-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22
cis-1,2-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,1-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
2,2-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
cis-1,3-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22
rans-1,3-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22
,1-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/25/22	10/25/22
Diethyl ether	ND	5	ug/kg	10/25/22	10/25/22
,4-Dioxane	ND	94	ug/kg	10/25/22	10/25/22
Ethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Hexachlorobutadiene	ND	5	ug/kg	10/25/22	10/25/22
2-Hexanone	ND	5	ug/kg	10/25/22	10/25/22
Isopropylbenzene	ND	5	ug/kg	10/25/22	10/25/22
p-Isopropyltoluene	ND	5	ug/kg	10/25/22	10/25/22
Methylene Chloride	ND	47	ug/kg	10/25/22	10/25/22
4-Methyl-2-pentanone	ND	5	ug/kg	10/25/22	10/25 Pa

Results: Volatile Organic Compounds (Continued)

Sample: SE-101 (MW) 0-2 (Continued)

Lab Number: 2J21011-01 (Soil)

		Reporting			
Analyte	Result Q	ual Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	5	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Styrene	ND	5	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	5	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	5	ug/kg	10/25/22	10/25/22
Toluene	ND	5	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	5	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	5	ug/kg	10/25/22	10/25/22
o-Xylene	ND	5	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	9	ug/kg	10/25/22	10/25/22
Total xylenes	ND	5	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	5	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	5	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	5	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	5	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	5	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	:s		
4-Bromofluorobenzene	94.1%	<i>70-13</i>	30	10/25/22	10/25/22
1,2-Dichloroethane-d4	106%	70-13	80	10/25/22	10/25/22
Toluene-d8	102%	70-13	80	10/25/22	10/25/22

Results: Volatile Organic Compounds

Sample: SE-102 (MW) 10-13 Lab Number: 2J21011-02 (Soil)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	7	ug/kg	10/25/22	10/25/22
Benzene	ND	7	ug/kg	10/25/22	10/25/22
Bromobenzene	ND	7	ug/kg	10/25/22	10/25/22
Bromochloromethane	ND	7	ug/kg	10/25/22	10/25/22
Bromodichloromethane	ND	7	ug/kg	10/25/22	10/25/22
Bromoform	ND	7	ug/kg	10/25/22	10/25/22
Bromomethane	ND	7	ug/kg	10/25/22	10/25/22
2-Butanone	ND	7	ug/kg	10/25/22	10/25/22
tert-Butyl alcohol	ND	7	ug/kg	10/25/22	10/25/22
sec-Butylbenzene	ND	7	ug/kg	10/25/22	10/25/22
n-Butylbenzene	ND	7	ug/kg	10/25/22	10/25/22
tert-Butylbenzene	ND	7	ug/kg	10/25/22	10/25/22
Methyl t-butyl ether (MTBE)	ND	7	ug/kg	10/25/22	10/25/22
Carbon Disulfide	ND	7	ug/kg	10/25/22	10/25/22
Carbon Tetrachloride	ND	7	ug/kg	10/25/22	10/25/22
Chlorobenzene	ND	7	ug/kg	10/25/22	10/25/22
Chloroethane	ND	7	ug/kg	10/25/22	10/25/22
Chloroform	ND	8	ug/kg	10/25/22	10/25/22
Chloromethane	ND	7	ug/kg	10/25/22	10/25/22
1-Chlorotoluene	ND	7	ug/kg	10/25/22	10/25/22
2-Chlorotoluene	ND	7	ug/kg	10/25/22	10/25/22
,2-Dibromo-3-chloropropane (DBCP)	ND	7	ug/kg	10/25/22	10/25/22
Dibromochloromethane	ND	7	ug/kg	10/25/22	10/25/22
.,2-Dibromoethane (EDB)	ND	7	ug/kg	10/25/22	10/25/22
Dibromomethane	ND	7	ug/kg	10/25/22	10/25/22
1,2-Dichlorobenzene	ND	7	ug/kg	10/25/22	10/25/22
.,3-Dichlorobenzene	ND	7	ug/kg	10/25/22	10/25/22
L,4-Dichlorobenzene	ND	7	ug/kg	10/25/22	10/25/22
.,1-Dichloroethane	ND	7	ug/kg	10/25/22	10/25/22
L,2-Dichloroethane	ND	7	ug/kg	10/25/22	10/25/22
rans-1,2-Dichloroethene	ND	7	ug/kg	10/25/22	10/25/22
cis-1,2-Dichloroethene	ND	7	ug/kg	10/25/22	10/25/22
1,1-Dichloroethene	ND	7	ug/kg	10/25/22	10/25/22
1,2-Dichloropropane	ND	7	ug/kg	10/25/22	10/25/22
2,2-Dichloropropane	ND	7	ug/kg	10/25/22	10/25/22
cis-1,3-Dichloropropene	ND	7	ug/kg	10/25/22	10/25/22
rans-1,3-Dichloropropene	ND	7	ug/kg	10/25/22	10/25/22
1,1-Dichloropropene	ND	7	ug/kg	10/25/22	10/25/22
,,3-Dichloropropene (cis + trans)	ND	7	ug/kg	10/25/22	10/25/22
Diethyl ether	ND	7	ug/kg	10/25/22	10/25/22
L,4-Dioxane	ND	132	ug/kg	10/25/22	10/25/22
thylbenzene	ND	7	ug/kg	10/25/22	10/25/22
Hexachlorobutadiene	ND	7	ug/kg	10/25/22	10/25/22
2-Hexanone	ND	7	ug/kg	10/25/22	10/25/22
(sopropylbenzene	ND	7	ug/kg	10/25/22	10/25/22
p-Isopropyltoluene	ND	7	ug/kg	10/25/22	10/25/22
Methylene Chloride	ND	66	ug/kg	10/25/22	10/25/22
4-Methyl-2-pentanone	ND	7	ug/kg	10/25/22	10/25 Pa

Results: Volatile Organic Compounds (Continued)

Sample: SE-102 (MW) 10-13 (Continued)

Lab Number: 2J21011-02 (Soil)

		Reporting			
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	7	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	7	ug/kg	10/25/22	10/25/22
Styrene	ND	7	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	7	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	7	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	7	ug/kg	10/25/22	10/25/22
Toluene	ND	7	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	7	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	7	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	7	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	7	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	7	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	7	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	7	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	7	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	7	ug/kg	10/25/22	10/25/22
o-Xylene	ND	7	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	13	ug/kg	10/25/22	10/25/22
Total xylenes	ND	7	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	7	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	7	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	7	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	7	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	7	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	7	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	7	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	cs .		
4-Bromofluorobenzene	92.5%	<i>70-13</i>	30	10/25/22	10/25/22
1,2-Dichloroethane-d4	105%	70-13	80	10/25/22	10/25/22
Toluene-d8	101%	70-13	30	10/25/22	10/25/22

Results: Volatile Organic Compounds

Sample: SE-103 2-3 Lab Number: 2J21011-03 (Soil)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	6	ug/kg	10/25/22	10/25/22
Benzene	ND	6	ug/kg	10/25/22	10/25/22
Bromobenzene	ND	6	ug/kg	10/25/22	10/25/22
Bromochloromethane	ND	6	ug/kg	10/25/22	10/25/22
Bromodichloromethane	ND	6	ug/kg	10/25/22	10/25/22
Bromoform	ND	6	ug/kg	10/25/22	10/25/22
Bromomethane	ND	6	ug/kg	10/25/22	10/25/22
2-Butanone	ND	6	ug/kg	10/25/22	10/25/22
tert-Butyl alcohol	ND	6	ug/kg	10/25/22	10/25/22
sec-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22
n-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22
tert-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Methyl t-butyl ether (MTBE)	ND	6	ug/kg	10/25/22	10/25/22
Carbon Disulfide	ND	6	ug/kg	10/25/22	10/25/22
Carbon Tetrachloride	ND	6	ug/kg	10/25/22	10/25/22
Chlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
Chloroethane	ND	6	ug/kg	10/25/22	10/25/22
Chloroform	ND	7	ug/kg	10/25/22	10/25/22
Chloromethane	ND	6	ug/kg	10/25/22	10/25/22
1-Chlorotoluene	ND	6	ug/kg	10/25/22	10/25/22
2-Chlorotoluene	ND	6	ug/kg	10/25/22	10/25/22
,2-Dibromo-3-chloropropane (DBCP)	ND	6	ug/kg	10/25/22	10/25/22
Dibromochloromethane	ND	6	ug/kg	10/25/22	10/25/22
1,2-Dibromoethane (EDB)	ND	6	ug/kg	10/25/22	10/25/22
Dibromomethane	ND	6	ug/kg	10/25/22	10/25/22
,2-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
,3-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,4-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,1-Dichloroethane	ND	6	ug/kg	10/25/22	10/25/22
1,2-Dichloroethane	ND	6	ug/kg	10/25/22	10/25/22
rans-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22
is-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,1-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,2-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
2,2-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
is-1,3-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22
rans-1,3-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22
,1-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22
,3-Dichloropropene (cis + trans)	ND	6	ug/kg	10/25/22	10/25/22
Diethyl ether	ND	6	ug/kg	10/25/22	10/25/22
,4-Dioxane	ND	114	ug/kg	10/25/22	10/25/22
: Ethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
, Hexachlorobutadiene	ND	6	ug/kg	10/25/22	10/25/22
2-Hexanone	ND	6	ug/kg	10/25/22	10/25/22
Isopropylbenzene	ND	6	ug/kg	10/25/22	10/25/22
p-Isopropyltoluene	ND	6	ug/kg	10/25/22	10/25/22
Methylene Chloride	ND	57	ug/kg	10/25/22	10/25/22
, 1-Methyl-2-pentanone	ND	6	ug/kg	10/25/22	10/25 Pa

Results: Volatile Organic Compounds (Continued)

Sample: SE-103 2-3 (Continued)

Lab Number: 2J21011-03 (Soil)

		Reporting			
Analyte	Result Qu	ıal Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	6	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Styrene	ND	6	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	6	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	6	ug/kg	10/25/22	10/25/22
Toluene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	6	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	6	ug/kg	10/25/22	10/25/22
o-Xylene	ND	6	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	11	ug/kg	10/25/22	10/25/22
Total xylenes	ND	6	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	6	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	6	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	6	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	ts		
4-Bromofluorobenzene	92.0%	70-13	30	10/25/22	10/25/22
1,2-Dichloroethane-d4	113%	70-13	30	10/25/22	10/25/22
Toluene-d8	102%	70-13	30	10/25/22	10/25/22

Results: Volatile Organic Compounds

Sample: SE-103 10-11 Lab Number: 2J21011-04 (Soil)

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		6	ug/kg	10/25/22	10/25/22
Benzene	ND		6	ug/kg	10/25/22	10/25/22
Bromobenzene	ND		6	ug/kg	10/25/22	10/25/22
Bromochloromethane	ND		6	ug/kg	10/25/22	10/25/22
Bromodichloromethane	ND		6	ug/kg	10/25/22	10/25/22
Bromoform	ND		6	ug/kg	10/25/22	10/25/22
Bromomethane	ND		6	ug/kg	10/25/22	10/25/22
2-Butanone	ND		6	ug/kg	10/25/22	10/25/22
tert-Butyl alcohol	ND		6	ug/kg	10/25/22	10/25/22
sec-Butylbenzene	ND		6	ug/kg	10/25/22	10/25/22
n-Butylbenzene	ND		6	ug/kg	10/25/22	10/25/22
tert-Butylbenzene	ND		6	ug/kg	10/25/22	10/25/22
Methyl t-butyl ether (MTBE)	ND		6	ug/kg	10/25/22	10/25/22
Carbon Disulfide	ND		6	ug/kg	10/25/22	10/25/22
Carbon Tetrachloride	ND		6	ug/kg	10/25/22	10/25/22
Chlorobenzene	ND		6	ug/kg	10/25/22	10/25/22
Chloroethane	ND		6	ug/kg	10/25/22	10/25/22
Chloroform	ND		7	ug/kg	10/25/22	10/25/22
Chloromethane	ND		6	ug/kg	10/25/22	10/25/22
1-Chlorotoluene	ND		6	ug/kg	10/25/22	10/25/22
2-Chlorotoluene	ND		6	ug/kg	10/25/22	10/25/22
,2-Dibromo-3-chloropropane (DBCP)	ND		6	ug/kg	10/25/22	10/25/22
Dibromochloromethane	ND		6	ug/kg	10/25/22	10/25/22
L,2-Dibromoethane (EDB)	ND		6	ug/kg	10/25/22	10/25/22
Dibromomethane	ND		6	ug/kg	10/25/22	10/25/22
,,2-Dichlorobenzene	ND		6	ug/kg	10/25/22	10/25/22
1,3-Dichlorobenzene	ND		6	ug/kg	10/25/22	10/25/22
I,4-Dichlorobenzene	ND		6	ug/kg	10/25/22	10/25/22
I,1-Dichloroethane	ND		6	ug/kg	10/25/22	10/25/22
1,2-Dichloroethane	ND		6	ug/kg	10/25/22	10/25/22
trans-1,2-Dichloroethene	ND		6	ug/kg	10/25/22	10/25/22
cis-1,2-Dichloroethene	ND		6	ug/kg	10/25/22	10/25/22
1,1-Dichloroethene	ND		6	ug/kg	10/25/22	10/25/22
1,2-Dichloropropane	ND		6	ug/kg	10/25/22	10/25/22
2,2-Dichloropropane	ND		6	ug/kg	10/25/22	10/25/22
cis-1,3-Dichloropropene	ND		6	ug/kg	10/25/22	10/25/22
rans-1,3-Dichloropropene	ND		6	ug/kg	10/25/22	10/25/22
,1-Dichloropropene	ND		6	ug/kg	10/25/22	10/25/22
.,3-Dichloropropene (cis + trans)	ND		6	ug/kg	10/25/22	10/25/22
Diethyl ether	ND		6	ug/kg	10/25/22	10/25/22
,4-Dioxane	ND		115	ug/kg	10/25/22	10/25/22
thylbenzene	ND		6	ug/kg	10/25/22	10/25/22
Hexachlorobutadiene	ND		6	ug/kg	10/25/22	10/25/22
2-Hexanone	ND		6	ug/kg	10/25/22	10/25/22
Isopropylbenzene	ND		6	ug/kg	10/25/22	10/25/22
p-Isopropyltoluene	ND		6	ug/kg	10/25/22	10/25/22
Methylene Chloride	ND		57	ug/kg	10/25/22	10/25/22
4-Methyl-2-pentanone	ND		6	ug/kg	10/25/22	10/25 Pa

Results: Volatile Organic Compounds (Continued)

Sample: SE-103 10-11 (Continued)

Lab Number: 2J21011-04 (Soil)

		Reporting			
Analyte	Result Qual	Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	6	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Styrene	ND	6	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	6	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	6	ug/kg	10/25/22	10/25/22
Toluene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	6	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	6	ug/kg	10/25/22	10/25/22
o-Xylene	ND	6	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	11	ug/kg	10/25/22	10/25/22
Total xylenes	ND	6	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	6	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	6	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	6	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	:s		
4-Bromofluorobenzene	95.5%	<i>70-13</i>	80	10/25/22	10/25/22
1,2-Dichloroethane-d4	118%	<i>70-13</i>	80	10/25/22	10/25/22
Toluene-d8	102%	70-13	80	10/25/22	10/25/22

Results: Volatile Organic Compounds

Sample: SE-104 (MW) 0-2 Lab Number: 2J21011-05 (Soil)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/kg	10/26/22	10/26/22
Benzene	ND	5	ug/kg	10/26/22	10/26/22
Bromobenzene	ND	5	ug/kg	10/26/22	10/26/22
Bromochloromethane	ND	5	ug/kg	10/26/22	10/26/22
Bromodichloromethane	ND	5	ug/kg	10/26/22	10/26/22
Bromoform	ND	5	ug/kg	10/26/22	10/26/22
Bromomethane	ND	5	ug/kg	10/26/22	10/26/22
2-Butanone	ND	5	ug/kg	10/26/22	10/26/22
tert-Butyl alcohol	ND	5	ug/kg	10/26/22	10/26/22
sec-Butylbenzene	ND	5	ug/kg	10/26/22	10/26/22
n-Butylbenzene	ND	5	ug/kg	10/26/22	10/26/22
tert-Butylbenzene	ND	5	ug/kg	10/26/22	10/26/22
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/26/22	10/26/22
Carbon Disulfide	ND	5	ug/kg	10/26/22	10/26/22
Carbon Tetrachloride	ND	5	ug/kg	10/26/22	10/26/22
Chlorobenzene	ND	5	ug/kg	10/26/22	10/26/22
Chloroethane	ND	5	ug/kg	10/26/22	10/26/22
Chloroform	ND	5	ug/kg	10/26/22	10/26/22
Chloromethane	ND	5	ug/kg	10/26/22	10/26/22
4-Chlorotoluene	ND	5	ug/kg	10/26/22	10/26/22
2-Chlorotoluene	ND	5	ug/kg	10/26/22	10/26/22
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg	10/26/22	10/26/22
Dibromochloromethane	ND	5	ug/kg	10/26/22	10/26/22
L,2-Dibromoethane (EDB)	ND	5	ug/kg	10/26/22	10/26/22
Dibromomethane	ND	5	ug/kg	10/26/22	10/26/22
1,2-Dichlorobenzene	ND	5	ug/kg	10/26/22	10/26/22
1,3-Dichlorobenzene	ND	5	ug/kg	10/26/22	10/26/22
1,4-Dichlorobenzene	ND	5	ug/kg	10/26/22	10/26/22
1,1-Dichloroethane	ND	5	ug/kg	10/26/22	10/26/22
1,2-Dichloroethane	ND	5	ug/kg	10/26/22	10/26/22
trans-1,2-Dichloroethene	ND	5	ug/kg	10/26/22	10/26/22
cis-1,2-Dichloroethene	ND	5	ug/kg	10/26/22	10/26/22
1,1-Dichloroethene	ND	5	ug/kg	10/26/22	10/26/22
1,2-Dichloropropane	ND	5	ug/kg	10/26/22	10/26/22
2,2-Dichloropropane	ND	5	ug/kg	10/26/22	10/26/22
cis-1,3-Dichloropropene	ND	5	ug/kg	10/26/22	10/26/22
trans-1,3-Dichloropropene	ND	5	ug/kg	10/26/22	10/26/22
1,1-Dichloropropene	ND	5	ug/kg	10/26/22	10/26/22
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/26/22	10/26/22
Diethyl ether	ND	5	ug/kg	10/26/22	10/26/22
1,4-Dioxane	ND	102	ug/kg	10/26/22	10/26/22
Ethylbenzene	ND	5	ug/kg	10/26/22	10/26/22
Hexachlorobutadiene	ND ND	5	ug/kg ug/kg	10/26/22	10/26/22
2-Hexanone	ND	5	ug/kg ug/kg	10/26/22	10/26/22
Isopropylbenzene	ND ND	5	ug/kg ug/kg	10/26/22	10/26/22
p-Isopropyltoluene	ND ND	5	ug/kg ug/kg	10/26/22	10/26/22
Methylene Chloride	ND	7	ug/kg	10/26/22	10/26/22
4-Methyl-2-pentanone	ND	5	ug/kg ug/kg	10/26/22	10/26 Pa

Results: Volatile Organic Compounds (Continued)

Sample: SE-104 (MW) 0-2 (Continued)

Lab Number: 2J21011-05 (Soil)

Reporting									
Analyte	Result Qua	l Limit	Units	Date Prepared	Date Analyzed				
Naphthalene	ND	5	ug/kg	10/26/22	10/26/22				
n-Propylbenzene	ND	5	ug/kg	10/26/22	10/26/22				
Styrene	ND	5	ug/kg	10/26/22	10/26/22				
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/26/22	10/26/22				
Tetrachloroethene	ND	5	ug/kg	10/26/22	10/26/22				
Tetrahydrofuran	ND	5	ug/kg	10/26/22	10/26/22				
Toluene	ND	5	ug/kg	10/26/22	10/26/22				
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/26/22	10/26/22				
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/26/22	10/26/22				
1,1,2-Trichloroethane	ND	5	ug/kg	10/26/22	10/26/22				
1,1,1-Trichloroethane	ND	5	ug/kg	10/26/22	10/26/22				
Trichloroethene	ND	5	ug/kg	10/26/22	10/26/22				
1,2,3-Trichloropropane	ND	5	ug/kg	10/26/22	10/26/22				
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/26/22	10/26/22				
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/26/22	10/26/22				
Vinyl Chloride	ND	5	ug/kg	10/26/22	10/26/22				
o-Xylene	ND	5	ug/kg	10/26/22	10/26/22				
m&p-Xylene	ND	10	ug/kg	10/26/22	10/26/22				
Total xylenes	ND	5	ug/kg	10/26/22	10/26/22				
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/26/22	10/26/22				
tert-Amyl methyl ether	ND	5	ug/kg	10/26/22	10/26/22				
1,3-Dichloropropane	ND	5	ug/kg	10/26/22	10/26/22				
Ethyl tert-butyl ether	ND	5	ug/kg	10/26/22	10/26/22				
Diisopropyl ether	ND	5	ug/kg	10/26/22	10/26/22				
Trichlorofluoromethane	ND	5	ug/kg	10/26/22	10/26/22				
Dichlorodifluoromethane	ND	5	ug/kg	10/26/22	10/26/22				
Surrogate(s)	Recovery%	Limit	ts						
4-Bromofluorobenzene	91.1%	70-13	30	10/26/22	10/26/22				
1,2-Dichloroethane-d4	100%	70-13	30	10/26/22	10/26/22				
Toluene-d8	93.2%	70-13	30	10/26/22	10/26/22				

Results: Volatile Organic Compounds

Sample: SE-104 (MW) 10-12 Lab Number: 2J21011-06 (Soil)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	6	ug/kg	10/25/22	10/25/22
Benzene	ND	6	ug/kg	10/25/22	10/25/22
Bromobenzene	ND	6	ug/kg	10/25/22	10/25/22
Bromochloromethane	ND	6	ug/kg	10/25/22	10/25/22
Bromodichloromethane	ND	6	ug/kg	10/25/22	10/25/22
Bromoform	ND	6	ug/kg	10/25/22	10/25/22
Bromomethane	ND	6	ug/kg	10/25/22	10/25/22
2-Butanone	ND	6	ug/kg	10/25/22	10/25/22
tert-Butyl alcohol	ND	6	ug/kg	10/25/22	10/25/22
sec-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22
n-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22
tert-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Methyl t-butyl ether (MTBE)	ND	6	ug/kg	10/25/22	10/25/22
Carbon Disulfide	ND	6	ug/kg	10/25/22	10/25/22
Carbon Tetrachloride	ND	6	ug/kg	10/25/22	10/25/22
Chlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
Chloroethane	ND	6	ug/kg	10/25/22	10/25/22
Chloroform	ND	7	ug/kg	10/25/22	10/25/22
Chloromethane	ND	6	ug/kg	10/25/22	10/25/22
4-Chlorotoluene	ND	6	ug/kg	10/25/22	10/25/22
2-Chlorotoluene	ND	6	ug/kg	10/25/22	10/25/22
1,2-Dibromo-3-chloropropane (DBCP)	ND	6	ug/kg	10/25/22	10/25/22
Dibromochloromethane	ND	6	ug/kg	10/25/22	10/25/22
1,2-Dibromoethane (EDB)	ND	6	ug/kg	10/25/22	10/25/22
Dibromomethane	ND	6	ug/kg	10/25/22	10/25/22
1,2-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,3-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,4-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,1-Dichloroethane	ND	6	ug/kg	10/25/22	10/25/22
1,2-Dichloroethane	ND	6	ug/kg	10/25/22	10/25/22
trans-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22
cis-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,1-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,2-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
2,2-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
cis-1,3-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22
trans-1,3-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22
1,1-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22
1,3-Dichloropropene (cis + trans)	ND	6	ug/kg	10/25/22	10/25/22
Diethyl ether	ND	6	ug/kg	10/25/22	10/25/22
1,4-Dioxane	ND	125	ug/kg	10/25/22	10/25/22
Ethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Hexachlorobutadiene	ND	6	ug/kg	10/25/22	10/25/22
2-Hexanone	ND	6	ug/kg	10/25/22	10/25/22
Isopropylbenzene	ND	6	ug/kg	10/25/22	10/25/22
p-Isopropyltoluene	ND	6	ug/kg	10/25/22	10/25/22
Methylene Chloride	ND	62	ug/kg	10/25/22	10/25/22
4-Methyl-2-pentanone	ND	6	ug/kg	10/25/22	10/25 Page 26

Results: Volatile Organic Compounds (Continued)

Sample: SE-104 (MW) 10-12 (Continued)

Lab Number: 2J21011-06 (Soil)

		Reporting			
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	6	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Styrene	ND	6	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	6	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	6	ug/kg	10/25/22	10/25/22
Toluene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	6	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	6	ug/kg	10/25/22	10/25/22
o-Xylene	ND	6	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	12	ug/kg	10/25/22	10/25/22
Total xylenes	ND	6	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	6	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	6	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	6	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	6	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	ts		
4-Bromofluorobenzene	96.2%	<i>70-13</i>	30	10/25/22	10/25/22
1,2-Dichloroethane-d4	114%	70-13	30	10/25/22	10/25/22
Toluene-d8	104%	70-13	30	10/25/22	10/25/22

Results: Volatile Organic Compounds

Sample: SE-105 (MW) 0-1 Lab Number: 2J21011-07 (Soil)

Reporting								
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed			
Acetone	ND	5	ug/kg	10/25/22	10/25/22			
Benzene	ND	5	ug/kg	10/25/22	10/25/22			
Bromobenzene	ND	5	ug/kg	10/25/22	10/25/22			
Bromochloromethane	ND	5	ug/kg	10/25/22	10/25/22			
Bromodichloromethane	ND	5	ug/kg	10/25/22	10/25/22			
Bromoform	ND	5	ug/kg	10/25/22	10/25/22			
Bromomethane	ND	5	ug/kg	10/25/22	10/25/22			
2-Butanone	ND	5	ug/kg	10/25/22	10/25/22			
tert-Butyl alcohol	ND	5	ug/kg	10/25/22	10/25/22			
sec-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22			
n-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22			
tert-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22			
Methyl t-butyl ether (MTBE)	ND ND	5	ug/kg ug/kg	10/25/22	10/25/22			
Carbon Disulfide	ND ND	5	ug/kg	10/25/22	10/25/22			
Carbon Tetrachloride	ND ND	5	ug/kg	10/25/22	10/25/22			
Chlorobenzene	ND	5	ug/kg	10/25/22	10/25/22			
Chloroethane	ND	5	ug/kg	10/25/22	10/25/22			
Chloroform	ND	6	ug/kg	10/25/22	10/25/22			
Chloromethane	ND	5	ug/kg "	10/25/22	10/25/22			
4-Chlorotoluene	ND	5	ug/kg 	10/25/22	10/25/22			
-Chlorotoluene	ND	5	ug/kg	10/25/22	10/25/22			
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg	10/25/22	10/25/22			
Dibromochloromethane	ND	5	ug/kg	10/25/22	10/25/22			
.,2-Dibromoethane (EDB)	ND	5	ug/kg	10/25/22	10/25/22			
Dibromomethane	ND	5	ug/kg	10/25/22	10/25/22			
,2-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22			
,3-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22			
1,4-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22			
1,1-Dichloroethane	ND	5	ug/kg	10/25/22	10/25/22			
1,2-Dichloroethane	ND	5	ug/kg	10/25/22	10/25/22			
rans-1,2-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22			
cis-1,2-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22			
1,1-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22			
,2-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22			
2,2-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22			
is-1,3-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22			
rans-1,3-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22			
I,1-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22			
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/25/22	10/25/22			
Diethyl ether	ND	5	ug/kg	10/25/22	10/25/22			
,4-Dioxane	ND	99	ug/kg	10/25/22	10/25/22			
Ethylbenzene	ND	5	ug/kg	10/25/22	10/25/22			
Hexachlorobutadiene	ND	5	ug/kg	10/25/22	10/25/22			
2-Hexanone	ND	5	ug/kg	10/25/22	10/25/22			
Isopropylbenzene	ND	5	ug/kg	10/25/22	10/25/22			
p-Isopropyltoluene	ND	5	ug/kg	10/25/22	10/25/22			
Methylene Chloride	ND	49	ug/kg	10/25/22	10/25/22			
4-Methyl-2-pentanone	ND	5	ug/kg	10/25/22	10/25 Pag			

Results: Volatile Organic Compounds (Continued)

Sample: SE-105 (MW) 0-1 (Continued)

Lab Number: 2J21011-07 (Soil)

		Reporting			
Analyte	Result Q	ual Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	5	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Styrene	ND	5	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	5	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	5	ug/kg	10/25/22	10/25/22
Toluene	ND	5	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	5	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	5	ug/kg	10/25/22	10/25/22
o-Xylene	ND	5	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	10	ug/kg	10/25/22	10/25/22
Total xylenes	ND	5	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	5	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	5	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	5	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	5	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	5	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	:s		
4-Bromofluorobenzene	92.8%	<i>70-13</i>	30	10/25/22	10/25/22
1,2-Dichloroethane-d4	112%	70-13	80	10/25/22	10/25/22
Toluene-d8	101%	70-13	80	10/25/22	10/25/22

Results: Volatile Organic Compounds

Sample: SE-105 (MW) 10-14 Lab Number: 2J21011-08 (Soil)

		Reporting	1		
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/kg	10/25/22	10/25/22
Benzene	ND	5	ug/kg	10/25/22	10/25/22
Bromobenzene	ND	5	ug/kg	10/25/22	10/25/22
Bromochloromethane	ND	5	ug/kg	10/25/22	10/25/22
Bromodichloromethane	ND	5	ug/kg	10/25/22	10/25/22
Bromoform	ND	5	ug/kg	10/25/22	10/25/22
Bromomethane	ND	5	ug/kg	10/25/22	10/25/22
2-Butanone	ND	5	ug/kg	10/25/22	10/25/22
tert-Butyl alcohol	ND	5	ug/kg	10/25/22	10/25/22
sec-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22
n-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22
tert-Butylbenzene	ND	5	ug/kg	10/25/22	10/25/22
, Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/25/22	10/25/22
Carbon Disulfide	ND	5	ug/kg	10/25/22	10/25/22
Carbon Tetrachloride	ND	5	ug/kg	10/25/22	10/25/22
Chlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
Chloroethane	ND	5	ug/kg	10/25/22	10/25/22
Chloroform	ND	6	ug/kg	10/25/22	10/25/22
Chloromethane	ND	5	ug/kg	10/25/22	10/25/22
I-Chlorotoluene	ND	5	ug/kg	10/25/22	10/25/22
2-Chlorotoluene	ND	5	ug/kg	10/25/22	10/25/22
.,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg	10/25/22	10/25/22
Dibromochloromethane	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dibromoethane (EDB)	ND	5	ug/kg	10/25/22	10/25/22
Dibromomethane	ND	5	ug/kg	10/25/22	10/25/22
.,2-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,3-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,4-Dichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,1-Dichloroethane	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dichloroethane	ND	5	ug/kg	10/25/22	10/25/22
rans-1,2-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22
cis-1,2-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,1-Dichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,2-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
2,2-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
cis-1,3-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22
rans-1,3-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22
1,1-Dichloropropene	ND	5	ug/kg	10/25/22	10/25/22
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/25/22	10/25/22
Diethyl ether	ND	5	ug/kg	10/25/22	10/25/22
,4-Dioxane	ND	108	ug/kg	10/25/22	10/25/22
Ethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Hexachlorobutadiene	ND	5	ug/kg	10/25/22	10/25/22
2-Hexanone	ND	5	ug/kg	10/25/22	10/25/22
Sopropylbenzene	ND	5	ug/kg	10/25/22	10/25/22
p-Isopropyltoluene	ND	5	ug/kg	10/25/22	10/25/22
Methylene Chloride	ND	54	ug/kg	10/25/22	10/25/22
1-Methyl-2-pentanone	ND	5	ug/kg	10/25/22	10/25 Pa

Results: Volatile Organic Compounds (Continued)

Sample: SE-105 (MW) 10-14 (Continued)

Lab Number: 2J21011-08 (Soil)

		Reporting			
Analyte	Result Q	Qual Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	5	ug/kg	10/25/22	10/25/22
n-Propylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Styrene	ND	5	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22
Tetrachloroethene	ND	5	ug/kg	10/25/22	10/25/22
Tetrahydrofuran	ND	5	ug/kg	10/25/22	10/25/22
Toluene	ND	5	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane	ND	5	ug/kg	10/25/22	10/25/22
Trichloroethene	ND	5	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane	ND	5	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/25/22	10/25/22
Vinyl Chloride	ND	5	ug/kg	10/25/22	10/25/22
o-Xylene	ND	5	ug/kg	10/25/22	10/25/22
m&p-Xylene	ND	11	ug/kg	10/25/22	10/25/22
Total xylenes	ND	5	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether	ND	5	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane	ND	5	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether	ND	5	ug/kg	10/25/22	10/25/22
Diisopropyl ether	ND	5	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane	ND	5	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane	ND	5	ug/kg	10/25/22	10/25/22
Surrogate(s)	Recovery%	Limit	:s		
4-Bromofluorobenzene	94.8%	70-13	20	10/25/22	10/25/22
1,2-Dichloroethane-d4	114%	<i>70-13</i>	80	10/25/22	10/25/22
Toluene-d8	102%	70-13	80	10/25/22	10/25/22

Results: Volatile Organic Compounds

Sample: SE-106 (MW) 0-2 Lab Number: 2J21011-09 (Soil)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	6	ug/kg	10/25/22	10/25/22
Benzene	ND	6	ug/kg	10/25/22	10/25/22
Bromobenzene	ND	6	ug/kg	10/25/22	10/25/22
Bromochloromethane	ND	6	ug/kg	10/25/22	10/25/22
Bromodichloromethane	ND	6	ug/kg	10/25/22	10/25/22
Bromoform	ND	6	ug/kg	10/25/22	10/25/22
Bromomethane	ND	6	ug/kg	10/25/22	10/25/22
2-Butanone	ND	6	ug/kg	10/25/22	10/25/22
tert-Butyl alcohol	ND	6	ug/kg	10/25/22	10/25/22
sec-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22
n-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22
tert-Butylbenzene	ND	6	ug/kg	10/25/22	10/25/22
Methyl t-butyl ether (MTBE)	ND	6	ug/kg	10/25/22	10/25/22
Carbon Disulfide	ND	6	ug/kg	10/25/22	10/25/22
Carbon Tetrachloride	ND	6	ug/kg	10/25/22	10/25/22
Chlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
Chloroethane	ND	6	ug/kg	10/25/22	10/25/22
Chloroform	ND	7	ug/kg	10/25/22	10/25/22
Chloromethane	ND	6	ug/kg	10/25/22	10/25/22
4-Chlorotoluene	ND	6	ug/kg	10/25/22	10/25/22
2-Chlorotoluene	ND	6	ug/kg	10/25/22	10/25/22
,2-Dibromo-3-chloropropane (DBCP)	ND	6	ug/kg	10/25/22	10/25/22
bibromochloromethane	ND	6	ug/kg	10/25/22	10/25/22
.,2-Dibromoethane (EDB)	ND	6	ug/kg	10/25/22	10/25/22
Dibromomethane	ND	6	ug/kg	10/25/22	10/25/22
.,2-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
,3-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,4-Dichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22
1,1-Dichloroethane	ND	6	ug/kg	10/25/22	10/25/22
,2-Dichloroethane	ND	6	ug/kg	10/25/22	10/25/22
crans-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22
cis-1,2-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,1-Dichloroethene	ND	6	ug/kg	10/25/22	10/25/22
1,2-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
2,2-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22
is-1,3-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22
rans-1,3-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22
,1-Dichloropropene	ND	6	ug/kg	10/25/22	10/25/22
,3-Dichloropropene (cis + trans)	ND	6	ug/kg	10/25/22	10/25/22
Diethyl ether	ND	6	ug/kg	10/25/22	10/25/22
,4-Dioxane	ND	116	ug/kg	10/25/22	10/25/22
thylbenzene	ND	6	ug/kg	10/25/22	10/25/22
lexachlorobutadiene	ND	6	ug/kg	10/25/22	10/25/22
2-Hexanone	ND	6	ug/kg	10/25/22	10/25/22
Isopropylbenzene	ND	6	ug/kg	10/25/22	10/25/22
p-Isopropyltoluene	ND	6	ug/kg	10/25/22	10/25/22
Methylene Chloride	ND	58	ug/kg	10/25/22	10/25/22
4-Methyl-2-pentanone	ND	6	ug/kg	10/25/22	10/25 Pa

Results: Volatile Organic Compounds (Continued)

Sample: SE-106 (MW) 0-2 (Continued)

Lab Number: 2J21011-09 (Soil)

		Reporting				
Analyte	Result Q	Qual Limit	Units	Date Prepared	Date Analyzed	
Naphthalene	ND	6	ug/kg	10/25/22	10/25/22	
n-Propylbenzene	ND	6	ug/kg	10/25/22	10/25/22	
Styrene	ND	6	ug/kg	10/25/22	10/25/22	
1,1,1,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22	
Tetrachloroethene	ND	6	ug/kg	10/25/22	10/25/22	
Tetrahydrofuran	ND	6	ug/kg	10/25/22	10/25/22	
Toluene	ND	6	ug/kg	10/25/22	10/25/22	
1,2,4-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22	
1,2,3-Trichlorobenzene	ND	6	ug/kg	10/25/22	10/25/22	
1,1,2-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22	
1,1,1-Trichloroethane	ND	6	ug/kg	10/25/22	10/25/22	
Trichloroethene	ND	6	ug/kg	10/25/22	10/25/22	
1,2,3-Trichloropropane	ND	6	ug/kg	10/25/22	10/25/22	
1,3,5-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22	
1,2,4-Trimethylbenzene	ND	6	ug/kg	10/25/22	10/25/22	
Vinyl Chloride	ND	6	ug/kg	10/25/22	10/25/22	
o-Xylene	ND	6	ug/kg	10/25/22	10/25/22	
m&p-Xylene	ND	12	ug/kg	10/25/22	10/25/22	
Total xylenes	ND	6	ug/kg	10/25/22	10/25/22	
1,1,2,2-Tetrachloroethane	ND	6	ug/kg	10/25/22	10/25/22	
tert-Amyl methyl ether	ND	6	ug/kg	10/25/22	10/25/22	
1,3-Dichloropropane	ND	6	ug/kg	10/25/22	10/25/22	
Ethyl tert-butyl ether	ND	6	ug/kg	10/25/22	10/25/22	
Diisopropyl ether	ND	6	ug/kg	10/25/22	10/25/22	
Trichlorofluoromethane	ND	6	ug/kg	10/25/22	10/25/22	
Dichlorodifluoromethane	ND	6	ug/kg	10/25/22	10/25/22	
Surrogate(s)	Recovery%	Limit	:s			
4-Bromofluorobenzene	93.5%	<i>70-13</i>	30	10/25/22	10/25/22	
1,2-Dichloroethane-d4	104%	<i>70-13</i>	80	10/25/22	10/25/22	
Toluene-d8	100%	70-13	30	10/25/22	10/25/22	

Results: Volatile Organic Compounds

Sample: SE-107 15-17 Lab Number: 2J21011-11 (Soil)

Analyte	Result	R Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		5	ug/kg	10/25/22	10/25/22
Benzene	ND		5	ug/kg	10/25/22	10/25/22
Bromobenzene	ND		5	ug/kg	10/25/22	10/25/22
Bromochloromethane	ND		5	ug/kg	10/25/22	10/25/22
Bromodichloromethane	ND		5	ug/kg	10/25/22	10/25/22
Bromoform	ND		5	ug/kg	10/25/22	10/25/22
Bromomethane	ND		5	ug/kg	10/25/22	10/25/22
2-Butanone	ND		5	ug/kg	10/25/22	10/25/22
tert-Butyl alcohol	ND		5	ug/kg	10/25/22	10/25/22
sec-Butylbenzene	ND		5	ug/kg	10/25/22	10/25/22
n-Butylbenzene	ND		5	ug/kg ug/kg	10/25/22	10/25/22
tert-Butylbenzene	ND		5	ug/kg ug/kg	10/25/22	10/25/22
,			5			
Methyl t-butyl ether (MTBE)	ND ND			ug/kg	10/25/22	10/25/22
Carbon Disulfide Carbon Tetrachloride	ND ND		5 5	ug/kg	10/25/22	10/25/22
Carbon Tetrachioride Chlorobenzene	ND ND			ug/kg	10/25/22	10/25/22
			5	ug/kg	10/25/22	10/25/22
Chloroethane	ND		5	ug/kg	10/25/22	10/25/22
Chloroform	ND		6	ug/kg	10/25/22	10/25/22
Chloromethane	ND		5	ug/kg "	10/25/22	10/25/22
4-Chlorotoluene	ND		5	ug/kg 	10/25/22	10/25/22
2-Chlorotoluene	ND		5	ug/kg 	10/25/22	10/25/22
1,2-Dibromo-3-chloropropane (DBCP)	ND		5	ug/kg	10/25/22	10/25/22
Dibromochloromethane	ND		5	ug/kg	10/25/22	10/25/22
1,2-Dibromoethane (EDB)	ND		5	ug/kg	10/25/22	10/25/22
Dibromomethane	ND		5	ug/kg	10/25/22	10/25/22
1,2-Dichlorobenzene	ND		5	ug/kg	10/25/22	10/25/22
1,3-Dichlorobenzene	ND		5	ug/kg	10/25/22	10/25/22
1,4-Dichlorobenzene	ND		5	ug/kg	10/25/22	10/25/22
1,1-Dichloroethane	ND		5	ug/kg	10/25/22	10/25/22
1,2-Dichloroethane	ND		5	ug/kg	10/25/22	10/25/22
trans-1,2-Dichloroethene	ND		5	ug/kg	10/25/22	10/25/22
cis-1,2-Dichloroethene	ND		5	ug/kg	10/25/22	10/25/22
1,1-Dichloroethene	ND		5	ug/kg	10/25/22	10/25/22
1,2-Dichloropropane	ND		5	ug/kg	10/25/22	10/25/22
2,2-Dichloropropane	ND		5	ug/kg	10/25/22	10/25/22
cis-1,3-Dichloropropene	ND		5	ug/kg	10/25/22	10/25/22
trans-1,3-Dichloropropene	ND		5	ug/kg	10/25/22	10/25/22
1,1-Dichloropropene	ND		5	ug/kg	10/25/22	10/25/22
1,3-Dichloropropene (cis + trans)	ND		5	ug/kg	10/25/22	10/25/22
Diethyl ether	ND		5	ug/kg	10/25/22	10/25/22
,4-Dioxane	ND		96	ug/kg	10/25/22	10/25/22
Ethylbenzene	ND		5	ug/kg	10/25/22	10/25/22
Hexachlorobutadiene	ND		5	ug/kg	10/25/22	10/25/22
2-Hexanone	ND		5	ug/kg	10/25/22	10/25/22
Isopropylbenzene	ND		5	ug/kg	10/25/22	10/25/22
p-Isopropyltoluene	ND		5	ug/kg	10/25/22	10/25/22
Methylene Chloride	ND		48	ug/kg	10/25/22	10/25/22
4-Methyl-2-pentanone	ND		5	ug/kg	10/25/22	10/25 Pa

Results: Volatile Organic Compounds (Continued)

Sample: SE-107 15-17 (Continued)

Lab Number: 2J21011-11 (Soil)

Naphthalene n-Propylbenzene ND Styrene ND 1,1,1,2-Tetrachloroethane ND Tetrachloroethene ND Tetrahydrofuran ND Toluene ND 1,2,4-Trichlorobenzene ND 1,1,2-Trichloroethane ND 1,1,2-Trichloroethane ND	Reporting Qual Limit	Units	Date Prepared	Date Analyzed
Styrene ND 1,1,1,2-Tetrachloroethane ND Tetrachloroethene ND Tetrahydrofuran ND Toluene ND 1,2,4-Trichlorobenzene ND 1,2,3-Trichlorobenzene ND	5	ug/kg	10/25/22	10/25/22
1,1,1,2-Tetrachloroethane ND Tetrachloroethene ND Tetrahydrofuran ND Toluene ND 1,2,4-Trichlorobenzene ND 1,2,3-Trichlorobenzene ND	5	ug/kg	10/25/22	10/25/22
Tetrachloroethene ND Tetrahydrofuran ND Toluene ND 1,2,4-Trichlorobenzene ND 1,2,3-Trichlorobenzene ND	5	ug/kg	10/25/22	10/25/22
Tetrahydrofuran ND Toluene ND 1,2,4-Trichlorobenzene ND 1,2,3-Trichlorobenzene ND	5	ug/kg	10/25/22	10/25/22
Toluene ND 1,2,4-Trichlorobenzene ND 1,2,3-Trichlorobenzene ND	5	ug/kg	10/25/22	10/25/22
1,2,4-Trichlorobenzene ND 1,2,3-Trichlorobenzene ND	5	ug/kg	10/25/22	10/25/22
1,2,3-Trichlorobenzene ND	5	ug/kg	10/25/22	10/25/22
	5	ug/kg	10/25/22	10/25/22
1,1,2-Trichloroethane ND	5	ug/kg	10/25/22	10/25/22
	5	ug/kg	10/25/22	10/25/22
1,1,1-Trichloroethane ND	5	ug/kg	10/25/22	10/25/22
Trichloroethene ND	5	ug/kg	10/25/22	10/25/22
1,2,3-Trichloropropane ND	5	ug/kg	10/25/22	10/25/22
1,3,5-Trimethylbenzene ND	5	ug/kg	10/25/22	10/25/22
1,2,4-Trimethylbenzene ND	5	ug/kg	10/25/22	10/25/22
Vinyl Chloride ND	5	ug/kg	10/25/22	10/25/22
o-Xylene ND	5	ug/kg	10/25/22	10/25/22
m&p-Xylene ND	10	ug/kg	10/25/22	10/25/22
Total xylenes ND	5	ug/kg	10/25/22	10/25/22
1,1,2,2-Tetrachloroethane ND	5	ug/kg	10/25/22	10/25/22
tert-Amyl methyl ether ND	5	ug/kg	10/25/22	10/25/22
1,3-Dichloropropane ND	5	ug/kg	10/25/22	10/25/22
Ethyl tert-butyl ether ND	5	ug/kg	10/25/22	10/25/22
Diisopropyl ether ND	5	ug/kg	10/25/22	10/25/22
Trichlorofluoromethane ND	5	ug/kg	10/25/22	10/25/22
Dichlorodifluoromethane ND	5	ug/kg	10/25/22	10/25/22
Surrogate(s) Recovery%	Limit			
4-Bromofluorobenzene 92.3%		S		
1,2-Dichloroethane-d4 111%	70-13		10/25/22	10/25/22
<i>Toluene-d8</i> 99.5%	70-13i 70-13i	80	10/25/22 10/25/22	10/25/22 10/25/22

Sample: SE-101 (MW) 0-2 Lab Number: 2J21011-01 (Soil)

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
2-Methylnaphthalene	ND		133	ug/kg	11/02/22	11/04/22
Acenaphthene	ND		133	ug/kg	11/02/22	11/04/22
Acenaphthylene	ND		133	ug/kg	11/02/22	11/04/22
Anthracene	ND		133	ug/kg	11/02/22	11/04/22
Benzo(a)anthracene	ND		133	ug/kg	11/02/22	11/04/22
Benzo(a)pyrene	167		133	ug/kg	11/02/22	11/04/22
Benzo(b)fluoranthene	246		133	ug/kg	11/02/22	11/04/22
Benzo(g,h,i)perylene	170		133	ug/kg	11/02/22	11/04/22
Benzo(k)fluoranthene	ND		133	ug/kg	11/02/22	11/04/22
Chrysene	154		133	ug/kg	11/02/22	11/04/22
Dibenz(a,h)anthracene	ND		133	ug/kg	11/02/22	11/04/22
Dibenzofuran	ND		133	ug/kg	11/02/22	11/04/22
Fluoranthene	171		133	ug/kg	11/02/22	11/04/22
Fluorene	ND		133	ug/kg	11/02/22	11/04/22
Indeno(1,2,3-cd)pyrene	146		133	ug/kg	11/02/22	11/04/22
Naphthalene	ND		133	ug/kg	11/02/22	11/04/22
Phenanthrene	ND		133	ug/kg	11/02/22	11/04/22
Pyrene	235		133	ug/kg	11/02/22	11/04/22
Surrogate(s)	Recovery%		Limits	3		
Nitrobenzene-d5	69.6%		30-120	5	11/02/22	11/04/22
p-Terphenyl-d14	103%		47-130	9	11/02/22	11/04/22
2-Fluorobiphenyl	85.9%		34-130	9	11/02/22	11/04/22

Results: Semivolatile organic compounds

Sample: SE-103 2-3 Lab Number: 2J21011-03 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
2-Methylnaphthalene	ND		1400	ug/kg	11/02/22	11/05/22		
Acenaphthene	ND		1400	ug/kg	11/02/22	11/05/22		
Acenaphthylene	ND		1400	ug/kg	11/02/22	11/05/22		
Anthracene	ND		1400	ug/kg	11/02/22	11/05/22		
Benzo(a)anthracene	ND		1400	ug/kg	11/02/22	11/05/22		
Benzo(a)pyrene	ND		1400	ug/kg	11/02/22	11/05/22		
Benzo(b)fluoranthene	ND		1400	ug/kg	11/02/22	11/05/22		
Benzo(g,h,i)perylene	ND		1400	ug/kg	11/02/22	11/05/22		
Benzo(k)fluoranthene	ND		1400	ug/kg	11/02/22	11/05/22		
Chrysene	ND		1400	ug/kg	11/02/22	11/05/22		
Dibenz(a,h)anthracene	ND		1400	ug/kg	11/02/22	11/05/22		
Dibenzofuran	ND		1400	ug/kg	11/02/22	11/05/22		
Fluoranthene	ND		1400	ug/kg	11/02/22	11/05/22		
Fluorene	ND		1400	ug/kg	11/02/22	11/05/22		
Indeno(1,2,3-cd)pyrene	ND		1400	ug/kg	11/02/22	11/05/22		
Naphthalene	ND		1400	ug/kg	11/02/22	11/05/22		
Phenanthrene	ND		1400	ug/kg	11/02/22	11/05/22		
Pyrene	ND		1400	ug/kg	11/02/22	11/05/22		
Surrogate(s)	Recovery%		Limit	:s				
Nitrobenzene-d5	68.0%		30-12	26	11/02/22	11/05/22		
p-Terphenyl-d14	87.4%		47-13	80	11/02/22	11/05/22		
2-Fluorobiphenyl	79.6%		34-13	80	11/02/22	11/05/22		

Sample: SE-103 10-11 Lab Number: 2J21011-04 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		1530	ug/kg	11/02/22	11/05/22			
Acenaphthene	ND		1530	ug/kg	11/02/22	11/05/22			
Acenaphthylene	ND		1530	ug/kg	11/02/22	11/05/22			
Anthracene	1700		1530	ug/kg	11/02/22	11/05/22			
Benzo(a)anthracene	5880		1530	ug/kg	11/02/22	11/05/22			
Benzo(a)pyrene	5470		1530	ug/kg	11/02/22	11/05/22			
Benzo(b)fluoranthene	6690		1530	ug/kg	11/02/22	11/05/22			
Benzo(g,h,i)perylene	4270		1530	ug/kg	11/02/22	11/05/22			
Benzo(k)fluoranthene	2420		1530	ug/kg	11/02/22	11/05/22			
Chrysene	5760		1530	ug/kg	11/02/22	11/05/22			
Dibenz(a,h)anthracene	ND		1530	ug/kg	11/02/22	11/05/22			
Dibenzofuran	ND		1530	ug/kg	11/02/22	11/05/22			
Fluoranthene	9990		1530	ug/kg	11/02/22	11/05/22			
Fluorene	ND		1530	ug/kg	11/02/22	11/05/22			
Indeno(1,2,3-cd)pyrene	3980		1530	ug/kg	11/02/22	11/05/22			
Naphthalene	ND		1530	ug/kg	11/02/22	11/05/22			
Phenanthrene	5710		1530	ug/kg	11/02/22	11/05/22			
Pyrene	11800		1530	ug/kg	11/02/22	11/05/22			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	71.6%		30-12	<i>16</i>	11/02/22	11/05/22			
p-Terphenyl-d14	84.2%		47-13	0	11/02/22	11/05/22			
2-Fluorobiphenyl	81.8%		34-13	0	11/02/22	11/05/22			

Sample: SE-104 (MW) 0-2 Lab Number: 2J21011-05 (Soil)

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyze
•		- Quui			·	•
2-Methylnaphthalene	ND		695	ug/kg	11/02/22	11/04/22
Acenaphthene	856		695	ug/kg	11/02/22	11/04/22
Acenaphthylene	738		695	ug/kg	11/02/22	11/04/22
Anthracene	2790		695	ug/kg	11/02/22	11/04/22
Benzo(a)anthracene	6190		695	ug/kg	11/02/22	11/04/22
Benzo(a)pyrene	6500		695	ug/kg	11/02/22	11/04/22
Benzo(b)fluoranthene	7880		695	ug/kg	11/02/22	11/04/22
Benzo(g,h,i)perylene	5450		695	ug/kg	11/02/22	11/04/22
Benzo(k)fluoranthene	3000		695	ug/kg	11/02/22	11/04/22
Chrysene	6210		695	ug/kg	11/02/22	11/04/22
Dibenz(a,h)anthracene	1120		695	ug/kg	11/02/22	11/04/22
Dibenzofuran	ND		695	ug/kg	11/02/22	11/04/22
Fluoranthene	11100		695	ug/kg	11/02/22	11/04/22
Fluorene	891		695	ug/kg	11/02/22	11/04/22
Indeno(1,2,3-cd)pyrene	5210		695	ug/kg	11/02/22	11/04/22
Naphthalene	1380		695	ug/kg	11/02/22	11/04/22
Phenanthrene	7710		695	ug/kg	11/02/22	11/04/22
Pyrene	12700		695	ug/kg	11/02/22	11/04/22
Surrogate(s)	Recovery%		Limits			
Nitrobenzene-d5	70.2%		30-126	5	11/02/22	11/04/22
p-Terphenyl-d14	92.0%		47-130	9	11/02/22	11/04/22
2-Fluorobiphenyl	83.6%		34-130	9	11/02/22	11/04/22

Sample: SE-104 (MW) 10-12 Lab Number: 2J21011-06 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		779	ug/kg	11/02/22	11/04/22			
Acenaphthene	1080		779	ug/kg	11/02/22	11/04/22			
Acenaphthylene	ND		779	ug/kg	11/02/22	11/04/22			
Anthracene	2620		779	ug/kg	11/02/22	11/04/22			
Benzo(a)anthracene	6070		779	ug/kg	11/02/22	11/04/22			
Benzo(a)pyrene	5090		779	ug/kg	11/02/22	11/04/22			
Benzo(b)fluoranthene	6110		779	ug/kg	11/02/22	11/04/22			
Benzo(g,h,i)perylene	3180		779	ug/kg	11/02/22	11/04/22			
Benzo(k)fluoranthene	2040		779	ug/kg	11/02/22	11/04/22			
Chrysene	7030		779	ug/kg	11/02/22	11/04/22			
Dibenz(a,h)anthracene	ND		779	ug/kg	11/02/22	11/04/22			
Dibenzofuran	1020		779	ug/kg	11/02/22	11/04/22			
Fluoranthene	13200		779	ug/kg	11/02/22	11/04/22			
Fluorene	998		779	ug/kg	11/02/22	11/04/22			
Indeno(1,2,3-cd)pyrene	2990		779	ug/kg	11/02/22	11/04/22			
Naphthalene	1080		779	ug/kg	11/02/22	11/04/22			
Phenanthrene	16300		779	ug/kg	11/02/22	11/04/22			
Pyrene	18000		779	ug/kg	11/02/22	11/04/22			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	71.7%		30-12	6	11/02/22	11/04/22			
p-Terphenyl-d14	105%		47-13	0	11/02/22	11/04/22			
2-Fluorobiphenyl	89.1%		34-13	0	11/02/22	11/04/22			

Sample: SE-105 (MW) 0-1 Lab Number: 2J21011-07 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		687	ug/kg	11/02/22	11/04/22			
Acenaphthene	ND		687	ug/kg	11/02/22	11/04/22			
Acenaphthylene	ND		687	ug/kg	11/02/22	11/04/22			
Anthracene	ND		687	ug/kg	11/02/22	11/04/22			
Benzo(a)anthracene	ND		687	ug/kg	11/02/22	11/04/22			
Benzo(a)pyrene	ND		687	ug/kg	11/02/22	11/04/22			
Benzo(b)fluoranthene	ND		687	ug/kg	11/02/22	11/04/22			
Benzo(g,h,i)perylene	ND		687	ug/kg	11/02/22	11/04/22			
Benzo(k)fluoranthene	ND		687	ug/kg	11/02/22	11/04/22			
Chrysene	ND		687	ug/kg	11/02/22	11/04/22			
Dibenz(a,h)anthracene	ND		687	ug/kg	11/02/22	11/04/22			
Dibenzofuran	ND		687	ug/kg	11/02/22	11/04/22			
Fluoranthene	783		687	ug/kg	11/02/22	11/04/22			
Fluorene	ND		687	ug/kg	11/02/22	11/04/22			
Indeno(1,2,3-cd)pyrene	ND		687	ug/kg	11/02/22	11/04/22			
Naphthalene	ND		687	ug/kg	11/02/22	11/04/22			
Phenanthrene	ND		687	ug/kg	11/02/22	11/04/22			
Pyrene	955		687	ug/kg	11/02/22	11/04/22			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	84.2%		30-12	6	11/02/22	11/04/22			
p-Terphenyl-d14	116%		47-13	0	11/02/22	11/04/22			
2-Fluorobiphenyl	99.0%		34-13	0	11/02/22	11/04/22			

Sample: SE-106 (MW) 0-2 Lab Number: 2J21011-09 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		695	ug/kg	11/02/22	11/04/22			
Acenaphthene	ND		695	ug/kg	11/02/22	11/04/22			
Acenaphthylene	ND		695	ug/kg	11/02/22	11/04/22			
Anthracene	ND		695	ug/kg	11/02/22	11/04/22			
Benzo(a)anthracene	ND		695	ug/kg	11/02/22	11/04/22			
Benzo(a)pyrene	ND		695	ug/kg	11/02/22	11/04/22			
Benzo(b)fluoranthene	802		695	ug/kg	11/02/22	11/04/22			
Benzo(g,h,i)perylene	ND		695	ug/kg	11/02/22	11/04/22			
Benzo(k)fluoranthene	ND		695	ug/kg	11/02/22	11/04/22			
Chrysene	ND		695	ug/kg	11/02/22	11/04/22			
Dibenz(a,h)anthracene	ND		695	ug/kg	11/02/22	11/04/22			
Dibenzofuran	ND		695	ug/kg	11/02/22	11/04/22			
Fluoranthene	945		695	ug/kg	11/02/22	11/04/22			
Fluorene	ND		695	ug/kg	11/02/22	11/04/22			
Indeno(1,2,3-cd)pyrene	ND		695	ug/kg	11/02/22	11/04/22			
Naphthalene	ND		695	ug/kg	11/02/22	11/04/22			
Phenanthrene	ND		695	ug/kg	11/02/22	11/04/22			
Pyrene	1100		695	ug/kg	11/02/22	11/04/22			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	78.4%		30-12	6	11/02/22	11/04/22			
p-Terphenyl-d14	110%		47-13	0	11/02/22	11/04/22			
2-Fluorobiphenyl	92.2%		34-13	0	11/02/22	11/04/22			

Sample: SE-106 (MW) 10-11 Lab Number: 2J21011-10 (Soil)

Reporting									
Analyte	Result	Qual Lim	it Units	Date Prepared	Date Analyzed				
2-Methylnaphthalene	ND	138	ug/kg	11/02/22	11/04/22				
Acenaphthene	ND	138	ug/kg	11/02/22	11/04/22				
Acenaphthylene	ND	138	ug/kg	11/02/22	11/04/22				
Anthracene	ND	138	ug/kg	11/02/22	11/04/22				
Benzo(a)anthracene	ND	138	ug/kg	11/02/22	11/04/22				
Benzo(a)pyrene	ND	138	ug/kg	11/02/22	11/04/22				
Benzo(b)fluoranthene	ND	138	ug/kg	11/02/22	11/04/22				
Benzo(g,h,i)perylene	ND	138	ug/kg	11/02/22	11/04/22				
Benzo(k)fluoranthene	ND	138	ug/kg	11/02/22	11/04/22				
Chrysene	ND	138	ug/kg	11/02/22	11/04/22				
Dibenz(a,h)anthracene	ND	138	ug/kg	11/02/22	11/04/22				
Dibenzofuran	ND	138	ug/kg	11/02/22	11/04/22				
Fluoranthene	ND	138	ug/kg	11/02/22	11/04/22				
Fluorene	ND	138	ug/kg	11/02/22	11/04/22				
Indeno(1,2,3-cd)pyrene	ND	138	ug/kg	11/02/22	11/04/22				
Naphthalene	ND	138	ug/kg	11/02/22	11/04/22				
Phenanthrene	ND	138	ug/kg	11/02/22	11/04/22				
Pyrene	ND	138	ug/kg	11/02/22	11/04/22				
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	68.3%		30-126	11/02/22	11/04/22				
p-Terphenyl-d14	105%		47-130	11/02/22	11/04/22				
2-Fluorobiphenyl	80.8%		34-130	11/02/22	11/04/22				

Results: Total Petroleum Hydrocarbons

Sample: SE-101 (MW) 0-2 Lab Number: 2J21011-01 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Total Petroleum Hydrocarbons	31		26	mg/kg	10/28/22	11/01/22		
Surrogate(s)	Recovery%		Limit	:s				
Chlorooctadecane	80.4%		50-13	30	10/28/22	11/01/22		

Results: Total Petroleum Hydrocarbons

Sample: SE-102 (MW) 10-13 Lab Number: 2J21011-02 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	ND		31	mg/kg	10/28/22	10/31/22
Surrogate(s)	Recovery%		Limit	:S		
Chlorooctadecane	74.8%		50-13	30	10/28/22	10/31/22

Results: Total Petroleum Hydrocarbons

Sample: SE-103 2-3 Lab Number: 2J21011-03 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Total Petroleum Hydrocarbons	1060		145	mg/kg	10/28/22	10/31/22			
Surrogate(s)	Recovery%	Recovery%		ts					
Chlorooctadecane	81.5%		50-13	30	10/28/22	10/31/22			

Results: Total Petroleum Hydrocarbons

Sample: SE-103 10-11 Lab Number: 2J21011-04 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Total Petroleum Hydrocarbons	954		63	mg/kg	10/28/22	11/02/22			
Surrogate(s)	Recovery%	Recovery%		:s					
Chlorooctadecane	95.4%		50-13	30	10/28/22	11/02/22			

Results: Total Petroleum Hydrocarbons

Sample: SE-104 (MW) 0-2 Lab Number: 2J21011-05 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Total Petroleum Hydrocarbons	65		29	mg/kg	10/28/22	10/31/22			
Surrogate(s)	Recovery%	Recovery%		:S					
Chlorooctadecane	59.0%		50-13	30	10/28/22	10/31/22			

Results: Total Petroleum Hydrocarbons

Sample: SE-104 (MW) 10-12 Lab Number: 2J21011-06 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	232		32	mg/kg	10/28/22	11/01/22
Surrogate(s)	Recovery%		Limit	:S		
Chlorooctadecane	70.4%		50-13	30	10/28/22	11/01/22

Results: Total Petroleum Hydrocarbons

Sample: SE-105 (MW) 0-1 Lab Number: 2J21011-07 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	75		28	mg/kg	10/28/22	11/01/22
Surrogate(s)	Recovery%		Limit	:s		
Chlorooctadecane	82.1%		50-13	30	10/28/22	11/01/22

Results: Total Petroleum Hydrocarbons

Sample: SE-105 (MW) 10-14 Lab Number: 2J21011-08 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	ND		31	mg/kg	10/28/22	10/31/22
Surrogate(s)	Recovery%		Limit	:s		
Chlorooctadecane	78.3%		50-13	30	10/28/22	10/31/22

Results: Total Petroleum Hydrocarbons

Sample: SE-106 (MW) 0-2 Lab Number: 2J21011-09 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	135		28	mg/kg	10/28/22	10/31/22
Surrogate(s)	Recovery%		Limit	:S		
Chlorooctadecane	80.7%		50-13	30	10/28/22	10/31/22

Results: Total Petroleum Hydrocarbons

Sample: SE-106 (MW) 10-11 Lab Number: 2J21011-10 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	38		27	mg/kg	10/28/22	11/01/22
Surrogate(s)	Recovery%		Limit	:S		
Chlorooctadecane	75.6%		50-13	30	10/28/22	11/01/22

Results: Total Petroleum Hydrocarbons

Sample: SE-107 15-17 Lab Number: 2J21011-11 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	ND		31	mg/kg	10/28/22	11/01/22
Surrogate(s)	Recovery%		Limit	ts		
Chlorooctadecane	67.0%		50-13	30	10/28/22	11/01/22

Quality Control

Total Metals

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
·		-								
Batch: B2J1194 - Metals Di	gestion Soils									
Blank (B2J1194-BLK1)					repared: 10/2	4/22 Analyze	d: 10/27/22			
Antimony	ND		0.66	mg/kg						
Zinc	ND		2.0	mg/kg						
Selenium	ND		1.00	mg/kg						
Lead	ND		0.50	mg/kg						
Nickel	ND		0.50	mg/kg						
Copper	ND		2.00	mg/kg						
Chromium	ND		0.50	mg/kg						
Cadmium	ND		0.50	mg/kg						
Beryllium	ND		0.33	mg/kg						
Arsenic	ND		1.00	mg/kg						
Silver	ND		1.00	mg/kg						
Thallium	ND		0.33	mg/kg						
LCS (B2J1194-BS1)				Pr	epared: 10/2	4/22 Analyze	d: 10/27/22			
Antimony	114		0.66	mg/kg	100		114	85-115		
Nickel	107		0.50	mg/kg	100		107	85-112		
Copper	101		2.00	mg/kg	100		101	85-115		
Selenium	22.0		1.00	mg/kg	20.0		110	85-115		
Lead	105		0.50	mg/kg	100		105	85-115		
Arsenic	22.2		1.00	mg/kg	20.0		111	85-115		
Silver	43.0		1.00	mg/kg	40.0		107	85-115		
Beryllium	22.0		0.33	mg/kg	20.0		110	85-115		
Cadmium	110		0.50	mg/kg	100		110	85-115		
Chromium	108		0.50	mg/kg	100		108	85-115		
Zinc	111		2.0	mg/kg	100		111	85-115		
Thallium	96.7		0.33	mg/kg	100		96.7	85-115		

			Quality (Conti	Control						
Total Metals (Continued)										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2J1487 - Metals Co.	ld-Vapor Mercui	rv								
Blank (B2J1487-BLK1)	•	•			Prepared 8	& Analyzed: 1	0/28/22			
Mercury	ND		0.140	mg/kg						
LCS (B2J1487-BS1)					Prepared 8	& Analyzed: 1	0/28/22			
Mercury	0.521		0.140	mg/kg	0.500		104	93-114		

Volatile Organic Compounds

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
Batch: B2J1299 - EPA 5035									
Blank (B2J1299-BLK1)				Prepared	& Analyzed: 1	0/25/22			
Acetone	ND	5	ug/kg	. ropulou	o. /u. / 20u. 2	0, 20, 22			
Benzene	ND	5	ug/kg						
Bromobenzene	ND	5	ug/kg						
Bromochloromethane	ND	5	ug/kg						
Bromodichloromethane	ND	5	ug/kg						
Bromoform	ND	5	ug/kg						
Bromomethane	ND	5	ug/kg						
2-Butanone	ND	5	ug/kg						
tert-Butyl alcohol	ND	5	ug/kg						
sec-Butylbenzene	ND	5	ug/kg						
n-Butylbenzene	ND	5	ug/kg						
tert-Butylbenzene	ND	5	ug/kg						
Methyl t-butyl ether (MTBE)	ND ND	5	ug/kg						
Carbon Disulfide	ND	5	ug/kg						
	ND ND	5	ug/kg						
Carbon Tetrachloride Chlorobenzene									
Chloroethane	ND ND	5 5	ug/kg ug/kg						
Chloroform	ND	6	ug/kg						
Chloromethane	ND	5	ug/kg						
4-Chlorotoluene	ND	5	ug/kg						
2-Chlorotoluene	ND	5	ug/kg						
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg						
Dibromochloromethane	ND	5	ug/kg						
1,2-Dibromoethane (EDB)	ND	5	ug/kg						
Dibromomethane	ND	5	ug/kg						
1,2-Dichlorobenzene	ND	5	ug/kg						
1,3-Dichlorobenzene	ND	5	ug/kg						
1,4-Dichlorobenzene	ND	5	ug/kg						
1,1-Dichloroethane	ND	5	ug/kg						
1,2-Dichloroethane	ND	5	ug/kg						
trans-1,2-Dichloroethene	ND	5	ug/kg						
cis-1,2-Dichloroethene	ND	5	ug/kg						
1,1-Dichloroethene	ND	5	ug/kg						
1,2-Dichloropropane	ND	5	ug/kg						
2,2-Dichloropropane	ND	5	ug/kg						
cis-1,3-Dichloropropene	ND	5	ug/kg						
trans-1,3-Dichloropropene	ND	5	ug/kg						
1,1-Dichloropropene	ND	5	ug/kg						
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg						
Diethyl ether	ND	5	ug/kg						
1,4-Dioxane	ND	100	ug/kg						
Ethylbenzene	ND	5	ug/kg						
, Hexachlorobutadiene	ND	5	ug/kg						
2-Hexanone	ND	5	ug/kg						
Isopropylbenzene	ND	5	ug/kg						
p-Isopropyltoluene	ND	5	ug/kg						
Methylene Chloride	ND	50	ug/kg						
4-Methyl-2-pentanone	ND	5	ug/kg						
Naphthalene	ND	5	ug/kg						
n-Propylbenzene	ND	5	ug/kg						
Styrene	ND	5	ug/kg						
1,1,1,2-Tetrachloroethane	ND	5	ug/kg						
Tetrachloroethene	ND	5	ug/kg						
Tetrahydrofuran	ND	5	ug/kg						
Toluene	ND	5	ug/kg						
1,2,4-Trichlorobenzene	ND ND	5	ug/kg						
1,2,3-Trichlorobenzene	ND ND	5	ug/kg						

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
Batch: B2J1299 - EPA 5035 (C	ontinued)									
-	onunuea)				Duamanad (0/25/22			
Blank (B2J1299-BLK1)	ND		-	//	Prepared 8	& Analyzed: 1	0/25/22			
1,1,2-Trichloroethane	ND		5	ug/kg						
1,1,1-Trichloroethane	ND		5	ug/kg						
Trichloroethene	ND		5	ug/kg						
1,2,3-Trichloropropane	ND		5	ug/kg						
1,3,5-Trimethylbenzene	ND		5	ug/kg						
1,2,4-Trimethylbenzene	ND		5	ug/kg						
Vinyl Chloride	ND		5	ug/kg						
o-Xylene	ND		5	ug/kg						
m&p-Xylene	ND		10	ug/kg						
Total xylenes	ND		5	ug/kg						
1,1,2,2-Tetrachloroethane	ND		5	ug/kg						
tert-Amyl methyl ether	ND		5	ug/kg						
1,3-Dichloropropane	ND		5	ug/kg						
Ethyl tert-butyl ether	ND		5	ug/kg						
Diisopropyl ether	ND		5	ug/kg						
Trichlorofluoromethane	ND		5	ug/kg						
Dichlorodifluoromethane	ND ND		5	ug/kg ug/kg						
Did not outline to the control of th	UD									
Surrogate: 4-Bromofluorobenzene			46.6	ug/kg	50.0		93.1	70-130		
Surrogate: 1,2-Dichloroethane-d4			54.5	ug/kg	50.0		109	70-130		
Surrogate: Toluene-d8			50.5	ug/kg	50.0		101	70-130		
LCS (B2J1299-BS1)					Prepared 8	& Analyzed: 1	0/25/22			
Acetone	58			ug/kg	50.0		116	60-140		
Benzene	47			ug/kg	50.0		93.4	70-130		
Bromobenzene	55			ug/kg	50.0		110	70-130		
Bromochloromethane	52			ug/kg	50.0		105	70-130		
Bromodichloromethane	43			ug/kg	50.0		85.9	70-130		
Bromoform	57			ug/kg	50.0		113	70-130		
Bromomethane	41			ug/kg	50.0		81.8	60-140		
2-Butanone	56			ug/kg	50.0					
							112	60-140		
tert-Butyl alcohol	43			ug/kg	50.0		86.7	70-130		
sec-Butylbenzene	52			ug/kg	50.0		103	70-130		
n-Butylbenzene	47			ug/kg	50.0		93.5	70-130		
tert-Butylbenzene	52			ug/kg	50.0		103	70-130		
Methyl t-butyl ether (MTBE)	40			ug/kg	50.0		79.8	70-130		
Carbon Disulfide	37			ug/kg	50.0		74.6	50-150		
Carbon Tetrachloride	47			ug/kg	50.0		93.7	70-130		
Chlorobenzene	47			ug/kg	50.0		94.8	70-130		
Chloroethane	36			ug/kg	50.0		71.9	60-140		
Chloroform	46			ug/kg	50.0		91.8	70-130		
Chloromethane	41			ug/kg	50.0		82.7	60-140		
4-Chlorotoluene	47			ug/kg	50.0		93.9	70-130		
2-Chlorotoluene	47			ug/kg	50.0		93.9	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	40			ug/kg	50.0		80.1	70-130		
Dibromochloromethane	55			ug/kg	50.0		110	70-130		
1,2-Dibromoethane (EDB)	53			ug/kg	50.0		107	70-130		
Dibromomethane	47			ug/kg	50.0		93.9	60-140		
1,2-Dichlorobenzene	50			ug/kg	50.0		99.7	70-130		
1,3-Dichlorobenzene	56			ug/kg	50.0		113	70-130		
1,4-Dichlorobenzene	50			ug/kg	50.0		101	70-130		
1,1-Dichloroethane	42			ug/kg	50.0		84.1	70-130		
1,2-Dichloroethane	41			ug/kg	50.0		82.9	70-130		
trans-1,2-Dichloroethene	42			ug/kg	50.0		84.4	70-130		
cis-1,2-Dichloroethene	48			ug/kg	50.0		95.9	70-130		
1,1-Dichloroethene	42			ug/kg	50.0		83.2	70-130		
1,2-Dichloropropane	40			ug/kg	50.0		80.7	70-130		

Page 58 of 70

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2J1299 - EPA 5035 (C	Continued)									
LCS (B2J1299-BS1)					Prepared 8	& Analyzed: 1	0/25/22			
cis-1,3-Dichloropropene	44			ug/kg	50.0		87.8	70-130		
trans-1,3-Dichloropropene	45			ug/kg	50.0		89.4	70-130		
1,1-Dichloropropene	54			ug/kg	50.0		108	70-130		
Diethyl ether	44			ug/kg	50.0		88.5	60-140		
1,4-Dioxane	297			ug/kg	250		119	0-200		
Ethylbenzene	45			ug/kg	50.0		89.1	70-130		
Hexachlorobutadiene	58			ug/kg	50.0		115	70-130		
2-Hexanone	53			ug/kg	50.0		106	70-130		
Isopropylbenzene	49			ug/kg	50.0		98.7	70-130		
p-Isopropyltoluene	53			ug/kg	50.0		107	70-130		
Methylene Chloride	56			ug/kg	50.0		112	60-140		
4-Methyl-2-pentanone	39			ug/kg	50.0		78.9	70-130		
Naphthalene	51			ug/kg	50.0		102	70-130		
n-Propylbenzene	49			ug/kg	50.0		98.0	70-130		
Styrene	48			ug/kg	50.0		96.9	70-130		
1,1,1,2-Tetrachloroethane	47			ug/kg	50.0		93.2	70-130		
Tetrachloroethene	58			ug/kg	50.0		116	70-130		
Tetrahydrofuran	46			ug/kg	50.0		91.1	50-150		
Toluene	50			ug/kg	50.0		101	70-130		
1,2,4-Trichlorobenzene	60			ug/kg	50.0		120	70-130		
1,2,3-Trichlorobenzene	57			ug/kg	50.0		114	70-130		
1,1,2-Trichloroethane	47			ug/kg	50.0		94.5	70-130		
1,1,1-Trichloroethane	43			ug/kg	50.0		86.9	70-130		
Trichloroethene	48			ug/kg	50.0		95.8	70-130		
1,2,3-Trichloropropane	42			ug/kg	50.0		83.6	70-130		
1,3,5-Trimethylbenzene	49			ug/kg	50.0		98.6	70-130		
1,2,4-Trimethylbenzene	50			ug/kg	50.0		99.4	70-130		
Vinyl Chloride	39			ug/kg	50.0		77.1	60-140		
o-Xylene	48			ug/kg	50.0		96.2	70-130		
m&p-Xylene	96			ug/kg	100		96.2	70-130		
1,1,2,2-Tetrachloroethane	45			ug/kg	50.0		90.6	70-130		
tert-Amyl methyl ether	42			ug/kg	50.0		84.2	70-130		
1,3-Dichloropropane	44			ug/kg	50.0		89.0	70-130		
Ethyl tert-butyl ether	43			ug/kg	50.0		85.6	70-130		
Trichlorofluoromethane	40			ug/kg	50.0		80.7	70-130		
Dichlorodifluoromethane	45			ug/kg	50.0		89.2	60-140		
Surrogate: 4-Bromofluorobenzene			46.5	ug/kg	50.0		93.1	70-130		
Surrogate: 1,2-Dichloroethane-d4			49.8	ug/kg	50.0		99.5	70-130		
Surrogate: Toluene-d8			51.2	ug/kg	50.0		102	70-130		

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2J1299 - EPA 5035 (Co	ontinued)									
LCS Dup (B2J1299-BSD1)	,				Prepared 8	& Analyzed:	10/25/22			
Acetone	50			ug/kg	50.0	x /u.,	100	60-140	14.6	30
Benzene	51			ug/kg	50.0		101	70-130	8.03	20
Bromobenzene	59			ug/kg	50.0		119	70-130	7.74	20
Bromochloromethane	58			ug/kg	50.0		116	70-130	10.5	20
Bromodichloromethane	46			ug/kg	50.0		92.0	70-130	6.95	20
Bromoform	60			ug/kg	50.0		120	70-130	5.54	20
Bromomethane	49			ug/kg	50.0		98.3	60-140	18.4	30
2-Butanone	57			ug/kg ug/kg	50.0		115	60-140	2.75	30
	43			ug/kg ug/kg						20
tert-Butyl alcohol	56			ug/kg ug/kg	50.0		86.6	70-130	0.0924	
sec-Butylbenzene					50.0		113	70-130	8.44	20
n-Butylbenzene	54			ug/kg	50.0		107	70-130	13.9	20
tert-Butylbenzene	56			ug/kg	50.0		111	70-130	7.18	20
Methyl t-butyl ether (MTBE)	40			ug/kg	50.0		80.5	70-130	0.823	20
Carbon Disulfide	41			ug/kg	50.0		81.2	50-150	8.40	40
Carbon Tetrachloride	51			ug/kg	50.0		102	70-130	8.99	20
Chlorobenzene	52			ug/kg	50.0		103	70-130	8.52	20
Chloroethane	40			ug/kg	50.0		80.1	60-140	10.8	30
Chloroform	48			ug/kg	50.0		95.8	70-130	4.24	20
Chloromethane	44			ug/kg	50.0		88.4	60-140	6.57	30
4-Chlorotoluene	50			ug/kg	50.0		100	70-130	6.75	20
2-Chlorotoluene	50			ug/kg	50.0		100	70-130	6.75	20
1,2-Dibromo-3-chloropropane (DBCP)	40			ug/kg	50.0		81.0	70-130	1.12	20
Dibromochloromethane	58			ug/kg	50.0		117	70-130	6.18	20
1,2-Dibromoethane (EDB)	56			ug/kg	50.0		111	70-130	3.83	20
Dibromomethane	49			ug/kg	50.0		97.6	60-140	3.86	30
1,2-Dichlorobenzene	54			ug/kg	50.0		108	70-130	8.08	20
1,3-Dichlorobenzene	56			ug/kg	50.0		111	70-130	1.34	20
1,4-Dichlorobenzene	55			ug/kg	50.0		109	70-130	8.26	20
1,1-Dichloroethane	45			ug/kg	50.0		90.0	70-130	6.75	20
1,2-Dichloroethane	40			ug/kg	50.0		80.2	70-130	3.31	20
trans-1,2-Dichloroethene	46			ug/kg	50.0		92.5	70-130	9.18	20
cis-1,2-Dichloroethene	51			ug/kg	50.0		102	70-130	5.79	20
1,1-Dichloroethene	44			ug/kg	50.0		88.9	70-130	6.60	20
1,2-Dichloropropane	44			ug/kg	50.0		88.4	70-130	9.08	20
2,2-Dichloropropane	44			ug/kg	50.0		87.5	70-130	7.64	20
cis-1,3-Dichloropropene	48			ug/kg	50.0		95.1	70-130	7.90	20
trans-1,3-Dichloropropene				ug/kg						
	48				50.0		96.3	70-130	7.41	20
1,1-Dichloropropene	56			ug/kg	50.0		112	70-130	3.36	20
Diethyl ether	48			ug/kg	50.0		95.5	60-140	7.59	30
1,4-Dioxane	214			ug/kg	250		85.5	0-200	32.5	50
Ethylbenzene	48			ug/kg	50.0		96.2	70-130	7.62	20
Hexachlorobutadiene	56			ug/kg	50.0		113	70-130	2.10	20
2-Hexanone	54			ug/kg	50.0		107	70-130	1.31	20
Isopropylbenzene	53			ug/kg	50.0		107	70-130	7.97	20
p-Isopropyltoluene	57			ug/kg	50.0		115	70-130	7.41	20
Methylene Chloride	59			ug/kg	50.0		118	60-140	5.15	30
4-Methyl-2-pentanone	39			ug/kg	50.0		78.6	70-130	0.483	20
Naphthalene	53			ug/kg	50.0		106	70-130	4.43	20
n-Propylbenzene	52			ug/kg	50.0		105	70-130	6.78	20
Styrene	52			ug/kg	50.0		104	70-130	7.43	20
1,1,1,2-Tetrachloroethane	51			ug/kg	50.0		101	70-130	8.09	20
Tetrachloroethene	57			ug/kg	50.0		113	70-130	2.93	20
Tetrahydrofuran	44			ug/kg	50.0		88.8	50-150	2.56	40
Toluene	55			ug/kg	50.0		110	70-130	9.06	20
1,2,4-Trichlorobenzene	60			ug/kg	50.0		119	70-130	0.385	20
1,2,3-Trichlorobenzene	58			ug/kg	50.0		116	70-130	1.67	20
1,1,2-Trichloroethane	50			ug/kg	50.0		99.2	70-130	4.02	60 of

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2J1299 - EPA 5035 (C	Continued)									
LCS Dup (B2J1299-BSD1)					Prepared 8	& Analyzed: 10	0/25/22			
1,1,1-Trichloroethane	47			ug/kg	50.0		94.2	70-130	8.02	20
Trichloroethene	52			ug/kg	50.0		104	70-130	8.36	20
1,2,3-Trichloropropane	43			ug/kg	50.0		85.0	70-130	1.71	20
1,3,5-Trimethylbenzene	53			ug/kg	50.0		106	70-130	7.27	20
1,2,4-Trimethylbenzene	54			ug/kg	50.0		107	70-130	7.44	20
Vinyl Chloride	42			ug/kg	50.0		84.2	60-140	8.85	30
o-Xylene	52			ug/kg	50.0		104	70-130	7.93	20
m&p-Xylene	103			ug/kg	100		103	70-130	6.99	20
1,1,2,2-Tetrachloroethane	47			ug/kg	50.0		93.5	70-130	3.13	20
tert-Amyl methyl ether	40			ug/kg	50.0		81.0	70-130	3.87	20
1,3-Dichloropropane	48			ug/kg	50.0		95.6	70-130	7.21	20
Ethyl tert-butyl ether	40			ug/kg	50.0		80.1	70-130	6.71	20
Trichlorofluoromethane	43			ug/kg	50.0		85.7	70-130	5.91	20
Dichlorodifluoromethane	48			ug/kg	50.0		97.0	60-140	8.36	30
Surrogate: 4-Bromofluorobenzene			46.6	ug/kg	50.0		93.3	70-130		
Surrogate: 1,2-Dichloroethane-d4			49.3	ug/kg	50.0		98.6	70-130		
Surrogate: Toluene-d8			51.0	ug/kg	50.0		102	70-130		

Batch: B2J1325 - EPA 5035

Dutti	<i></i>		. 5055
Blank (I	B2J1325-BLK	(1)	

- 1	Diamit (2232323 22112)			
١	Acetone	ND	5	ug/kg
١	Benzene	ND	5	ug/kg
١	Bromobenzene	ND	5	ug/kg
١	Bromochloromethane	ND	5	ug/kg
١	Bromodichloromethane	ND	5	ug/kg
١	Bromoform	ND	5	ug/kg
١	Bromomethane	ND	5	ug/kg
١	2-Butanone	ND	5	ug/kg
١	tert-Butyl alcohol	ND	5	ug/kg
١	sec-Butylbenzene	ND	5	ug/kg
١	n-Butylbenzene	ND	5	ug/kg
١	tert-Butylbenzene	ND	5	ug/kg
١	Methyl t-butyl ether (MTBE)	ND	5	ug/kg
١	Carbon Disulfide	ND	5	ug/kg
١	Carbon Tetrachloride	ND	5	ug/kg
١	Chlorobenzene	ND	5	ug/kg
١	Chloroethane	ND	5	ug/kg
١	Chloroform	ND	5	ug/kg
١	Chloromethane	ND	5	ug/kg
١	4-Chlorotoluene	ND	5	ug/kg
١	2-Chlorotoluene	ND	5	ug/kg
١	1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg
١	Dibromochloromethane	ND	5	ug/kg
١	1,2-Dibromoethane (EDB)	ND	5	ug/kg
١	Dibromomethane	ND	5	ug/kg
١	1,2-Dichlorobenzene	ND	5	ug/kg
١	1,3-Dichlorobenzene	ND	5	ug/kg
١	1,4-Dichlorobenzene	ND	5	ug/kg
١	1,1-Dichloroethane	ND	5	ug/kg
١	1,2-Dichloroethane	ND	5	ug/kg
١	trans-1,2-Dichloroethene	ND	5	ug/kg
١	cis-1,2-Dichloroethene	ND	5	ug/kg
	1,1-Dichloroethene	ND	5	ug/kg
	1,2-Dichloropropane	ND	5	ug/kg
	2,2-Dichloropropane	ND	5	ug/kg
	cis-1,3-Dichloropropene	ND	5	ug/kg
	trans-1,3-Dichloropropene	ND	5	ug/kg

Prepared & Analyzed: 10/26/22

Page 61 of 70

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Analyte	Result	Quai	Lillic	Offics	Level	Result	70KLC	Lillics	KFD	LIIII
Batch: B2J1325 - EPA 5035 (C	Continued)									
Blank (B2J1325-BLK1)					Prepared 8	& Analyzed: 1	0/26/22			
1,1-Dichloropropene	ND		5	ug/kg						
1,3-Dichloropropene (cis + trans)	ND		5	ug/kg						
Diethyl ether	ND		5	ug/kg						
1,4-Dioxane	ND		100	ug/kg						
Ethylbenzene	ND		5	ug/kg						
Hexachlorobutadiene	ND		5	ug/kg						
2-Hexanone	ND		5	ug/kg						
Isopropylbenzene	ND		5	ug/kg						
p-Isopropyltoluene	ND		5	ug/kg						
Methylene Chloride	ND		7	ug/kg						
4-Methyl-2-pentanone	ND		5	ug/kg						
Naphthalene	ND		5	ug/kg						
n-Propylbenzene	ND		5	ug/kg						
Styrene	ND		5	ug/kg						
1,1,1,2-Tetrachloroethane	ND		5	ug/kg						
Tetrachloroethene	ND		5	ug/kg						
Tetrahydrofuran	ND		5	ug/kg						
Toluene	ND		5	ug/kg						
1,2,4-Trichlorobenzene	ND		5	ug/kg						
1,2,3-Trichlorobenzene	ND		5	ug/kg						
1,1,2-Trichloroethane	ND		5	ug/kg						
1,1,1-Trichloroethane	ND		5	ug/kg						
Trichloroethene	ND		5	ug/kg						
1,2,3-Trichloropropane	ND		5	ug/kg						
1,3,5-Trimethylbenzene	ND		5	ug/kg						
1,2,4-Trimethylbenzene	ND		5	ug/kg						
Vinyl Chloride	ND		5	ug/kg						
o-Xylene	ND		5	ug/kg						
m&p-Xylene	ND		10	ug/kg						
Total xylenes	ND		5	ug/kg						
1,1,2,2-Tetrachloroethane	ND		5	ug/kg						
tert-Amyl methyl ether	ND		5	ug/kg						
1,3-Dichloropropane	ND		5	ug/kg						
Ethyl tert-butyl ether	ND ND		5	ug/kg						
Diisopropyl ether	ND ND		5	ug/kg						
Trichlorofluoromethane	ND ND		5	ug/kg ug/kg						
Dichlorodifluoromethane	ND ND		5	ug/kg ug/kg						
	ND									
Surrogate: 4-Bromofluorobenzene			45.3	ug/kg	50.0		90.6	70-130		
Surrogate: 1,2-Dichloroethane-d4			47.4	ug/kg	50.0		94.7	70-130		
Surrogate: Toluene-d8			47.2	ug/kg	50.0		94.5	70-130		

			Reporting		Spike	Source		%REC		RPI
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Lim
Batch: B2J1325 - EPA 5035 (Co	ontinued)									
LCS (B2J1325-BS1)	-				Prepared 8	& Analyzed: 1	0/26/22			
Acetone	43			ug/kg	50.0	•	86.9	60-140		
Benzene	55			ug/kg	50.0		110	70-130		
Bromobenzene	60			ug/kg	50.0		119	70-130		
Bromochloromethane	55			ug/kg	50.0		109	70-130		
Bromodichloromethane	52			ug/kg	50.0		105	70-130		
Bromoform	54			ug/kg	50.0		108	70-130		
Bromomethane	55			ug/kg	50.0		111	60-140		
2-Butanone	50			ug/kg	50.0		99.3	60-140		
tert-Butyl alcohol	50			ug/kg	50.0		99.1	70-130		
sec-Butylbenzene	57			ug/kg	50.0		113	70-130		
n-Butylbenzene	60			ug/kg	50.0		120	70-130		
tert-Butylbenzene	59			ug/kg	50.0		119	70-130		
Methyl t-butyl ether (MTBE)	49			ug/kg	50.0		97.1	70-130		
Carbon Disulfide	60			ug/kg	50.0		119	50-150		
Carbon Tetrachloride	60			ug/kg	50.0		119	70-130		
Chlorobenzene	58			ug/kg	50.0		116	70-130		
Chloroethane	58			ug/kg	50.0		116	60-140		
Chloroform	51			ug/kg	50.0		103	70-130		
Chloromethane	57			ug/kg	50.0		114	60-140		
4-Chlorotoluene	52			ug/kg	50.0		105	70-130		
2-Chlorotoluene	53			ug/kg	50.0		106	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	47			ug/kg	50.0		93.2	70-130		
Dibromochloromethane	48			ug/kg	50.0		96.8	70-130		
1,2-Dibromoethane (EDB)	49			ug/kg	50.0		98.3	70-130		
Dibromomethane	50			ug/kg	50.0		99.9	60-140		
1,2-Dichlorobenzene	59			ug/kg	50.0		118	70-130		
1,3-Dichlorobenzene	57			ug/kg	50.0		114	70-130		
1,4-Dichlorobenzene	53			ug/kg	50.0		106	70-130		
1,1-Dichloroethane	53			ug/kg	50.0		107	70-130		
1,2-Dichloroethane	47			ug/kg	50.0		94.1	70-130		
trans-1,2-Dichloroethene	59			ug/kg	50.0		118	70-130		
cis-1,2-Dichloroethene	56			ug/kg	50.0		112	70-130		
1,1-Dichloroethene	60			ug/kg	50.0		119	70-130		
1,2-Dichloropropane	53			ug/kg	50.0		106	70-130		
2,2-Dichloropropane	58			ug/kg	50.0		116	70-130		
cis-1,3-Dichloropropene	53			ug/kg	50.0		106	70-130		
trans-1,3-Dichloropropene	47			ug/kg	50.0		94.7	70-130		
1,1-Dichloropropene	57			ug/kg	50.0		113	70-130		
Diethyl ether	50			ug/kg	50.0		101	60-140		
1,4-Dioxane	211			ug/kg	250		84.3	0-200		
Ethylbenzene	56			ug/kg	50.0		113	70-130		
Hexachlorobutadiene	55			ug/kg	50.0		110	70-130		
2-Hexanone	50			ug/kg	50.0		99.1	70-130		
Isopropylbenzene	58			ug/kg	50.0		117	70-130		
p-Isopropyltoluene	56			ug/kg	50.0		111	70-130		
Methylene Chloride	57			ug/kg	50.0		113	60-140		
4-Methyl-2-pentanone	44			ug/kg	50.0		87.3	70-130		
Naphthalene	46			ug/kg	50.0		92.7	70-130		
n-Propylbenzene	58			ug/kg	50.0		116	70-130		
Styrene	58			ug/kg	50.0		116	70-130		
1,1,1,2-Tetrachloroethane	58			ug/kg	50.0		117	70-130		
Tetrachloroethene	59			ug/kg	50.0		118	70-130		
Tetrahydrofuran	44			ug/kg	50.0		88.8	50-150		
Toluene	55			ug/kg	50.0		110	70-130		
1,2,4-Trichlorobenzene	60			ug/kg	50.0		119	70-130		
1,2,3-Trichlorobenzene	50			ug/kg	50.0		99.2	70-130		
1,1,2-Trichloroethane	47			ug/kg	50.0		94.9	70-130		

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
·		Quai	LIIIIL	Units	Levei	Result	%REC	LIMIUS	RPD	LIMIL
Batch: B2J1325 - EPA 5035 (Co	ontinued)				5 1		0/25/22			
LCS (B2J1325-BS1)				,	•	& Analyzed: 1				
1,1,1-Trichloroethane	57			ug/kg	50.0		115	70-130		
Trichloroethene	57			ug/kg	50.0		114	70-130		
1,2,3-Trichloropropane	50			ug/kg	50.0		100	70-130		
1,3,5-Trimethylbenzene	55			ug/kg	50.0		111	70-130		
1,2,4-Trimethylbenzene	55			ug/kg	50.0		110	70-130		
Vinyl Chloride	56			ug/kg	50.0		111	60-140		
o-Xylene	52			ug/kg	50.0		105	70-130		
m&p-Xylene	118			ug/kg	100		118	70-130		
1,1,2,2-Tetrachloroethane	54			ug/kg	50.0		108	70-130		
tert-Amyl methyl ether	53			ug/kg	50.0		106	70-130		
1,3-Dichloropropane	48			ug/kg	50.0		96.4	70-130		
Ethyl tert-butyl ether	53			ug/kg	50.0		107	70-130		
Trichlorofluoromethane	59			ug/kg	50.0		118	70-130		
Dichlorodifluoromethane	54			ug/kg	50.0		108	60-140		
Surrogate: 4-Bromofluorobenzene			46.3	ug/kg	50.0		92.6	70-130		
Surrogate: 1,2-Dichloroethane-d4			45.0	ug/kg	50.0		90.0	70-130		
Surrogate: Toluene-d8			45.8	ug/kg	50.0		91.5	70-130		
LCS Dup (B2J1325-BSD1)					Prepared 8	& Analyzed: 1	0/26/22			
Acetone	44			ug/kg	50.0		88.8	60-140	2.23	30
Benzene	53			ug/kg	50.0		105	70-130	4.14	20
Bromobenzene	59			ug/kg	50.0		119	70-130	0.354	20
Bromochloromethane	50			ug/kg	50.0		101	70-130	7.95	20
Bromodichloromethane	47			ug/kg	50.0		94.7	70-130	10.0	20
Bromoform	48			ug/kg	50.0		95.1	70-130	12.8	20
Bromomethane	51			ug/kg	50.0		103	60-140	7.58	30
2-Butanone	41			ug/kg	50.0		83.0	60-140	17.9	30
tert-Butyl alcohol	54			ug/kg	50.0		108	70-130	8.44	20
sec-Butylbenzene	53			ug/kg	50.0		106	70-130	6.84	20
n-Butylbenzene	55			ug/kg	50.0		111	70-130	7.80	20
tert-Butylbenzene	54			ug/kg	50.0		109	70-130	8.79	20
Methyl t-butyl ether (MTBE)	44			ug/kg	50.0		87.5	70-130	10.4	20
Carbon Disulfide	57			ug/kg	50.0		113	50-150	5.42	40
Carbon Tetrachloride	60			ug/kg	50.0		119	70-130	0.218	20
Chlorobenzene	57			ug/kg	50.0		114	70-130	1.62	20
Chloroethane	56			ug/kg	50.0		113	60-140	2.40	30
Chloroform	52			ug/kg	50.0		104	70-130	1.66	20
Chloromethane	55			ug/kg	50.0		109	60-140	4.08	30
4-Chlorotoluene	51			ug/kg	50.0		102	70-130	2.81	20
2-Chlorotoluene	55			ug/kg	50.0		109	70-130	3.38	20
1,2-Dibromo-3-chloropropane (DBCP)	40			ug/kg	50.0		80.8	70-130	14.2	20
Dibromochloromethane	44			ug/kg	50.0		87.9	70-130	9.64	20
1,2-Dibromoethane (EDB)	43			ug/kg	50.0		86.1	70-130	13.1	20
Dibromomethane	45			ug/kg	50.0		90.0	60-140	10.5	30
1,2-Dichlorobenzene	54			ug/kg	50.0		107	70-130	9.82	20
1,3-Dichlorobenzene	58			ug/kg	50.0		115	70-130	0.592	20
1,4-Dichlorobenzene	55			ug/kg	50.0		110	70-130	3.60	20
1,1-Dichloroethane	51			ug/kg	50.0		103	70-130	4.08	20
1,2-Dichloroethane	42			ug/kg ug/kg	50.0		84.3	70-130	11.0	20
trans-1,2-Dichloroethene	57			ug/kg ug/kg	50.0		113	70-130	3.62	20
cis-1,2-Dichloroethene	54			ug/kg ug/kg	50.0		107	70-130	4.51	20
1,1-Dichloroethene	60			ug/kg ug/kg	50.0		119	70-130 70-130	0.0167	20
	51			ug/kg ug/kg	50.0		101	70-130 70-130	4.87	
1,2-Dichloropropane	51			ug/kg ug/kg	50.0					20
2,2-Dichloropropane cis-1,3-Dichloropropene				ug/kg ug/kg			112	70-130 70-130	2.90	20
	47 43			ug/kg ug/kg	50.0		94.4	70-130 70-130	11.4	20
trans-1,3-Dichloropropene	43				50.0		85.3	70-130	10.5	20
1,1-Dichloropropene	57			ug/kg	50.0		115	70-130	1.17 Page	20

Page 64 of 70

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2J1325 - EPA 5035 (C	Continued)									
LCS Dup (B2J1325-BSD1)					Prepared 8	& Analyzed: 1	0/26/22			
Diethyl ether	46			ug/kg	50.0		91.7	60-140	9.54	30
1,4-Dioxane	172			ug/kg	250		68.9	0-200	20.1	50
Ethylbenzene	56			ug/kg	50.0		111	70-130	1.35	20
Hexachlorobutadiene	54			ug/kg	50.0		109	70-130	0.971	20
2-Hexanone	42			ug/kg	50.0		83.3	70-130	17.3	20
Isopropylbenzene	58			ug/kg	50.0		117	70-130	0.154	20
p-Isopropyltoluene	56			ug/kg	50.0		112	70-130	0.573	20
Methylene Chloride	53			ug/kg	50.0		106	60-140	7.25	30
4-Methyl-2-pentanone	43			ug/kg	50.0		85.8	70-130	1.73	20
Naphthalene	45			ug/kg	50.0		90.5	70-130	2.40	20
n-Propylbenzene	58			ug/kg	50.0		116	70-130	0.225	20
Styrene	60			ug/kg	50.0		120	70-130	3.22	20
1,1,1,2-Tetrachloroethane	59			ug/kg	50.0		118	70-130	1.33	20
Tetrachloroethene	59			ug/kg	50.0		117	70-130	0.816	20
Tetrahydrofuran	42			ug/kg	50.0		83.4	50-150	6.27	40
Toluene	53			ug/kg	50.0		106	70-130	3.58	20
1,2,4-Trichlorobenzene	57			ug/kg	50.0		113	70-130	5.19	20
1,2,3-Trichlorobenzene	48			ug/kg	50.0		95.6	70-130	3.69	20
1,1,2-Trichloroethane	42			ug/kg	50.0		84.2	70-130	11.9	20
1,1,1-Trichloroethane	57			ug/kg	50.0		114	70-130	0.981	20
Trichloroethene	57			ug/kg	50.0		114	70-130	0.228	20
1,2,3-Trichloropropane	43			ug/kg	50.0		86.6	70-130	14.4	20
1,3,5-Trimethylbenzene	55			ug/kg	50.0		110	70-130	0.217	20
1,2,4-Trimethylbenzene	59			ug/kg	50.0		119	70-130	7.59	20
Vinyl Chloride	51			ug/kg	50.0		102	60-140	8.34	30
o-Xylene	59			ug/kg	50.0		118	70-130	11.7	20
m&p-Xylene	115			ug/kg	100		115	70-130	2.63	20
1,1,2,2-Tetrachloroethane	46			ug/kg	50.0		91.5	70-130	16.2	20
tert-Amyl methyl ether	46			ug/kg	50.0		92.6	70-130	13.1	20
1,3-Dichloropropane	44			ug/kg	50.0		87.6	70-130	9.58	20
Ethyl tert-butyl ether	48			ug/kg	50.0		96.5	70-130	9.87	20
Trichlorofluoromethane	52			ug/kg	50.0		103	70-130	13.0	20
Dichlorodifluoromethane	55			ug/kg	50.0		110	60-140	1.54	30
Surrogate: 4-Bromofluorobenzene			45.6	ug/kg	50.0		91.2	70-130		
Surrogate: 1,2-Dichloroethane-d4			45.1	ug/kg	50.0		90.1	70-130		
Surrogate: Toluene-d8			47.5	ug/kg	50.0		94.9	70-130		

Semivolatile organic compounds

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
Batch: B2K0113 - EPA 3546										
Blank (B2K0113-BLK1)				Dr	renared: 11/0	2/22 Analyze	d· 11/04/22			
2-Methylnaphthalene	ND		130	ug/kg	cparcu. 11/0	Z/ZZ AllalyZC	.u. 11/04/22			
Acenaphthene	ND		130	ug/kg						
Acenaphthylene	ND		130	ug/kg						
Anthracene	ND		130	ug/kg						
Benzo(a)anthracene	ND ND		130	ug/kg						
Benzo(a)pyrene	ND		130	ug/kg						
Benzo(b)fluoranthene	ND		130	ug/kg						
Benzo(g,h,i)perylene	ND		130	ug/kg						
Benzo(k)fluoranthene	ND		130	ug/kg						
Chrysene	ND		130	ug/kg						
Dibenz(a,h)anthracene	ND ND		130	ug/kg						
Dibenzofuran	ND ND		130	ug/kg ug/kg						
Fluoranthene	ND ND		130	ug/kg						
Fluorene	ND ND		130	ug/kg ug/kg						
Indeno(1,2,3-cd)pyrene	ND		130	ug/kg						
Naphthalene	ND		130	ug/kg						
Phenanthrene	ND		130	ug/kg						
Pyrene	ND		130	ug/kg						
Surrogate: Nitrobenzene-d5			2290	ug/kg	3330		68.6	<i>30-126</i>		
Surrogate: p-Terphenyl-d14			2780	ug/kg	3330		83.3	<i>47-130</i>		
Surrogate: 2-Fluorobiphenyl			2470	ug/kg	3330		74.1	<i>34-130</i>		
LCS (B2K0113-BS1)				Pr	repared: 11/0	2/22 Analyze	ed: 11/04/22			
2-Methylnaphthalene	2690		130	ug/kg	3330		80.7	40-140		
Acenaphthene	2910		130	ug/kg	3330		87.2	40-140		
Acenaphthylene	3080		130	ug/kg	3330		92.4	40-140		
Anthracene	3190		130	ug/kg	3330		95.6	40-140		
Benzo(a)anthracene	3180		130	ug/kg	3330		95.3	40-140		
Benzo(a)pyrene	3360		130	ug/kg	3330		101	40-140		
Benzo(b)fluoranthene	3490		130	ug/kg	3330		105	40-140		
Benzo(g,h,i)perylene	3090		130	ug/kg	3330		92.6	40-140		
Benzo(k)fluoranthene	3540		130	ug/kg	3330		106	40-140		
Chrysene	3200		130	ug/kg	3330		96.0	40-140		
Dibenz(a,h)anthracene	3170		130	ug/kg	3330		95.0	40-140		
Dibenzofuran	3140		130	ug/kg	3330		94.2	40-140		
Fluoranthene	3230		130	ug/kg	3330		97.0	40-140		
Fluorene	2880		130	ug/kg	3330		86.4	40-140		
Indeno(1,2,3-cd)pyrene	2990		130	ug/kg	3330		89.7	40-140		
Naphthalene	2610		130	ug/kg	3330		78.3	40-140		
Phenanthrene	3200		130	ug/kg	3330		96.0	40-140		
Pyrene	3390		130	ug/kg	3330		102	40-140		
Surrogate: Nitrobenzene-d5			2380	ug/kg	3330		71.5	30-126 47 120		
Surrogate: p-Terphenyl-d14 Surrogate: 2-Fluorobiphenyl			2880 2620	ug/kg ug/kg	3330 3330		86.5 78.7	47-130 34-130		

Semivolatile organic compounds (Continued)

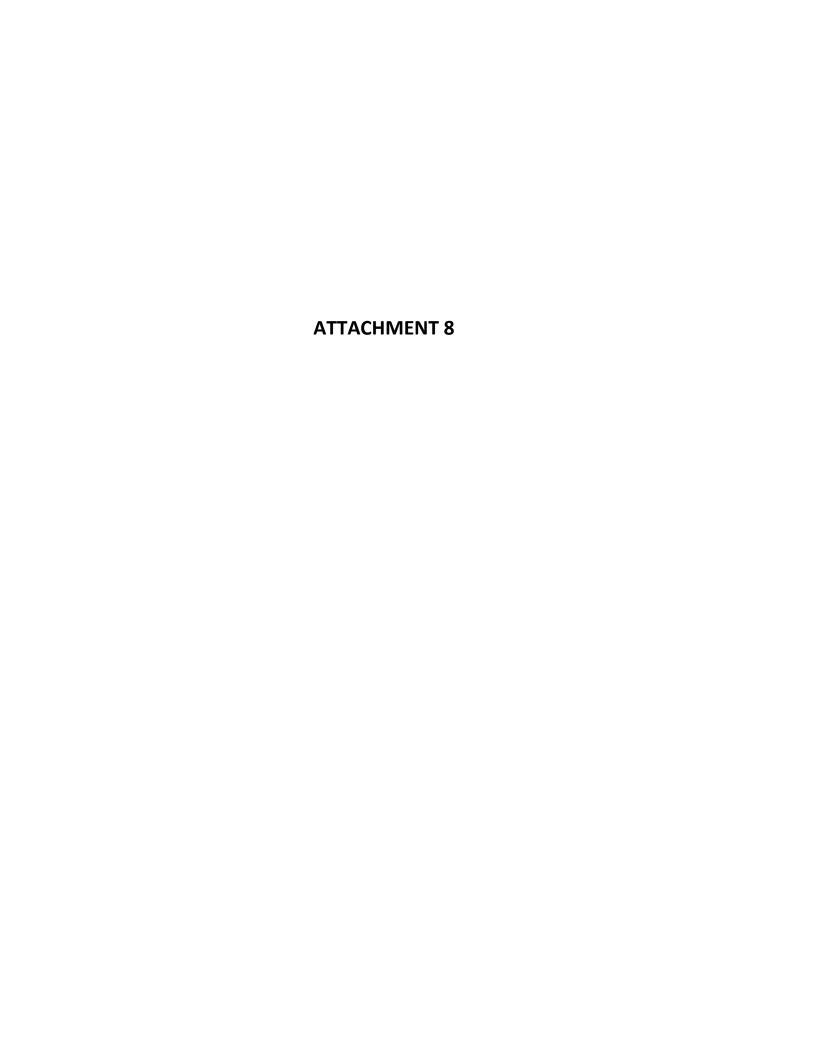
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K0113 - EPA 3546 ((Continued)									
LCS Dup (B2K0113-BSD1)				Pr	epared: 11/0	2/22 Analyze	d: 11/04/22			
2-Methylnaphthalene	2520		130	ug/kg	3330		75.5	40-140	6.63	30
Acenaphthene	2970		130	ug/kg	3330		89.0	40-140	2.02	30
Acenaphthylene	3110		130	ug/kg	3330		93.2	40-140	0.862	30
Anthracene	3290		130	ug/kg	3330		98.8	40-140	3.35	30
Benzo(a)anthracene	3340		130	ug/kg	3330		100	40-140	5.15	30
Benzo(a)pyrene	3660		130	ug/kg	3330		110	40-140	8.49	30
Benzo(b)fluoranthene	3840		130	ug/kg	3330		115	40-140	9.49	30
Benzo(g,h,i)perylene	3300		130	ug/kg	3330		99.0	40-140	6.74	30
Benzo(k)fluoranthene	3750		130	ug/kg	3330		113	40-140	5.74	30
Chrysene	3310		130	ug/kg	3330		99.3	40-140	3.34	30
Dibenz(a,h)anthracene	3440		130	ug/kg	3330		103	40-140	8.39	30
Dibenzofuran	3270		130	ug/kg	3330		98.0	40-140	3.89	30
Fluoranthene	3430		130	ug/kg	3330		103	40-140	5.88	30
Fluorene	3080		130	ug/kg	3330		92.3	40-140	6.65	30
Indeno(1,2,3-cd)pyrene	3320		130	ug/kg	3330		99.7	40-140	10.6	30
Naphthalene	2260		130	ug/kg	3330		67.7	40-140	14.5	30
Phenanthrene	3320		130	ug/kg	3330		99.7	40-140	3.82	30
Pyrene	3490		130	ug/kg	3330		105	40-140	2.91	30
Surrogate: Nitrobenzene-d5			1950	ug/kg	3330		58.4	30-126		
Surrogate: p-Terphenyl-d14			2960	ug/kg	3330		88.7	47-130		
Surrogate: 2-Fluorobiphenyl			2530	ug/kg	3330		75.9	34-130		

				Control						
Total Petroleum Hydrocarbons										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2J1429 - EPA 3546 Blank (B2J1429-BLK1)				Pr	epared: 10/2	28/22 Analyze	ed: 10/31/22			
Total Petroleum Hydrocarbons	ND		27	mg/kg						
Surrogate: Chlorooctadecane			4.76	mg/kg	8.33		<i>57.2</i>	50-130		
LCS (B2J1429-BS1)				Pr	epared: 10/2	28/22 Analyze	ed: 10/31/22			
Total Petroleum Hydrocarbons	336		27	mg/kg	667		50.4	44.7-125		
Surrogate: Chlorooctadecane			5.69	mg/kg	8.33		68.3	50-130		
LCS Dup (B2J1429-BSD1)				Pr	epared: 10/2	28/22 Analyze	ed: 10/31/22			
Total Petroleum Hydrocarbons	347		27	mg/kg	667		52.1	44.7-125	3.37	200
Surrogate: Chlorooctadecane			6.87	mg/kg	8.33		82.5	50-130		

Notes and Definitions

<u>Item</u>	<u>Definition</u>
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

NEW ENGLAND TESTING LABORATORY, INC.


59 Greenhill Street West Warwick, RI 02893 1-888-863-8522

CHAIN OF CUSTODY RECORD

PROJ. NO		PRO.IF	CT N	AME/LOCATION					Γ			, , , , , ,	, , , , , , , , , , , , , , , , , , , 	
543				6 and 770 Lonsdale	Avenue				P B		//			
CLIENT	SA	E				A		NO.	RESER	F575*	' / /	///		
REPORT	TO: 5 0	ge				A Q U E O U S	OTHER	OF	A		/ /			
INVOICE	10:	192		<u> </u>		0 1	. E	CONTAINERS	l į	/ //-	> /~/	(X)	/ / RE	EMARKS
DATE	TIME	C O M P	G R A B	SAMPLE I.D.		S			E	10/0/	~ {P	¥/_		
10/2/2	0800		<u>/</u>	SE-101 (m) 0-2 SE-102 (m) tout/3 SE-103 2-3	1			2	• •	11	//			
	0815		\perp	SE-102 (mw) touth	10-13			5			~			
	0820		\perp	SE-103 2-3				S		//	VV			
	0830		_	52-103 10-11				2		1/	//			
	0845			SE-104 (mr) 0-2				5.	J.	1	vV			
	0900			SE-104 (nr) 10-1	2			5		1	vi			
	0915			SE-105 (nn) 0-1				5		VV	0	1		
	0930			SE-105 (mu) 10-1	4			5		~ X	V		Do not rur	n PAH
	1000			SE-106 (mv) 0-2				5		VV	10	1		
	1015			St-106 (mi) 10-1	1			3	•	/	1 V			
V	1100		1	SE-107 15-1	7	1	4	5 •••	• •	1	V	1		
Sampled	by: (Speratu	re)		Date/Time Rec	ceived by: (Signature)		t	OAI Pate/Time	5 Lab	oratory Rem np. received: oled □	arks: 5	<u>-</u>	Special Instructions: List Specific Detection Limit Requirements:	_
Relinquist	ned by: (Sig	nature)		Date/Time Ret	perved by: (Signature)		_	Date/Time					RI RDE	
•	\$\ten			16/21 1520	V		Ì						PI GAL	- Jan
Relinquis	hed by: (Sig	nature)		Date/Time Rec	ceived for Laboratory by: (Signature)		Date/Time					'	()"*\
					m	4	ı	0/21/22	520				Turnaround (Business E	c In Days) Standard

^{**}Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 2K01008 Client Project: S4350 - 756 & 770 Lonsdale Ave

Report Date: 08-November-2022

Prepared for:

Cathy Racine SAGE Environmental 172 Armistice Blvd Pawtucket, RI 02860

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

NETLAB Case Number: 2K01008

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 11/01/22. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 2K01008. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
2K01008-01	SE-101 (MW)	Water	10/28/2022	11/01/2022
2K01008-02	SE-102 (MW)	Water	10/28/2022	11/01/2022
2K01008-03	SE-104 (MW)	Water	10/28/2022	11/01/2022
2K01008-04	SE-105 (MW)	Water	10/28/2022	11/01/2022
2K01008-05	SE-106 (MW)	Water	10/28/2022	11/01/2022

NETLAB Case Number: 2K01008

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

SE-101 (MW) (Lab Number: 2K01008-01)

Analysis Method
Volatile Organic Compounds EPA 8260C

SE-102 (MW) (Lab Number: 2K01008-02)

Analysis Method

Volatile Organic Compounds EPA 8260C

SE-104 (MW) (Lab Number: 2K01008-03)

Analysis Method
Volatile Organic Compounds EPA 8260C

SE-105 (MW) (Lab Number: 2K01008-04)

AnalysisMethodVolatile Organic CompoundsEPA 8260C

SE-106 (MW) (Lab Number: 2K01008-05)

Analysis Method

Volatile Organic Compounds EPA 8260C

Method References

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

NETLAB Case Number: 2K01008

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: Volatile Organic Compounds

Sample: SE-101 (MW) Lab Number: 2K01008-01 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
acetone	ND	5	ug/l	11/07/22	11/07/22
Benzene	ND	1	ug/l	11/07/22	11/07/22
Bromobenzene	ND	1	ug/l	11/07/22	11/07/22
Bromochloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromodichloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromoform	ND	1	ug/l	11/07/22	11/07/22
Bromomethane	ND	1	ug/l	11/07/22	11/07/22
2-Butanone	ND	5	ug/l	11/07/22	11/07/22
tert-Butyl alcohol	ND	5	ug/l	11/07/22	11/07/22
ec-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
n-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
ert-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
Methyl t-butyl ether (MTBE)	ND	1	ug/l	11/07/22	11/07/22
Carbon Disulfide	ND	1	ug/l	11/07/22	11/07/22
Carbon Tetrachloride	ND	1	ug/l	11/07/22	11/07/22
Chlorobenzene	ND	1	ug/l	11/07/22	11/07/22
Chloroethane	ND	1	ug/l	11/07/22	11/07/22
Chloroform	ND	1	ug/l	11/07/22	11/07/22
hloromethane	ND	1	ug/l	11/07/22	11/07/22
-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
2-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	11/07/22	11/07/22
bibromochloromethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dibromoethane (EDB)	ND	1	ug/l	11/07/22	11/07/22
ibromomethane	ND	1	ug/l	11/07/22	11/07/22
2-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,3-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,4-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
rans-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
is-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
.,1-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
,,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
2,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
is-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
rans-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
,1-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
,3-Dichloropropene (cis + trans)	ND	2	ug/l	11/07/22	11/07/22
Diethyl ether	ND	5	ug/l	11/07/22	11/07/22
.4-Dioxane	ND	100	ug/l	11/07/22	11/07/22
hylbenzene	ND	1	ug/l	11/07/22	11/07/22
exachlorobutadiene	ND	1	ug/l	11/07/22	11/07/22
2-Hexanone	ND	5	ug/l	11/07/22	11/07/22
sopropylbenzene	ND ND	1	ug/l	11/07/22	11/07/22
p-Isopropyltoluene	ND	1	ug/l	11/07/22	11/07/22
lethylene Chloride	ND	2	ug/l	11/07/22	11/07/22
-Methyl-2-pentanone	ND	5	ug/l	11/07/22	11/07 P

Results: Volatile Organic Compounds (Continued)

Sample: SE-101 (MW) (Continued)

Lab Number: 2K01008-01 (Water)

		Reporting			
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	11/07/22	11/07/22
n-Propylbenzene	ND	1	ug/l	11/07/22	11/07/22
Styrene	ND	1	ug/l	11/07/22	11/07/22
1,1,1,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
Tetrachloroethene	30	1	ug/l	11/07/22	11/07/22
Tetrahydrofuran	ND	5	ug/l	11/07/22	11/07/22
Toluene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1,2-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,1,1-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
Trichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichloropropane	ND	1	ug/l	11/07/22	11/07/22
1,3,5-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
Vinyl Chloride	ND	1	ug/l	11/07/22	11/07/22
o-Xylene	ND	1	ug/l	11/07/22	11/07/22
m&p-Xylene	ND	2	ug/l	11/07/22	11/07/22
Total xylenes	ND	1	ug/l	11/07/22	11/07/22
1,1,2,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl methyl ether	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
Ethyl tert-butyl ether	ND	1	ug/l	11/07/22	11/07/22
Diisopropyl ether	ND	1	ug/l	11/07/22	11/07/22
Trichlorofluoromethane	ND	1	ug/l	11/07/22	11/07/22
Dichlorodifluoromethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl Alcohol	ND	5	ug/l	11/07/22	11/07/22
Surrogate(s)	Recovery%	Limit	rs		
4-Bromofluorobenzene	89.1%	70-13	80	11/07/22	11/07/22
1,2-Dichloroethane-d4	96.4%	<i>70-13</i>	80	11/07/22	11/07/22
Toluene-d8	90.0%	70-13	80	11/07/22	11/07/22

Results: Volatile Organic Compounds

Sample: SE-102 (MW) Lab Number: 2K01008-02 (Water)

Analyte	Result	Reporting Qual Limit	Units	Date Prepared	Date Analyzed
cetone	ND	5	ug/l	11/07/22	11/07/22
Benzene	ND	1	ug/l	11/07/22	11/07/22
Bromobenzene	ND	1	ug/l	11/07/22	11/07/22
Bromochloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromodichloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromoform	ND	1	ug/l	11/07/22	11/07/22
romomethane	ND	1	ug/l	11/07/22	11/07/22
!-Butanone	ND	5	ug/l	11/07/22	11/07/22
ert-Butyl alcohol	ND	5	ug/l	11/07/22	11/07/22
ec-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
ı-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
ert-Butylbenzene	ND ND	1	ug/l	11/07/22	11/07/22
ethyl t-butyl ether (MTBE)	ND ND	1	ug/l ug/l	11/07/22	11/07/22
arbon Disulfide arbon Tetrachloride	ND ND	1 1	ug/l	11/07/22	11/07/22
arbon Tetrachioride Chlorobenzene	ND ND	1	ug/l	11/07/22	11/07/22
inioropenzene ihloroethane	ND ND		ug/l	11/07/22	11/07/22
nioroetnane hloroform	ND ND	1	ug/l	11/07/22	11/07/22
		1	ug/l	11/07/22	11/07/22
hloromethane	ND	1	ug/l	11/07/22	11/07/22
Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
.2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	11/07/22	11/07/22
ibromochloromethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dibromoethane (EDB)	ND	1	ug/l	11/07/22	11/07/22
bibromomethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,3-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,4-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
.,1-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
rans-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
s-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
,1-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
s-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
rans-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
,1-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
.,3-Dichloropropene (cis + trans)	ND	2	ug/l	11/07/22	11/07/22
iethyl ether	ND	5	ug/l	11/07/22	11/07/22
,4-Dioxane	ND	100	ug/l	11/07/22	11/07/22
thylbenzene	ND	1	ug/l	11/07/22	11/07/22
exachlorobutadiene	ND	1	ug/l	11/07/22	11/07/22
-Hexanone	ND	5	ug/l	11/07/22	11/07/22
sopropylbenzene	ND	1	ug/l	11/07/22	11/07/22
-Isopropyltoluene	ND	1	ug/l	11/07/22	11/07/22
1ethylene Chloride	ND	2	ug/l	11/07/22	11/07/22
Methyl-2-pentanone	ND	5	ug/l	11/07/22	11/07 P

Results: Volatile Organic Compounds (Continued)

Sample: SE-102 (MW) (Continued)

Lab Number: 2K01008-02 (Water)

Analyte	Result	Reporting Qual Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	11/07/22	11/07/22
n-Propylbenzene	ND	1	ug/l	11/07/22	11/07/22
Styrene	ND	1	ug/l	11/07/22	11/07/22
1,1,1,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
Tetrachloroethene	ND	1	ug/l	11/07/22	11/07/22
Tetrahydrofuran	ND	5	ug/l	11/07/22	11/07/22
Toluene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1,2-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,1,1-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
Trichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichloropropane	ND	1	ug/l	11/07/22	11/07/22
1,3,5-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
Vinyl Chloride	ND	1	ug/l	11/07/22	11/07/22
o-Xylene	ND	1	ug/l	11/07/22	11/07/22
m&p-Xylene	ND	2	ug/l	11/07/22	11/07/22
Total xylenes	ND	1	ug/l	11/07/22	11/07/22
1,1,2,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl methyl ether	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
Ethyl tert-butyl ether	ND	1	ug/l	11/07/22	11/07/22
Diisopropyl ether	ND	1	ug/l	11/07/22	11/07/22
Trichlorofluoromethane	ND	1	ug/l	11/07/22	11/07/22
Dichlorodifluoromethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl Alcohol	ND	5	ug/l	11/07/22	11/07/22
Surrogate(s)	Recovery%	Limi	ts		
4-Bromofluorobenzene	90.4%	<i>70-1</i> 2	30	11/07/22	11/07/22
1,2-Dichloroethane-d4	112%	70-13	30	11/07/22	11/07/22
Toluene-d8	102%	70-13	30	11/07/22	11/07/22

Results: Volatile Organic Compounds

Sample: SE-104 (MW) Lab Number: 2K01008-03 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/l	11/07/22	11/07/22
Benzene	ND	1	ug/l	11/07/22	11/07/22
Bromobenzene	ND	1	ug/l	11/07/22	11/07/22
Bromochloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromodichloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromoform	ND	1	ug/l	11/07/22	11/07/22
Bromomethane	ND	1	ug/l	11/07/22	11/07/22
2-Butanone	ND	5	ug/l	11/07/22	11/07/22
ert-Butyl alcohol	ND	5	ug/l	11/07/22	11/07/22
sec-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
n-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
rert-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
Methyl t-butyl ether (MTBE)	ND	1	ug/l	11/07/22	11/07/22
Carbon Disulfide	ND	1	ug/l	11/07/22	11/07/22
Carbon Tetrachloride	ND	1	ug/l	11/07/22	11/07/22
Chlorobenzene	ND	1	ug/l	11/07/22	11/07/22
Chloroethane	ND	1	ug/l	11/07/22	11/07/22
Chloroform	ND	1	ug/l	11/07/22	11/07/22
Chloromethane	ND	1	ug/l	11/07/22	11/07/22
I-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
2-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
.2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	11/07/22	11/07/22
Dibromochloromethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dibromoethane (EDB)	ND	1	ug/l	11/07/22	11/07/22
ibromomethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,3-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,4-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,1-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
,,2-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
rans-1,2-Dichloroethene	3	1	ug/l	11/07/22	11/07/22
is-1,2-Dichloroethene	29	1	ug/l	11/07/22	11/07/22
,1-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
2,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
is-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
rans-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
,1-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
,3-Dichloropropene (cis + trans)	ND	2	ug/l	11/07/22	11/07/22
iethyl ether	ND	5	ug/l	11/07/22	11/07/22
,4-Dioxane	ND ND	100	ug/l ug/l	11/07/22	11/07/22
thylbenzene	ND ND				11/07/22
unyibenzene Iexachlorobutadiene	ND ND	1 1	ug/l ug/l	11/07/22 11/07/22	11/07/22
?-Hexanone	ND ND	5		11/07/22	11/07/22
sopropylbenzene	ND ND	1	ug/l ug/l	11/07/22	11/07/22
o-Isopropyltoluene	ND ND	1	ug/I ug/I	11/07/22	11/07/22
Methylene Chloride	ND ND	2	ug/l ug/l	11/07/22	11/07/22
4-Methyl-2-pentanone	ND ND	5	ug/l ug/l	11/07/22	11/07/22 11/07 Pa

Results: Volatile Organic Compounds (Continued)

Sample: SE-104 (MW) (Continued)

Lab Number: 2K01008-03 (Water)

Analyte	Result Qua	Reporting al Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	11/07/22	11/07/22
n-Propylbenzene	ND	1	ug/l	11/07/22	11/07/22
Styrene	ND	1	ug/l	11/07/22	11/07/22
1,1,1,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
Tetrachloroethene	ND	1	ug/l	11/07/22	11/07/22
Tetrahydrofuran	ND	5	ug/l	11/07/22	11/07/22
Toluene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1,2-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,1,1-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
Trichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichloropropane	ND	1	ug/l	11/07/22	11/07/22
1,3,5-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
Vinyl Chloride	ND	1	ug/l	11/07/22	11/07/22
o-Xylene	ND	1	ug/l	11/07/22	11/07/22
m&p-Xylene	ND	2	ug/l	11/07/22	11/07/22
Total xylenes	ND	1	ug/l	11/07/22	11/07/22
1,1,2,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl methyl ether	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
Ethyl tert-butyl ether	ND	1	ug/l	11/07/22	11/07/22
Diisopropyl ether	ND	1	ug/l	11/07/22	11/07/22
Trichlorofluoromethane	ND	1	ug/l	11/07/22	11/07/22
Dichlorodifluoromethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl Alcohol	ND	5	ug/l	11/07/22	11/07/22
Surrogate(s)	Recovery%	Limit	rs		
4-Bromofluorobenzene	92.6%	<i>70-13</i>	30	11/07/22	11/07/22
1,2-Dichloroethane-d4	109%	70-13	80	11/07/22	11/07/22
Toluene-d8	101%	70-13	30	11/07/22	11/07/22

Results: Volatile Organic Compounds

Sample: SE-105 (MW) Lab Number: 2K01008-04 (Water)

	.	Repor	_	B	
Analyte	Result	Qual Lim	it Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/l	11/07/22	11/07/22
Benzene	ND	1	ug/l	11/07/22	11/07/22
Bromobenzene	ND	1	ug/l	11/07/22	11/07/22
Bromochloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromodichloromethane	ND	1	ug/l	11/07/22	11/07/22
Bromoform	ND	1	ug/l	11/07/22	11/07/22
Bromomethane	ND	1	ug/l	11/07/22	11/07/22
2-Butanone	ND	5	ug/l	11/07/22	11/07/22
tert-Butyl alcohol	ND	5	ug/l	11/07/22	11/07/22
sec-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
n-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
tert-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22
Methyl t-butyl ether (MTBE)	ND	1	ug/l	11/07/22	11/07/22
Carbon Disulfide	ND	1	ug/l	11/07/22	11/07/22
Carbon Tetrachloride	ND	1	ug/l	11/07/22	11/07/22
Chlorobenzene	ND	1	ug/l	11/07/22	11/07/22
Chloroethane	ND	1	ug/l	11/07/22	11/07/22
Chloroform	ND	1	ug/l	11/07/22	11/07/22
Chloromethane	ND	1	ug/l	11/07/22	11/07/22
-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
2-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22
,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	11/07/22	11/07/22
Dibromochloromethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dibromoethane (EDB)	ND	1	ug/l	11/07/22	11/07/22
Dibromomethane	ND	1	ug/l	11/07/22	11/07/22
.,2-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,3-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
,4-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
,2-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22
rans-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
cis-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,1-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
2,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
is-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
rans-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
1,1-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22
.,3-Dichloropropene (cis + trans)	ND	2	ug/l	11/07/22	11/07/22
eiethyl ether	ND	5	ug/l	11/07/22	11/07/22
4-Dioxane	ND	100	ug/l	11/07/22	11/07/22
thylbenzene	ND	1	ug/l	11/07/22	11/07/22
exachlorobutadiene	ND	1	ug/l	11/07/22	11/07/22
2-Hexanone	ND	5	ug/l	11/07/22	11/07/22
Sopropylbenzene	ND	1	ug/l	11/07/22	11/07/22
p-Isopropyltoluene	ND	1	ug/l	11/07/22	11/07/22
Methylene Chloride	ND	2	ug/l	11/07/22	11/07/22
1-Methyl-2-pentanone	ND	5	ug/l	11/07/22	11/07 Pa

Results: Volatile Organic Compounds (Continued)

Sample: SE-105 (MW) (Continued)

Lab Number: 2K01008-04 (Water)

		Reporting			
Analyte	Result Qu	ıal Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	11/07/22	11/07/22
n-Propylbenzene	ND	1	ug/l	11/07/22	11/07/22
Styrene	ND	1	ug/l	11/07/22	11/07/22
1,1,1,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
Tetrachloroethene	ND	1	ug/l	11/07/22	11/07/22
Tetrahydrofuran	ND	5	ug/l	11/07/22	11/07/22
Toluene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1,2-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,1,1-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
Trichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichloropropane	ND	1	ug/l	11/07/22	11/07/22
1,3,5-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
Vinyl Chloride	ND	1	ug/l	11/07/22	11/07/22
o-Xylene	ND	1	ug/l	11/07/22	11/07/22
m&p-Xylene	ND	2	ug/l	11/07/22	11/07/22
Total xylenes	ND	1	ug/l	11/07/22	11/07/22
1,1,2,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl methyl ether	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
Ethyl tert-butyl ether	ND	1	ug/l	11/07/22	11/07/22
Diisopropyl ether	ND	1	ug/l	11/07/22	11/07/22
Trichlorofluoromethane	ND	1	ug/l	11/07/22	11/07/22
Dichlorodifluoromethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl Alcohol	ND	5	ug/l	11/07/22	11/07/22
Surrogate(s)	Recovery%	Limit	ts		
4-Bromofluorobenzene	95.2%	70-13	30	11/07/22	11/07/22
1,2-Dichloroethane-d4	102%	70-13	30	11/07/22	11/07/22
Toluene-d8	103%	<i>70-13</i>	30	11/07/22	11/07/22

Results: Volatile Organic Compounds

Sample: SE-106 (MW) Lab Number: 2K01008-05 (Water)

Reporting								
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed			
Acetone	ND	5	ug/l	11/07/22	11/07/22			
Benzene	ND	1	ug/l	11/07/22	11/07/22			
Bromobenzene	ND	1	ug/l	11/07/22	11/07/22			
Bromochloromethane	ND	1	ug/l	11/07/22	11/07/22			
Bromodichloromethane	ND	1	ug/l	11/07/22	11/07/22			
Bromoform	ND	1	ug/l	11/07/22	11/07/22			
Bromomethane	ND	1	ug/l	11/07/22	11/07/22			
2-Butanone	ND	5	ug/l	11/07/22	11/07/22			
tert-Butyl alcohol	ND	5	ug/l	11/07/22	11/07/22			
sec-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22			
n-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22			
tert-Butylbenzene	ND	1	ug/l	11/07/22	11/07/22			
Methyl t-butyl ether (MTBE)	ND	1	ug/l	11/07/22	11/07/22			
Carbon Disulfide	ND	1	ug/l	11/07/22	11/07/22			
Carbon Tetrachloride	ND	1	ug/l	11/07/22	11/07/22			
Chlorobenzene	ND	1	ug/l	11/07/22	11/07/22			
Chloroethane	ND	1	ug/l	11/07/22	11/07/22			
Chloroform	ND	1	ug/l	11/07/22	11/07/22			
Chloromethane	ND	1	ug/l	11/07/22	11/07/22			
4-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22			
2-Chlorotoluene	ND	1	ug/l	11/07/22	11/07/22			
1,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	11/07/22	11/07/22			
Dibromochloromethane	ND	1	ug/l	11/07/22	11/07/22			
1,2-Dibromoethane (EDB)	ND	1	ug/l	11/07/22	11/07/22			
Dibromomethane	ND	1	ug/l	11/07/22	11/07/22			
1,2-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22			
1,3-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22			
1,4-Dichlorobenzene	ND	1	ug/l	11/07/22	11/07/22			
1,1-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22			
1,2-Dichloroethane	ND	1	ug/l	11/07/22	11/07/22			
trans-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22			
cis-1,2-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22			
1,1-Dichloroethene	ND	1	ug/l	11/07/22	11/07/22			
1,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22			
2,2-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22			
cis-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22			
trans-1,3-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22			
1,1-Dichloropropene	ND	1	ug/l	11/07/22	11/07/22			
1,3-Dichloropropene (cis + trans)	ND	2	ug/l	11/07/22	11/07/22			
Diethyl ether	ND	5	ug/l	11/07/22	11/07/22			
1,4-Dioxane	ND	100	ug/l	11/07/22	11/07/22			
Ethylbenzene	ND	1	ug/l	11/07/22	11/07/22			
, Hexachlorobutadiene	ND	1	ug/l	11/07/22	11/07/22			
2-Hexanone	ND	5	ug/l	11/07/22	11/07/22			
Isopropylbenzene	ND	1	ug/l	11/07/22	11/07/22			
p-Isopropyltoluene	ND	1	ug/l	11/07/22	11/07/22			
Methylene Chloride	ND	2	ug/l	11/07/22	11/07/22			
4-Methyl-2-pentanone	ND	5	ug/l	11/07/22	11/0 Pa			

Results: Volatile Organic Compounds (Continued)

Sample: SE-106 (MW) (Continued)

Lab Number: 2K01008-05 (Water)

Analyte	Result	Reporting Qual Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	11/07/22	11/07/22
n-Propylbenzene	ND	1	ug/l	11/07/22	11/07/22
Styrene	ND	1	ug/l	11/07/22	11/07/22
1,1,1,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
Tetrachloroethene	ND	1	ug/l	11/07/22	11/07/22
Tetrahydrofuran	ND	5	ug/l	11/07/22	11/07/22
Toluene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichlorobenzene	ND	1	ug/l	11/07/22	11/07/22
1,1,2-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
1,1,1-Trichloroethane	ND	1	ug/l	11/07/22	11/07/22
Trichloroethene	ND	1	ug/l	11/07/22	11/07/22
1,2,3-Trichloropropane	ND	1	ug/l	11/07/22	11/07/22
1,3,5-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
1,2,4-Trimethylbenzene	ND	1	ug/l	11/07/22	11/07/22
Vinyl Chloride	ND	1	ug/l	11/07/22	11/07/22
o-Xylene	ND	1	ug/l	11/07/22	11/07/22
m&p-Xylene	ND	2	ug/l	11/07/22	11/07/22
Total xylenes	ND	1	ug/l	11/07/22	11/07/22
1,1,2,2-Tetrachloroethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl methyl ether	ND	1	ug/l	11/07/22	11/07/22
1,3-Dichloropropane	ND	1	ug/l	11/07/22	11/07/22
Ethyl tert-butyl ether	ND	1	ug/l	11/07/22	11/07/22
Diisopropyl ether	ND	1	ug/l	11/07/22	11/07/22
Trichlorofluoromethane	ND	1	ug/l	11/07/22	11/07/22
Dichlorodifluoromethane	ND	1	ug/l	11/07/22	11/07/22
tert-Amyl Alcohol	ND	5	ug/l	11/07/22	11/07/22
Surrogate(s)	Recovery%	Limit	cs		
4-Bromofluorobenzene	98.2%	<i>70-13</i>	30	11/07/22	11/07/22
1,2-Dichloroethane-d4	104%	70-13	80	11/07/22	11/07/22
Toluene-d8	99.2%	<i>70-13</i>	30	11/07/22	11/07/22

Quality Control

Volatile Organic Compounds

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K0457 - Purge-Trap										
Blank (B2K0457-BLK1)					Prepared 8	& Analyzed: 1	1/07/22			
Acetone	ND		5	ug/l		,	, - ,			
Benzene	ND		1	ug/l						
Bromobenzene	ND		1	ug/l						
Bromochloromethane	ND		1	ug/l						
Bromodichloromethane	ND		1	ug/l						
Bromoform	ND		1	ug/l						
Bromomethane	ND		1	ug/l						
2-Butanone	ND		5	ug/l						
tert-Butyl alcohol	ND		5	ug/l						
sec-Butylbenzene	ND		1	ug/l						
n-Butylbenzene	ND		1	ug/l						
tert-Butylbenzene	ND		1	ug/l						
Methyl t-butyl ether (MTBE)	ND		1	ug/l						
Carbon Disulfide	ND		1	ug/l						
Carbon Tetrachloride	ND		1	ug/l						
Chlorobenzene	ND		1	ug/l						
Chloroethane	ND		1	ug/l						
Chloroform	ND		1	ug/l						
Chloromethane	ND		1	ug/l						
4-Chlorotoluene	ND		1	ug/l						
2-Chlorotoluene	ND		1	ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l						
Dibromochloromethane	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
Dibromomethane	ND		1	ug/l						
1,2-Dichlorobenzene	ND		1	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
1,4-Dichlorobenzene	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
trans-1,2-Dichloroethene	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
1,1-Dichloroethene	ND		1	ug/l						
1,2-Dichloropropane	ND		1	ug/l						
2,2-Dichloropropane	ND		1	ug/l						
cis-1,3-Dichloropropene	ND		1	ug/l						
trans-1,3-Dichloropropene	ND		1	ug/l						
1,1-Dichloropropene	ND		1	ug/l						
1,3-Dichloropropene (cis + trans)	ND		2	ug/l						
Diethyl ether	ND		5	ug/l						
1,4-Dioxane	ND		100	ug/l						
Ethylbenzene	ND		1	ug/l						
Hexachlorobutadiene	ND		1	ug/l						
2-Hexanone	ND		5	ug/l						
Isopropylbenzene	ND		1	ug/l						
p-Isopropyltoluene	ND		1	ug/l						
Methylene Chloride	ND		2	ug/l						
4-Methyl-2-pentanone	ND		5	ug/l						
Naphthalene	ND		1	ug/l						
n-Propylbenzene	ND		1	ug/l						
Styrene	ND		1	ug/l						
1,1,1,2-Tetrachloroethane	ND		1	ug/l						
Tetrachloroethene	ND		1	ug/l						
Tetrahydrofuran	ND		5	ug/l					1	15 of

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPC Limi
Batch: B2K0457 - Purge-Trap (Continued)									
Blank (B2K0457-BLK1)	•				Prepared 8	& Analyzed: 1	1/07/22			
Toluene	ND		1	ug/l		,				
1,2,4-Trichlorobenzene	ND		1	ug/l						
1,2,3-Trichlorobenzene	ND		1	ug/l						
1,1,2-Trichloroethane	ND		1	ug/l						
1,1,1-Trichloroethane	ND ND		1	ug/l						
Trichloroethene				-						
	ND		1	ug/l						
1,2,3-Trichloropropane	ND		1	ug/l						
1,3,5-Trimethylbenzene	ND		1	ug/l						
1,2,4-Trimethylbenzene	ND		1	ug/l						
Vinyl Chloride	ND		1	ug/l						
o-Xylene	ND		1	ug/l						
m&p-Xylene	ND		2	ug/l						
Total xylenes	ND		1	ug/l						
1,1,2,2-Tetrachloroethane	ND		1	ug/l						
tert-Amyl methyl ether	ND		1	ug/l						
1,3-Dichloropropane	ND		1	ug/l						
Ethyl tert-butyl ether	ND		1	ug/l						
Diisopropyl ether	ND		1	ug/l						
			1	ug/l						
Trichlorofluoromethane	ND									
Dichlorodifluoromethane tert-Amyl Alcohol	ND ND		1 5	ug/l ug/l						
Surrogator A-Bromoflyorobonzono			44.2	ug/l	50.0			70-130		
Surrogate: 4-Bromofluorobenzene										
Surrogate: 1,2-Dichloroethane-d4			<i>53.9</i>	ug/l	50.0		108	70-130		
Surrogate: Toluene-d8			48.7	ug/l	50.0		97.3	70-130		
LCS (B2K0457-BS1)					-	& Analyzed: 1				
Acetone	36			ug/l	50.0		72.0	60-140		
Benzene	56			ug/l	50.0		112	70-130		
Bromobenzene	42			ug/l	50.0		83.8	70-130		
Bromochloromethane	59			ug/l	50.0		119	70-130		
Bromodichloromethane	45			ug/l	50.0		89.1	70-130		
Bromoform	45			ug/l	50.0		89.9	70-130		
Bromomethane	60			ug/l	50.0		119	70-130		
2-Butanone	35			ug/l	50.0		70.9	60-140		
tert-Butyl alcohol				ug/l	=		99.3	70-130		
sec-Butylbenzene	50 40			ug/l	50.0 50.0		80.2	70-130		
-				ug/l						
n-Butylbenzene	41				50.0		82.5	70-130		
tert-Butylbenzene	41			ug/l	50.0		81.2	70-130		
Methyl t-butyl ether (MTBE)	53			ug/l	50.0		107	70-130		
Carbon Disulfide	50			ug/l	50.0		101	50-150		
Carbon Tetrachloride	58			ug/l	50.0		117	70-130		
Chlorobenzene	40			ug/l	50.0		80.5	70-130		
Chloroethane	42			ug/l	50.0		83.1	70-130		
Chloroform	47			ug/l	50.0		94.0	70-130		
Chloromethane	52			ug/l	50.0		105	70-130		
4-Chlorotoluene	41			ug/l	50.0		83.0	70-130		
2-Chlorotoluene	42			ug/l	50.0		83.2	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	36			ug/l	50.0		71.8	70-130		
Dibromochloromethane	42			ug/l	50.0		83.6	70-130 70-130		
1,2-Dibromoethane (EDB)	42			ug/l	50.0		84.2	70-130		
Dibromomethane	42			ug/l	50.0		84.5	70-130		
1,2-Dichlorobenzene	43			ug/l	50.0		86.7	70-130		
1,3-Dichlorobenzene	40			ug/l	50.0		80.1	70-130		
1,4-Dichlorobenzene	40			ug/l	50.0		80.1	70-130		
1,1-Dichloroethane	50			ug/l	50.0		99.7	70-130		
1,2-Dichloroethane	48			ug/l	50.0		95.5	70-130		
trans-1,2-Dichloroethene	50			ug/l	50.0		99.1	70-130		

Page 16 of 21

A	D lb	Over	Reporting	Unite	Spike	Source	0/ DEC	%REC	DDD	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2K0457 - Purge-Trap (Co	ontinued)									
LCS (B2K0457-BS1)					Prepared 8	& Analyzed: 1	1/07/22			
cis-1,2-Dichloroethene	53			ug/l	50.0		105	70-130		
1,1-Dichloroethene	57			ug/l	50.0		114	70-130		
1,2-Dichloropropane	44			ug/l	50.0		88.1	70-130		
2,2-Dichloropropane	60			ug/l	50.0		119	70-130		
cis-1,3-Dichloropropene	43			ug/l	50.0		85.5	70-130		
trans-1,3-Dichloropropene	45			ug/l	50.0		90.8	70-130		
1,1-Dichloropropene	59			ug/l	50.0		119	70-130		
Diethyl ether	53			ug/l	50.0		107	70-130		
1,4-Dioxane	87			ug/l	250		34.9	50-150		
Ethylbenzene	40			ug/l	50.0		80.4	70-130		
Hexachlorobutadiene	41			ug/l	50.0		81.9	70-130		
2-Hexanone	26			ug/l	50.0		52.4	70-130		
Isopropylbenzene	41			ug/l	50.0		81.2	70-130		
p-Isopropyltoluene	40			ug/l	50.0		80.7	70-130		
Methylene Chloride	26			ug/l	50.0		52.5	70-130		
4-Methyl-2-pentanone	29			ug/l	50.0		57.6	70-130		
Naphthalene	28			ug/l	50.0		55.8	70-130		
n-Propylbenzene	41			ug/l	50.0		81.0	70-130		
Styrene	40			ug/l	50.0		80.2	70-130		
1,1,1,2-Tetrachloroethane	41			ug/l	50.0		81.5	70-130		
Tetrachloroethene	49			ug/l	50.0		98.3	70-130		
Tetrahydrofuran	49			ug/l	50.0		98.0	50-150		
Toluene	48			ug/l	50.0		95.8	70-130		
1,2,4-Trichlorobenzene	35			ug/l	50.0		70.9	70-130		
1,2,3-Trichlorobenzene	35			ug/l	50.0		70.7	70-130		
1,1,2-Trichloroethane	41			ug/l	50.0		81.1	70-130		
1,1,1-Trichloroethane	56			ug/l	50.0		112	70-130		
Trichloroethene	43			ug/l	50.0		85.9	70-130		
1,2,3-Trichloropropane	40			ug/l	50.0		80.0	70-130		
1,3,5-Trimethylbenzene	40			ug/l	50.0		80.7	70-130		
1,2,4-Trimethylbenzene	40			ug/l	50.0		80.1	70-130		
Vinyl Chloride	50			ug/l	50.0		99.3	70-130		
o-Xylene	41			ug/l	50.0		82.3	70-130		
m&p-Xylene	81			ug/l	100		80.6	70-130		
1,1,2,2-Tetrachloroethane	39			ug/l	50.0		77.3	70-130		
tert-Amyl methyl ether	49			ug/l	50.0		98.8	70-130		
1,3-Dichloropropane	42			ug/l	50.0		84.6	70-130		
Ethyl tert-butyl ether	47			ug/l	50.0		93.2	70-130		
Trichlorofluoromethane	41			ug/l	50.0		81.4	70-130		
Dichlorodifluoromethane	52			ug/l	50.0		104	70-130		
Surrogate: 4-Bromofluorobenzene			46.6	ug/l	50.0		93.2	70-130		
Surrogate: 1,2-Dichloroethane-d4			53.8	ug/l	50.0		108	70-130		
Surrogate: Toluene-d8			46.0	ug/l	50.0		92.1	70-130		

Analyte	Result Qu	Reporting ual Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPI Limi
Batch: B2K0457 - Purge-Trap (Continued)							
LCS Dup (B2K0457-BSD1)				Prepared 8	& Analyzed: 11/07/22			
Acetone	36		ug/l	50.0	72.6	60-140	0.803	20
Benzene	55		ug/l	50.0	110	70-130	2.01	20
Bromobenzene	42		ug/l	50.0	84.3	70-130	0.595	20
Bromochloromethane	58		ug/l	50.0	116	70-130	2.26	20
Bromodichloromethane	43		ug/l	50.0	86.0	70-130	3.47	20
Bromoform	43		ug/l	50.0	86.1	70-130	4.29	20
Bromomethane	57		ug/l	50.0	115	70-130	3.88	20
2-Butanone	37		ug/l	50.0	73.1	60-140	3.08	20
tert-Butyl alcohol	46		ug/l	50.0	91.3	70-130	8.40	20
sec-Butylbenzene	39		ug/l	50.0	78.5	70-130	2.14	20
n-Butylbenzene	39		ug/l	50.0	77.8	70-130	5.86	20
tert-Butylbenzene	47		ug/l	50.0	93.4	70-130	14.0	20
Methyl t-butyl ether (MTBE)	54		ug/l	50.0	108	70-130	0.764	20
Carbon Disulfide	52		ug/l	50.0	104	50-150	2.74	20
Carbon Tetrachloride	58		ug/l	50.0	117	70-130	0.0171	20
Chlorobenzene	41		ug/l	50.0	82.8	70-130	2.82	2
Chloroethane	41		ug/l	50.0	82.4	70-130	0.773	2
Chloroform	47		ug/l	50.0	94.8	70-130	0.805	2
Chloromethane	51		ug/l	50.0	102	70-130	2.39	2
I-Chlorotoluene	41		ug/l	50.0	82.6	70-130	0.435	2
2-Chlorotoluene	41		ug/l	50.0	82.3	70-130	1.14	2
1,2-Dibromo-3-chloropropane (DBCP)	36		ug/l	50.0	71.3	70-130	0.755	2
Dibromochloromethane	42					70-130 70-130		
			ug/l	50.0	84.4		0.952	2
,2-Dibromoethane (EDB)	40		ug/l	50.0	80.1	70-130	4.94	2
Dibromomethane	46		ug/l	50.0	91.8	70-130	8.21	2
,2-Dichlorobenzene	40		ug/l	50.0	80.8	70-130	7.07	2
.,3-Dichlorobenzene	41		ug/l	50.0	82.0	70-130	2.27	2
,4-Dichlorobenzene	42		ug/l	50.0	83.7	70-130	4.42	2
1,1-Dichloroethane	51		ug/l	50.0	102	70-130	2.54	2
,2-Dichloroethane	45		ug/l	50.0	89.5	70-130	6.51	2
rans-1,2-Dichloroethene	51		ug/l	50.0	101	70-130	2.10	2
cis-1,2-Dichloroethene	48		ug/l	50.0	96.4	70-130	8.86	2
1,1-Dichloroethene	53		ug/l	50.0	106	70-130	7.03	2
,2-Dichloropropane	42		ug/l	50.0	84.8	70-130	3.75	2
2,2-Dichloropropane	57		ug/l	50.0	114	70-130	4.58	2
cis-1,3-Dichloropropene	42		ug/l	50.0	83.8	70-130	2.03	2
rans-1,3-Dichloropropene	42		ug/l	50.0	84.0	70-130	7.76	2
1,1-Dichloropropene	58		ug/l	50.0	116	70-130	2.49	2
Diethyl ether	54		ug/l	50.0	108	70-130	1.47	2
1,4-Dioxane	101		ug/l	250	40.5	50-150	15.0	2
Ethylbenzene	42		ug/l	50.0	83.1	70-130	3.30	2
Hexachlorobutadiene	38		ug/l	50.0	75.8	70-130	7.76	2
2-Hexanone	26		ug/l	50.0	52.4	70-130	0.115	2
sopropylbenzene	42		ug/l	50.0	83.8	70-130	3.15	2
o-Isopropyltoluene	40		ug/l	50.0	80.9	70-130	0.322	2
Methylene Chloride	27		ug/l	50.0	53.1	70-130	1.17	2
-Methyl-2-pentanone	28		ug/l	50.0	56.9	70-130	1.12	2
laphthalene	26		ug/l	50.0	52.6	70-130	5.98	2
-Propylbenzene	39		ug/l	50.0	77.6	70-130	4.31	2
tyrene	41		ug/l	50.0	82.5	70-130	2.75	2
,1,1,2-Tetrachloroethane	40		ug/l	50.0	80.8	70-130	0.937	2
Tetrachloroethene	51		ug/l	50.0	102	70-130	4.11	2
Tetrahydrofuran	50		ug/l	50.0	100	50-150	2.48	2
Toluene	47		ug/l	50.0	94.3	70-130	1.60	2
1,2,4-Trichlorobenzene	32		ug/l	50.0	65.0	70-130	8.69	2
1,2,3-Trichlorobenzene	32		ug/l	50.0	64.9	70-130	8.50	2
1,1,2-Trichloroethane	41		ug/l	50.0	81.4	70-130	Page	18 6

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2K0457 - Purge-Trap	(Continued)									
LCS Dup (B2K0457-BSD1)			Prepared 8	& Analyzed: 1	1/07/22					
1,1,1-Trichloroethane	56			ug/l	50.0		111	70-130	0.287	20
Trichloroethene	49			ug/l	50.0		97.7	70-130	12.8	20
1,2,3-Trichloropropane	40			ug/l	50.0		80.7	70-130	0.871	20
1,3,5-Trimethylbenzene	41			ug/l	50.0		81.7	70-130	1.23	20
1,2,4-Trimethylbenzene	40			ug/l	50.0		80.0	70-130	0.0750	20
Vinyl Chloride	48			ug/l	50.0		95.1	70-130	4.34	20
o-Xylene	41			ug/l	50.0		81.5	70-130	0.928	20
m&p-Xylene	83			ug/l	100		83.0	70-130	2.90	20
1,1,2,2-Tetrachloroethane	36			ug/l	50.0		72.2	70-130	6.85	20
tert-Amyl methyl ether	47			ug/l	50.0		93.7	70-130	5.28	20
1,3-Dichloropropane	42			ug/l	50.0		83.7	70-130	1.07	20
Ethyl tert-butyl ether	46			ug/l	50.0		92.5	70-130	0.733	20
Trichlorofluoromethane	41			ug/l	50.0		81.5	70-130	0.0491	20
Dichlorodifluoromethane	52			ug/l	50.0		104	70-130	0.385	20
Surrogate: 4-Bromofluorobenzene			48.3	ug/l	50.0		96.6	70-130		
Surrogate: 1,2-Dichloroethane-d4			57.9	ug/l	50.0		116	70-130		
Surrogate: Toluene-d8			50.9	ug/l	50.0		102	70-130		

Notes and Definitions

<u>Item</u>	<u>Definition</u>
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

59 Greenhill Street

West Warwick, RI 02893

1-888-863-8522

2 K 0 1008 =

CHAIN OF CUSTODY RECORD

EDDO LECT NAME // OCATIV	ON										-,-,-,
PROJ. NO. PROJECT NAME/LOCATION S 4350	(Lonsdale Ave)	-	,			B B		//		//	
CLIENT SAGE & SAGE CONTROL INVOICE TO: UP & SAGE CONTRO DATE TIME MARK A	inmental, Inc.	WCOmco>	wo-1	OTHER	NO. OF	PRESERVATION			' / / ,		REMARKS
DATE TIME O R A P B	SAMPLE I.D.	US			CONTAINERS	E	5				НЕМАНКЫ
	-101 (MW	×			2-4eml	HCI	×				
 	102 (nw)						1111		 		
	104 (MW)	111		•					<u> </u>		
	105 (mw)	4	_	, •		1	1111				
16:∞ × SE-	100 (mm)	+	-	•	-1/	4	4			-	
		1-1	_				+			-	
		+-+	_			ļ			 		
	·		_			 					
		+-+	_							-	
		+-+	-				+	_			
		1	_	!							
		+-+				<u> </u>	+				
							1-1-1	_			
Sampled by: (Signature)	Date/Time Received by: (Signature)	لل		 -	Date/Time	[lat	boratory Rema	arks: f		Sı	pecial Instructions:
Relindrished by: (Signature)	Date/Time Received by: (Signature)	_		110	Date/Time	Ten	mp. received: _ ooled []	5		Lis	ist Specific Detection imit Requirements: RI GA-GWO
Bllwark	11-1-12 1535				1						
Relinquished by: (Signature)	Date/Time Received for Laboratory by: (Signatur	ire)	_	1/-	Date/Time	535				Tu	urnaround (Business Days) 510000

**Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

Page 21 of 21

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 2J21010 Client Project: S4350 - 756 & 770 Lonsdale Ave

Report Date: 31-October-2022

Prepared for:

Cathy Racine SAGE Environmental 172 Armistice Blvd Pawtucket, RI 02860

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

NETLAB Case Number: 2J21010

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 10/21/22. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 2J21010. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
2J21010-01	MW-1	Water	10/20/2022	10/21/2022

NETLAB Case Number: 2J21010

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

MW-1 (Lab Number: 2J21010-01)

<u>Analysis</u> <u>Method</u>

Volatile Organic Compounds EPA 8260C

Method References

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

NETLAB Case Number: 2J21010

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: Volatile Organic Compounds

Sample: MW-1

Lab Number: 2J21010-01 (Water)

Amalista	D!	Reporting	11=24-	Data Durrand	Date Assets
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	15	ug/l	10/23/22	10/23/22
Benzene	ND	1	ug/l	10/23/22	10/23/22
Bromobenzene	ND	1	ug/l	10/23/22	10/23/22
Bromochloromethane	ND	1	ug/l	10/23/22	10/23/22
Bromodichloromethane	ND	1	ug/l	10/23/22	10/23/22
Bromoform	ND	1	ug/l	10/23/22	10/23/22
Bromomethane	ND	1	ug/l	10/23/22	10/23/22
2-Butanone	ND	5	ug/l	10/23/22	10/23/22
tert-Butyl alcohol	ND	5	ug/l	10/23/22	10/23/22
sec-Butylbenzene	ND	1	ug/l	10/23/22	10/23/22
n-Butylbenzene	ND	1	ug/l	10/23/22	10/23/22
tert-Butylbenzene	ND	1	ug/l	10/23/22	10/23/22
Methyl t-butyl ether (MTBE)	ND	1	ug/l	10/23/22	10/23/22
Carbon Disulfide	ND	1	ug/l	10/23/22	10/23/22
Carbon Tetrachloride	ND	1	ug/l	10/23/22	10/23/22
Chlorobenzene	ND	1	ug/l	10/23/22	10/23/22
Chloroethane	ND	1	ug/l	10/23/22	10/23/22
Chloroform	ND	1	ug/l	10/23/22	10/23/22
Chloromethane	ND	1	ug/l	10/23/22	10/23/22
1-Chlorotoluene	ND	1	ug/l	10/23/22	10/23/22
2-Chlorotoluene	ND	1	ug/l	10/23/22	10/23/22
,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	10/23/22	10/23/22
Dibromochloromethane	ND	1	ug/l	10/23/22	10/23/22
2-Dibromoethane (EDB)	ND	1	ug/l	10/23/22	10/23/22
ibromomethane	ND	1	ug/l	10/23/22	10/23/22
2-Dichlorobenzene	ND	1	ug/l	10/23/22	10/23/22
3-Dichlorobenzene	ND	1	ug/l	10/23/22	10/23/22
,4-Dichlorobenzene	ND	1	ug/l	10/23/22	10/23/22
,1-Dichloroethane	ND	1	ug/l	10/23/22	10/23/22
.,2-Dichloroethane	ND	1	ug/l	10/23/22	10/23/22
rans-1,2-Dichloroethene	ND	1	ug/l	10/23/22	10/23/22
is-1,2-Dichloroethene	ND	1	ug/l	10/23/22	10/23/22
1,1-Dichloroethene	ND	1	ug/l	10/23/22	10/23/22
1,2-Dichloropropane	ND	1	ug/l	10/23/22	10/23/22
2,2-Dichloropropane	ND	1	ug/l	10/23/22	10/23/22
is-1,3-Dichloropropene	ND	1	ug/l	10/23/22	10/23/22
rans-1,3-Dichloropropene	ND	1	ug/l	10/23/22	10/23/22
.,1-Dichloropropene	ND	1	ug/l	10/23/22	10/23/22
,3-Dichloropropene (cis + trans)	ND	2	ug/l	10/23/22	10/23/22
Diethyl ether	ND	5	ug/l	10/23/22	10/23/22
,4-Dioxane	ND	100	ug/l	10/23/22	10/23/22
thylbenzene	ND	1	ug/l	10/23/22	10/23/22
, lexachlorobutadiene	ND	1	ug/l	10/23/22	10/23/22
2-Hexanone	ND	5	ug/l	10/23/22	10/23/22
sopropylbenzene	ND	1	ug/l	10/23/22	10/23/22
p-Isopropyltoluene	ND	1	ug/l	10/23/22	10/23/22
Methylene Chloride	ND	1	ug/l	10/23/22	10/23/22
4-Methyl-2-pentanone	ND	5	ug/l	10/23/22	10/23 P

Results: Volatile Organic Compounds (Continued)

Sample: MW-1 (Continued) Lab Number: 2J21010-01 (Water)

		Reporting			
Analyte	Result Qua	l Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	10/23/22	10/23/22
n-Propylbenzene	ND	1	ug/l	10/23/22	10/23/22
Styrene	ND	1	ug/l	10/23/22	10/23/22
1,1,1,2-Tetrachloroethane	ND	1	ug/l	10/23/22	10/23/22
Tetrachloroethene	ND	1	ug/l	10/23/22	10/23/22
Tetrahydrofuran	ND	5	ug/l	10/23/22	10/23/22
Toluene	ND	1	ug/l	10/23/22	10/23/22
1,2,4-Trichlorobenzene	ND	1	ug/l	10/23/22	10/23/22
1,2,3-Trichlorobenzene	ND	1	ug/l	10/23/22	10/23/22
1,1,2-Trichloroethane	ND	1	ug/l	10/23/22	10/23/22
1,1,1-Trichloroethane	ND	1	ug/l	10/23/22	10/23/22
Trichloroethene	ND	1	ug/l	10/23/22	10/23/22
1,2,3-Trichloropropane	ND	1	ug/l	10/23/22	10/23/22
1,3,5-Trimethylbenzene	ND	1	ug/l	10/23/22	10/23/22
1,2,4-Trimethylbenzene	ND	1	ug/l	10/23/22	10/23/22
Vinyl Chloride	ND	1	ug/l	10/23/22	10/23/22
o-Xylene	ND	1	ug/l	10/23/22	10/23/22
m&p-Xylene	ND	2	ug/l	10/23/22	10/23/22
Total xylenes	ND	1	ug/l	10/23/22	10/23/22
1,1,2,2-Tetrachloroethane	ND	1	ug/l	10/23/22	10/23/22
tert-Amyl methyl ether	ND	1	ug/l	10/23/22	10/23/22
1,3-Dichloropropane	ND	1	ug/l	10/23/22	10/23/22
Ethyl tert-butyl ether	ND	1	ug/l	10/23/22	10/23/22
Diisopropyl ether	ND	1	ug/l	10/23/22	10/23/22
Trichlorofluoromethane	ND	1	ug/l	10/23/22	10/23/22
Dichlorodifluoromethane	ND	1	ug/l	10/23/22	10/23/22
tert-Amyl Alcohol	ND	5	ug/l	10/23/22	10/23/22
Surrogate(s)	Recovery%	Limit	S		
4-Bromofluorobenzene	91.0%	<i>70-13</i>	0	10/23/22	10/23/22
1,2-Dichloroethane-d4	92.9%	0	10/23/22	10/23/22	
Toluene-d8	101%	0	10/23/22	10/23/22	

Quality Control

Volatile Organic Compounds

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2J1447 - Purge-Trap										
Blank (B2J1447-BLK1)					Prepared 8	& Analyzed: 10	0/23/22			
Acetone	ND		5	ug/l	•	,				
Benzene	ND		1	ug/l						
Bromobenzene	ND		1	ug/l						
Bromochloromethane	ND		1	ug/l						
Bromodichloromethane	ND		1	ug/l						
Bromoform	ND		1	ug/l						
Bromomethane	ND		1	ug/l						
2-Butanone	ND		5	ug/l						
tert-Butyl alcohol	ND		5	ug/l						
sec-Butylbenzene	ND		1	ug/l						
n-Butylbenzene	ND		1	ug/l						
tert-Butylbenzene	ND		1	ug/l						
Methyl t-butyl ether (MTBE)	ND		1	ug/l						
Carbon Disulfide	ND		1	ug/l						
Carbon Tetrachloride	ND		1	ug/l						
Chlorobenzene	ND		1	ug/l						
Chloroethane	ND		1	ug/l						
Chloroform	ND		1	ug/l						
Chloromethane	ND		1	ug/l						
4-Chlorotoluene	ND		1	ug/l						
2-Chlorotoluene	ND		1	ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l						
Dibromochloromethane	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
Dibromomethane	ND		1	ug/l						
1,2-Dichlorobenzene	ND		1	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
1,4-Dichlorobenzene	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
trans-1,2-Dichloroethene	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
1,1-Dichloroethene	ND		1	ug/l						
1,2-Dichloropropane	ND		1	ug/l						
2,2-Dichloropropane	ND		1	ug/l						
cis-1,3-Dichloropropene	ND		1	ug/l						
trans-1,3-Dichloropropene	ND		1	ug/l						
1,1-Dichloropropene	ND		1	ug/l						
1,3-Dichloropropene (cis + trans)	ND		2	ug/l						
Diethyl ether	ND		5	ug/l						
1,4-Dioxane	ND		100	ug/l						
Ethylbenzene	ND		1	ug/l						
Hexachlorobutadiene	ND		1	ug/l						
2-Hexanone	ND		5	ug/l						
Isopropylbenzene	ND		1	ug/l						
p-Isopropyltoluene	ND		1	ug/l						
Methylene Chloride	ND		1	ug/l						
4-Methyl-2-pentanone	ND		5	ug/l						
Naphthalene	ND		1	ug/l						
n-Propylbenzene	ND		1	ug/l						
Styrene	ND		1	ug/l						
1,1,1,2-Tetrachloroethane	ND		1	ug/l						
Tetrachloroethene	ND		1	ug/l						
Tetrahydrofuran	ND		5	ug/l						e 7 of

Volatile Organic Compounds (Continued)

Analyte Result			Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPC Limi
Batch: B2J1447 - Purge-Trap (G	Continued)									
Blank (B2J1447-BLK1)					Prepared 8	& Analyzed: 1	0/23/22			
Toluene	ND		1	ug/l		,	-, -,			
1,2,4-Trichlorobenzene	ND		1	ug/l						
1,2,3-Trichlorobenzene	ND		1	ug/l						
1,1,2-Trichloroethane	ND		1	ug/l						
1,1,1-Trichloroethane	ND		1	ug/l						
Trichloroethene	ND		1	ug/l						
1,2,3-Trichloropropane	ND		1	ug/l						
	ND ND									
1,3,5-Trimethylbenzene			1	ug/l						
1,2,4-Trimethylbenzene	ND		1	ug/l						
Vinyl Chloride	ND		1	ug/l						
o-Xylene	ND		1	ug/l						
m&p-Xylene	ND		2	ug/l						
Total xylenes	ND		1	ug/l						
1,1,2,2-Tetrachloroethane	ND		1	ug/l						
tert-Amyl methyl ether	ND		1	ug/l						
1,3-Dichloropropane	ND		1	ug/l						
Ethyl tert-butyl ether	ND		1	ug/l						
Diisopropyl ether	ND		1	ug/l						
Trichlorofluoromethane	ND		1	ug/l						
Dichlorodifluoromethane	ND		1	ug/l						
tert-Amyl Alcohol	ND		5	ug/l						
Surrogate: 4-Bromofluorobenzene			48.5	ug/l	50.0		96.9	70-130		
Surrogate: 1,2-Dichloroethane-d4			49.8	ug/l	50.0		99.7	70-130		
Surrogate: Toluene-d8			54.0	ug/l	50.0		108	70-130		
LCS (B2J1447-BS1)					Prepared 8	& Analyzed: 1	0/23/22			
Acetone	41			ug/l	50.0		82.0	60-140		
Benzene	56			ug/l	50.0		113	70-130		
Bromobenzene	42			ug/l	50.0		83.5	70-130		
Bromochloromethane	52			ug/l	50.0		104	70-130		
Bromodichloromethane	49			ug/l	50.0		97.2	70-130		
Bromoform	46			ug/l	50.0		91.5	70-130		
Bromomethane	55			ug/l	50.0		110	70-130		
2-Butanone	43			ug/l	50.0		87.0	60-140		
tert-Butyl alcohol	40			ug/l	=		97.0	70-130		
	48			ug/l	50.0 50.0		91.0			
sec-Butylbenzene n-Butylbenzene	46 48			ug/l	50.0		96.4	70-130 70-130		
•										
tert-Butylbenzene	44			ug/l	50.0		88.1	70-130		
Methyl t-butyl ether (MTBE)	57			ug/l	50.0		114	70-130		
Carbon Disulfide	54			ug/l	50.0		108	50-150		
Carbon Tetrachloride	55			ug/l	50.0		110	70-130		
Chlorobenzene	44			ug/l	50.0		88.0	70-130		
Chloroethane	49			ug/l	50.0		98.1	70-130		
Chloroform	51			ug/l	50.0		102	70-130		
Chloromethane	60			ug/l	50.0		120	70-130		
4-Chlorotoluene	41			ug/l	50.0		81.6	70-130		
2-Chlorotoluene	41			ug/l	50.0		81.6	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	41			ug/l	50.0		81.4	70-130		
Dibromochloromethane	47			ug/l	50.0		93.8	70-130		
1,2-Dibromoethane (EDB)	42			ug/l	50.0		83.4	70-130		
Dibromomethane	50			ug/l	50.0		100	70-130		
1,2-Dichlorobenzene	43			ug/l	50.0		86.4	70-130		
1,3-Dichlorobenzene	43			ug/l	50.0		86.2	70-130		
1,4-Dichlorobenzene	42			ug/l	50.0		84.8	70-130		
1,1-Dichloroethane	56			ug/l	50.0		113	70-130 70-130		
1,2-Dichloroethane	57			ug/l	50.0		114	70-130 70-130		
1/2 DICHIOLOGUIGITE	3/			ag/i	50.0		114	10-TOO		

Page 8 of 13

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2J1447 - Purge-Trap ((Continued)									
LCS (B2J1447-BS1)					Prepared 8	& Analyzed: 1	0/23/22			
cis-1,2-Dichloroethene	52			ug/l	50.0		103	70-130		
1,1-Dichloroethene	53			ug/l	50.0		105	70-130		
1,2-Dichloropropane	51			ug/l	50.0		102	70-130		
2,2-Dichloropropane	58			ug/l	50.0		116	70-130		
cis-1,3-Dichloropropene	42			ug/l	50.0		84.3	70-130		
trans-1,3-Dichloropropene	48			ug/l	50.0		95.9	70-130		
1,1-Dichloropropene	63			ug/l	50.0		125	70-130		
Diethyl ether	59			ug/l	50.0		117	70-130		
1,4-Dioxane	136			ug/l	250		54.3	50-150		
Ethylbenzene	43			ug/l	50.0		86.6	70-130		
Hexachlorobutadiene	47			ug/l	50.0		94.4	70-130		
2-Hexanone	40			ug/l	50.0		79.7	70-130		
Isopropylbenzene	44			ug/l	50.0		88.8	70-130		
p-Isopropyltoluene	46			ug/l	50.0		91.2	70-130		
Methylene Chloride	31			ug/l	50.0		62.7	70-130		
4-Methyl-2-pentanone	40			ug/l	50.0		80.2	70-130		
Naphthalene	44			ug/l	50.0		87.4	70-130		
n-Propylbenzene	43			ug/l	50.0		85.4	70-130		
Styrene	43			ug/l	50.0		86.1	70-130		
1,1,1,2-Tetrachloroethane	40			ug/l	50.0		80.8	70-130		
Tetrachloroethene	52			ug/l	50.0		104	70-130		
Tetrahydrofuran	49			ug/l	50.0		97.1	50-150		
Toluene	52			ug/l	50.0		104	70-130		
1,2,4-Trichlorobenzene	40			ug/l	50.0		80.6	70-130		
1,2,3-Trichlorobenzene	40			ug/l	50.0		80.6	70-130		
1,1,2-Trichloroethane	41			ug/l	50.0		82.0	70-130		
1,1,1-Trichloroethane	59			ug/l	50.0		118	70-130		
Trichloroethene	53			ug/l	50.0		107	70-130		
1,2,3-Trichloropropane	41			ug/l	50.0		81.6	70-130		
1,3,5-Trimethylbenzene	44			ug/l	50.0		88.1	70-130		
1,2,4-Trimethylbenzene	44			ug/l	50.0		87.8	70-130		
Vinyl Chloride	55			ug/l	50.0		110	70-130		
o-Xylene	43			ug/l	50.0		86.7	70-130		
m&p-Xylene	89			ug/l	100		88.9	70-130		
1,1,2,2-Tetrachloroethane	44			ug/l	50.0		87.5	70-130		
tert-Amyl methyl ether	55			ug/l	50.0		109	70-130		
1,3-Dichloropropane	43			ug/l	50.0		86.1	70-130		
Ethyl tert-butyl ether	60			ug/l	50.0		119	70-130		
Trichlorofluoromethane	45			ug/l	50.0		90.6	70-130		
Dichlorodifluoromethane	60			ug/l	50.0		121	70-130		
Surrogate: 4-Bromofluorobenzene			51.1	ug/l	50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4			50.9	ug/l	50.0		102	70-130		
Surrogate: Toluene-d8			48.8	ug/l	50.0		97.6	70-130		

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2J1447 - Purge-Trap (Continued)									
LCS Dup (B2J1447-BSD1)	,				Prepared 8	& Analyzed:	10/23/22			
Acetone	41			ug/l	50.0	,,	81.0	60-140	1.18	20
Benzene	56			ug/l	50.0		111	70-130	1.36	20
Bromobenzene	40			ug/l	50.0		80.6	70-130	3.61	20
Bromochloromethane	52			ug/l	50.0		104	70-130	0.0768	20
Bromodichloromethane	50			ug/l	50.0		100	70-130	3.30	20
Bromoform	46			ug/l	50.0		92.7	70-130	1.35	20
Bromomethane	60			ug/l	50.0		120	70-130	8.89	20
2-Butanone	45			ug/l	50.0		90.3	60-140	3.72	20
tert-Butyl alcohol	50			ug/l	50.0		99.2	70-130	2.24	20
sec-Butylbenzene	46			ug/l	50.0		91.3	70-130	0.307	20
n-Butylbenzene	49			ug/l	50.0		97.8	70-130	1.44	20
tert-Butylbenzene	46			ug/l	50.0		91.2	70-130	3.50	20
Methyl t-butyl ether (MTBE)	58			ug/l	50.0		117	70-130	2.77	20
Carbon Disulfide	54			ug/l	50.0		108		0.0738	20
								50-150		
Carbon Tetrachloride	58			ug/l	50.0		116	70-130	4.98	20
Chlorophysia	44			ug/l	50.0		88.8	70-130	0.973	20
Chloroform	51			ug/l	50.0		103	70-130	4.52	20
Chloroform	53			ug/l	50.0		106	70-130	3.46	20
Chloromethane	58			ug/l	50.0		116	70-130	3.59	20
4-Chlorotoluene	42			ug/l	50.0		84.0	70-130	2.97	20
2-Chlorotoluene	42			ug/l	50.0		84.0	70-130	2.97	20
1,2-Dibromo-3-chloropropane (DBCP)	43			ug/l	50.0		85.5	70-130	4.94	20
Dibromochloromethane	46			ug/l	50.0		92.5	70-130	1.35	20
1,2-Dibromoethane (EDB)	42			ug/l	50.0		84.9	70-130	1.71	20
Dibromomethane	49			ug/l	50.0		97.1	70-130	3.24	20
1,2-Dichlorobenzene	42			ug/l	50.0		84.4	70-130	2.34	20
1,3-Dichlorobenzene	44			ug/l	50.0		87.4	70-130	1.31	20
1,4-Dichlorobenzene	43			ug/l	50.0		85.5	70-130	0.916	20
1,1-Dichloroethane	57			ug/l	50.0		115	70-130	2.09	20
1,2-Dichloroethane	58			ug/l	50.0		116	70-130	1.67	20
trans-1,2-Dichloroethene	55			ug/l	50.0		110	70-130	1.54	20
cis-1,2-Dichloroethene	55			ug/l	50.0		110	70-130	5.92	20
1,1-Dichloroethene	53			ug/l	50.0		105	70-130	0.209	20
1,2-Dichloropropane	53			ug/l	50.0		106	70-130	4.52	20
2,2-Dichloropropane	59			ug/l	50.0		118	70-130	2.36	20
cis-1,3-Dichloropropene	43			ug/l	50.0		85.2	70-130	1.11	20
trans-1,3-Dichloropropene	48			ug/l	50.0		96.1	70-130	0.146	20
1,1-Dichloropropene	58			ug/l	50.0		115	70-130	8.02	20
Diethyl ether	63			ug/l	50.0		127	70-130	7.44	20
1,4-Dioxane	133			ug/l	250		53.4	50-150	1.71	20
Ethylbenzene	44			ug/l	50.0		88.8	70-130	2.49	20
Hexachlorobutadiene	50			ug/l	50.0		99.8	70-130	5.58	20
2-Hexanone	40			ug/l	50.0		80.4	70-130	0.900	20
Isopropylbenzene	44			ug/l	50.0		88.9	70-130	0.113	20
p-Isopropyltoluene	45			ug/l	50.0		90.6	70-130	0.616	20
Methylene Chloride	32			ug/l	50.0		63.8	70-130	1.74	20
4-Methyl-2-pentanone	41			ug/l	50.0		82.6	70-130	2.97	20
Naphthalene	46			ug/l	50.0		91.0	70-130	3.99	20
n-Propylbenzene	43			ug/l	50.0		85.4	70-130	0.0468	20
Styrene	42			ug/l	50.0		83.8	70-130	2.76	20
1,1,1,2-Tetrachloroethane	42			ug/l	50.0		84.5	70-130	4.50	20
Tetrachloroethene	50			ug/l	50.0		100	70-130	3.80	20
Tetrahydrofuran	52			ug/l	50.0		105	50-150	7.80	20
Toluene 52					50.0		105	70-130	0.825	20
1,2,4-Trichlorobenzene		ug/l ug/l	50.0		83.6	70-130 70-130	3.63	20		
	42									
1,2,3-Trichlorobenzene	42			ug/l	50.0		83.6	70-130	3.63	20
1,1,2-Trichloroethane	42			ug/l	50.0		83.5	70-130	Page	10 of

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2J1447 - Purge-Trap	(Continued)									
LCS Dup (B2J1447-BSD1)					Prepared 8	& Analyzed: 10	0/23/22			
1,1,1-Trichloroethane	59			ug/l	50.0		119	70-130	0.896	20
Trichloroethene	50			ug/l	50.0		101	70-130	5.79	20
1,2,3-Trichloropropane	44			ug/l	50.0		87.0	70-130	6.45	20
1,3,5-Trimethylbenzene	44			ug/l	50.0		87.7	70-130	0.410	20
1,2,4-Trimethylbenzene	44			ug/l	50.0		88.3	70-130	0.522	20
Vinyl Chloride	55			ug/l	50.0		110	70-130	0.436	20
o-Xylene	42			ug/l	50.0		84.8	70-130	2.17	20
m&p-Xylene	90			ug/l	100		89.6	70-130	0.806	20
1,1,2,2-Tetrachloroethane	42			ug/l	50.0		84.5	70-130	3.51	20
tert-Amyl methyl ether	55			ug/l	50.0		110	70-130	0.891	20
1,3-Dichloropropane	44			ug/l	50.0		88.1	70-130	2.30	20
Ethyl tert-butyl ether	59			ug/l	50.0		118	70-130	1.23	20
Trichlorofluoromethane	44			ug/l	50.0		88.4	70-130	2.46	20
Dichlorodifluoromethane	81			ug/l	50.0		163	70-130	29.8	20
Surrogate: 4-Bromofluorobenzene			52.0	ug/l	50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4			52.8	ug/l	50.0		106	70-130		
Surrogate: Toluene-d8			<i>49.7</i>	ug/l	50.0		99.4	70-130		

Notes and Definitions

<u>Item</u>	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

NEW ENGLAND TESTING LABORATORY, INC.

59 Greenhill Street West Warwick, RI 02893 1-888-863-8522

CHAIN OF CUSTODY RECORD

PROJ. NO.		PROJ	ECT NA	ME/LOCATION							P			7/			
CLIENT	546	E					A			NO.	R E S E R V	8		//	/ /	/	
REPORT T	0: 5 a	y L.					A G U	S 0 1	OTHER	OF	Ă	l l	/ //				
INVOICE	O: 321		G				0		E R	CONTAINERS	V E		19/	//	/ /		/ REMARKS
DATE	TIME	COM P	GRAB		SAMPLE 1.0	D.	S				E		/_/		\angle	_	
10/20/2	1300		1	MW-1						3		V		_			
											<u></u>	1					
			_					+									
			_									+		-			
								-									
				<u> </u>													
												1					
					·			_	1								
Campulari	/Cignot			Date/	imo	Panaiyadhy: (Signatura)		_		I Poto/Time	La	oratory	Pomoi	rko: a-	<u></u>		Special Instructions:
Sampled b	y. (Signat			10/20/22	lgoo	Received by: (Signature)			10	Pate/Time	<u>15</u> co	np. rece oled 🗗	ived: _	rks: 5)		List Specific Detection Limit Requirements:
Relinquish	ed by: (Sig	nature M)	(ol21 Date/	ime 1520	Rec ki/ ed by: (Signature)				Date/Time							RIGHGWO
Relinquish	ed (y) (Sig	nature)	Date/		Received for Laboratory by:	(Signature)	1	10	Date/Time 0/21/2/0 15	20			ų.			Turnaround (Business Days)

^{**}Netlab subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

April 11, 2023

Ms. Joanna Pawlina, Environmental Scientist
Rhode Island Department of Environmental Management
Office of Land Revitalization & Sustainable Materials Management
235 Promenade Street
Providence, RI 02908-5767
Sent via hard copy and email: Joanna.Pawlina@dem.ri.gov

RE: Pre-Site Investigation Report & Safe School Siting Act Public Meeting Summary
756 & 770 Lonsdale Avenue
(Plat 9, Lots 26 & 203)
Central Falls, Rhode Island 02863
SAGE Project No. S4350
RIDEM File No. SR-04-2061B

Dear Ms. Pawlina:

This letter is being provided to summarize public involvement activities conducted by SAGE Environmental, Inc. (SAGE) relative to the referenced property (Site).

On January 26, 2023, SAGE mailed notices to abutters of the Site of the commencement of Site Investigation activities. The goal of the investigation is to determine if a release of oil or hazardous materials has occurred on the Site and will involve the sampling of environmental media (specifically soil and groundwater) by SAGE. These notices provided Site-specific information, including a summary of the results of the Phase I Environmental Site Assessment All Appropriate Inquiries and a limited subsurface investigation conducted at the Site. Copies of the notices to abutters are attached.

In accordance with the Public Involvement requirements under Rhode Island General Laws (R.I.G.L.), Title 23, Health and Safety, Chapter 23-19.14, Industrial Property Remediation and Reuse Act, Section 23-19.14-5, Environmental Equity and Public Participation, as well as Section 1.8.7.A.3 of the Rhode Island Department of Environmental Management's (RIDEM's or the Department's) *Remediation Regulations*, the City of Central Falls scheduled and held a Public Meeting on April 2, 2012. On March 7, 2023, Notice of a Public Meeting was published in the Pawtucket Times. Notice of a Public Meeting was also subsequently in the March 8-14, 2023, edition of the Valley Breeze. The Public Meeting Notices are attached. The purpose of this meeting is to discuss the environmental investigations associated with the proposed reuse of the Site as a school by the City of Central Falls, as well as to obtain information about conditions at the Site and its environmental history that may be useful in establishing the final scope of the investigation and/or establishing the objectives of the environmental cleanup of the Site.

On March 22, 2023, this meeting was held at Central Falls Department of Public Works 1280 High Street, Central Falls from 4:30 pm to 5:30 pm. Attendees included Rhode Island Department of Environmental Management (RIDEM) representatives and City of Central Falls representatives. No member of the Public attended the Public Meeting. An audio recording of the Public Meeting is attached for reference. The record of the meeting remained open for a period of thirteen (13) days for receipt of public comments, and concluded on **April 7, 2023, at 4:30 pm**.

During the public comment period, the Department's Office of Land Revitalization & Sustainable Materials Management did not receive any public comments, nor were any comments/questions submitted to SAGE directly.

Should you have any questions pertaining to this information, please do not hesitate to contact either of the undersigned.

Sincerely,

SAGE Environmental, Inc.

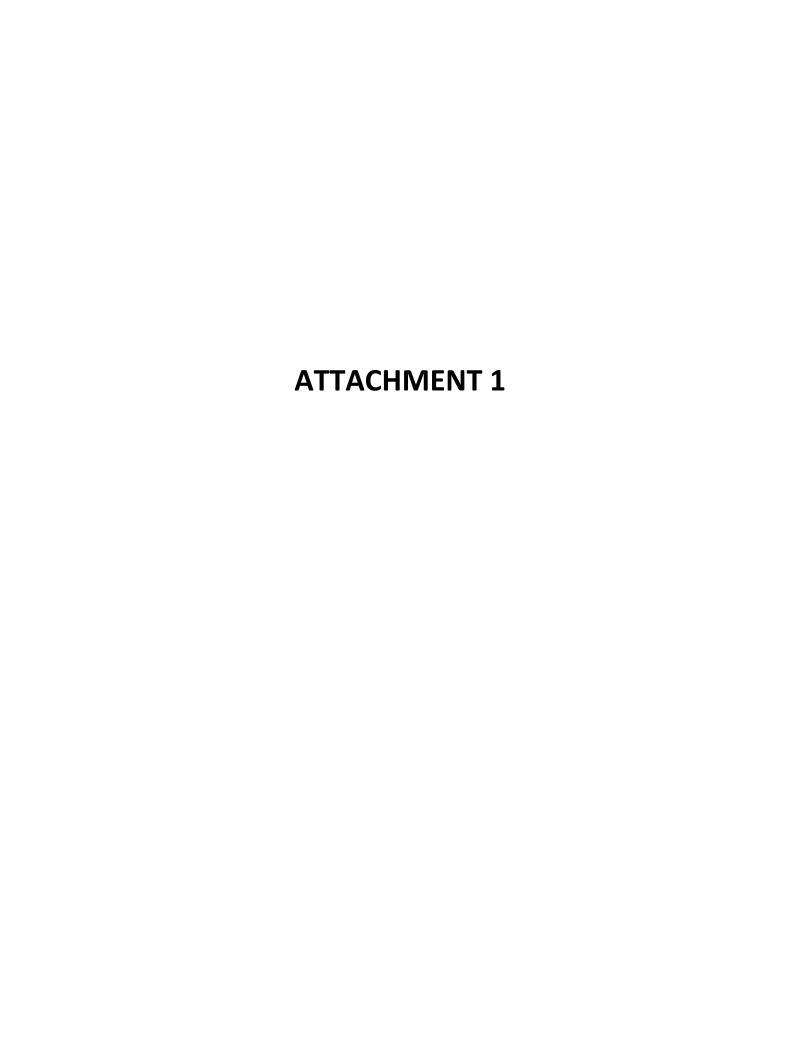
Lacy Reyna, MS

Environmental Scientist Vice President

LR/JHB:alm

ATTACHMENTS:

Attachment 1 Environmental Conditions Review Presentation


Attachment 2 Pre-Site Investigation Public Meeting Audio Recording

Attachment 3 Meeting Attendees

Attachment 4 Public Meeting Notice Documents

Attachment 5 Notice to Abutters

Environmental Conditions Review

756 & 770 LONSDALE AVENUE CENTRAL FALLS, RHODE ISLAND MARCH 22, 2023

Regulatory Framework

- RIGL Chapter 23-19.14 (The Industrial Property Remediation and Reuse Act)
 - Section 23-19.14-5 (Environmental Equity and Public Participation)
- Applies to the Construction of New School Buildings (either public, private, or charter) Upon Contaminated Sites

Due Diligence Review

- ► Historical Research Key Findings:
 - Prior to the current development, the northern portion of the Site was developed with a residential/commercial style structure and the southern portion of the Site was vacant.
 - It appears that between approximately 1952 and 1962 the Site and surrounding area was filled to create the existing topography. An additional commercial style structure appeared to have been constructed on the southern portion of the property in 1962. The northern building was demolished circa 2011, and the southern building was added onto circa 2019, at which time the Site appeared to be in its current configuration.

Due Diligence Review

1939 2021

LONSDALE AV (CF)-Contd

726 Ustas Andrew

729 No Return

734 Vacant

738 Monastesse Gerard J ⊚ 724-2759 PARK ENDS

743 Gonsalves Juvilino J ⊚ 724-0198 CLAREMONT ENDS

756 Mil-Ga Cleansers Inc 725-0348

768 Stanton James Post No 5 (Am Legion) 762-9579

1949

Due Diligence Review

- Historical Research Key Findings:
 - City directory listings and historical Sanborn Fire Insurance Maps indicate that the former northern Site structure was occupied by the American Legion between at least 1938-2005.
 - City directory listings indicate that the southern Site structure was occupied by Mil-Gat Cleansers between at least 1957-1971. The structure was listed as vacant in 1974, and has been listed as a butcher/meat market since 1979 through present.

Current Site Investigation Data

- Soil Evaluation:
 - Subsurface soil samples have been analyzed and select polycyclic aromatic hydrocarbons (PAHs), arsenic, lead, and total petroleum hydrocarbon (TPH) were detected in excess of RIDEM Criteria.
- Groundwater Evaluation:
 - For Groundwater samples were collected from various monitoring wells throughout the Site and submitted for laboratory analysis. A target compound was not detected in excess of any applicable RIDEM Objectives.

Takeaways From the Current Data

- Soil impacts are likely related to the historical filling;
- Groundwater does not appear to be an impacted media; and,
- The main risk associated with the identified contaminants is direct soil contact.

- Based upon the current data, the conceptual remedial design for the site includes the following:
 - ▶ 1. Site-Wide Capping Placement of a sitewide cap would be conducted to eliminate direct soil contact.
 - Preemptive Vapor Intrusion Control Measures – Although not believed to be a risk based upon current data, any new structure will be equipped with a passive sub-slab depressurization system (designed to be converted to an active system, if required in the future) along with placement of a vapor barrier.
 - ▶ 3. Placement of Institutional Control Filing of an Environmental Land Use Restriction (ELUR) and Soil Management Plan (SMP) to ensure the cap and sub-slab system are continually inspected and the results would be reported to RIDEM annually.

Conceptual Remedial Approach

Next Steps

- Complete the public comment period;
- Prepare and submit to RIDEM a Site Investigation Report documenting the assessment results provided herein, along with a preliminary design of the conceptual remedial alternative.
- Public comments should be directed to:

Joanna Pawlina-Environmental Scientist

RIDEM – Office of Land Revitalization and Sustainable Materials Management

235 Promenade Street, Providence, Rhode Island

Joanna.Pawlina@dem.ri.gov

(401) 222-2797 ext. 2777117

On March 22, 2023, Lacy Reyna of SAGE Environmental, Inc. presented the Environmental Conditions Review (**Attachment 1**) during a Public Meeting held at Central Falls Department of Public Works, 1280 High Street, Central Falls, Rhode Island. The presentation provided an overview of the Site Investigation to-date and the next steps in the Rhode Island Department of Environmental Management's community involvement process. The meeting began at 4:35 pm and concluded at 4:53 pm.

An audio recording of the presentation is linked below.

https://sage-enviro.box.com/s/9a4hzaax1gvwo440b2scfbqvtzneo7ez

SIGN-IN SHEET PUBLIC MEETING

Environmental Conditions Review – 756 & 770 Lonsdale Avenue, Central Fall, RI

Location: Public Works Meeting Room, 1280 High Street, Central Falls RI

Start Time: March 22nd, 2023 4:30 PM

Name (Print)	Affiliation	Email Address
BEICH SCHECHTER.	CFSD	3 eschechteroper n.n.c
Jim Vandermillen	Central Falls Planning Dept.	3 eschechteropere n.n.c.
Rachel Simpson	RIDEM	rachel. simpsonedeming
Joanna Pawlina	RIDEM	rachel.simpson@dem.ri.gov Joanna.pawlina@dem.ri.gov Lreyna@sage-envivo.com
Lacy Regna	SAGE	Lreyna a Sage-envivo. com
		-
		*
	0	

NOTICE OF A PUBLIC MEETING

SAGE Environmental, Inc., on behalf of the City of Central Falls is hereby providing Notice of a Public Meeting per RIGL Chapter 23-19.14 (The Industrial Property Remediation and Reuse Act/School Siting Law of 2013), more specifically Sections 23-19.14-4 (Objectives of Environmental Clean-Up) and 23-19.14-5 (Environmental Equity and Public Participation).

The purpose of this meeting is to discuss the environmental investigations associated with the reuse of 756 and 770 Lonsdale Avenue, located in Central Falls, as a school.

The record for the public meeting shall be open for a period of not less than ten (10) and not more than twenty (20) business days after the meeting for the receipt of public comment and will close at 4:30 PM on April 6, 2023. Public comments relative to the environmental investigation of the proposed project must be submitted in writing to: Ms. Joanna Pawlina, RI Department of Environmental Management — Office of Land Revitalization & Sustainable Materials Management, 235 Promenade Street, Providence, RI 02908. For more information regarding this notice, please contact Joanna Pawlina by telephone at (401) 222-2797 ext. 2777117, or by E-mail at Joanna.Pawlina@dem.ri.gov.

The meeting will be held in person on:

Date: March 22, 2023

Place:

Office of Planning and Economic Development at 1280 High Street, Central Falls, RI

Time: 4:30 pm

AVISO DE UNA REUNIÓN PÚBLICA

SAGE Environmental, Inc., en nombre de la Ciudad de Central Falls, proporciona por la presente un Aviso de una eting pública según el Capítulo 23-19.14 de RIGL (Ley de MeRemediación y Reutilización de la Propiedad Industrial / Ley de Ubicación Escolar de 2013), más específicamente las Secciones 23-19.14-4 (Objetivos de la limpieza ambiental) y 23-19.14-5 (Equidad ambiental y participación pública).

El propósito de esta reunión es discutir las investigaciones ambientales asociadas conla reutilización de 756 y 770 Lonsdale Avenue, ubicada en Central Falls, como escuela.

El registro de la reunión pública estará abierto por un período de no menos de diez (10) y no más de veinte (20) días hábiles después de la reunión para la recepción de comentarios públicos y se cerrará a las 4:30 PM del 6 de abril de 2023. Los comentarios públicos relativos a la investigación ambiental del proyecto propuesto deben enviarse por escrito a: Sra. Joanna Pawlina, Departamento de Gestión Ambiental de RI — Oficina de Revitalización de Tierras y Gestión de Materiales Sostenibles, 235 Promenade Street, Providence, RI 02908. Para obtener más información sobre este aviso, comuníquese con Joanna Pawlina por teléfono al (401) 222-2797 ext. 2777117, o por correo electrónico a Joanna.Pawlina@dem.ri.gov.

La reunión se llevará a cabo en persona en:

Fecha: marzo 22, 2023

Lugar:

Oficina de Planificación y Desarrollo Económico en 1280 High Street, Central Falls, RI

Hora: 16:30

Four easy ways to place your classified ad in print AND online for one low price:

- Online at www.pawtuckettimes.com
- E-mail classified@pawtuckettimes.com
- Call (401) 767-8503 Mon.-Fri. 9 a.m. 4:30 p.m.
- Fax (401) 767-8509

Home | Automotive | Employment | Yard Sales | Items for Sale | Pets | & Much More...

SELL IT. FIND IT. BUY IT. FASTER IN THE TIMES.

Subscribers receive 20% off classified line ads & more! Subscribe today: 401-767-8522 or at pawtuckettimes.com

Vehicles

TRUCK THE EASY WAY.
Call the classified team at
The Times today. Tell
more than 40,000 adult
readers in the are about
your vehicle. It's easy to
do, just dial 401-3651438 or visit us at www.-

pawtuckettimes.com

Employment

200 Employment

Services

The Times does not knowingly accept advertisements in the Employment classifications that are not bona fide job offers. Classification 200 is provided for Employment Information, Services and Referrals. This newspaper does not knowingly accept Employment ads

204 General Help

Wanted

be good at multitasking personnel skills. Training on site. 401K, vacation, holiday pay. Send resume to: Attn: Office Manager, PO Box 1151, Woonsockat BL02805

Real Estate-Rent

et, RI 02895.

100 Legals

100 Legals

NOTICE OF MORTGAGEE'S SALE 20 Bayberry Road (Plat 50, Lot 108), 24 Bayberry Road (Plat 50, Lot 107), 26 Bayberry Road (Plat 50, Lot 106) and 28 Bayberry Road (Plat 50, Lot 24) Smithfield, RI 02917

sold, subject to all encumbrances, prior liens and such matters which may constitute valid liens or encumbrances after sale, at public auction on December 29, 2022 at 04:00 p.m. on the premises by virtue of the power of sale in said mortgage made by William A. Machala, dated October 4, 2001, and recorded in the Smithfield. Rhode Island Land Evidence Records in Book 300, Page 301, the conditions of said mortgage having been broken. \$5,000.00 in cash, certified or bank check required to bid. Other terms to be announced at the sale.

> **Brock & Scott, PLLC** 1080 Main Street, Suite 200 Pawtucket, RI 02860 Attorney for the present Holder of the Mortgage

AT THE ABOVE TIME AND PLACE, THE SALE WAS CONTINUED TO March 1, 2023 AND 12:00 PM, LOCAL TIME ON THE PREMISES.

> Brock & Scott, PLLC 1080 Main Street, Suite 200 Pawtucket, RI 02860 Attorney for the present Holder of the Mortgage

AT THE ABOVE TIME AND PLACE, THE SALE WAS CONTINUED TO April 6, 2023 AND 12:00 PM, LOCAL TIME ON THE PREMISES.

> Brock & Scott, PLLC 1080 Main Street, Suite 200 Pawtucket, RI 02860 Attorney for the present Holder of the Mortgage

STATE OF RHODE ISLAND PROBATE COURT OF THE **CITY OF PAWTUCKET**

The Probate Court of the City of Pawtucket here by gives notice of matters pending and for hearing in said Court in the City of Pawtucket. Court will be in session at 2:00 p.m. on the dates spec ified in notices below for hearing on said matters in the City Council Chambers, City Hall, 137 Roosevelt Avenue, 3rd Floor, Pawtucket, RI.

DALOMBA, STEVEN, estate.

hearing March 8, 2023.

JOHNSON, DONESHIA, minor respondent. Appointment of Guardian: for hearing March 8,

KELLEY, JOHN T., respondent.

Appointment of Guardian: for hearing March 8,

MORRISSETTE, DAVID P., estate.

Sale of real estate located in Pawtucket at 139 Pullen Avenue designated Lots 199 and 200 on The meeting will be held in person on:

VALLEY, APRIL ANN, change of name. Change of name to April Alejandra Trejo: for

BOUVIER, MELISSA, estate.

hearing March 8, 2023.

Jacqueline Bouvier of Pawtucket has qualified as Administratrix: creditors must file their claims in the office of the probate clerk within the time required by law beginning February 21, 2023.

DANESI, MICHAEL DENNIS

(alias Michael D. Danesi), estate. the office of the probate clerk within the time re-

quired by law beginning February 21, 2023.

DIPAOLA, JOHN S. (alias John Stephen DiPaola), estate.

the office of the probate clerk within the time required by law beginning February 21, 2023.

KAY, DAVID N. (alias David Nelson Kay),

Mark W. Kay of Lincoln has qualified as Administrator: creditors must file their claims in the of-

by law beginning February 21, 2023.

MCKAY, RAYMOND L., estate. office of the probate clerk within the time required by law beginning February 21, 2023.

MORRISSETTE, DAVID P., estate.

qualified as Administrator and has appointed Robert J. Ameen, Esq. of Pawtucket as his agent in Rhode Island: creditors must file their claims La reunión se llevará a cabo en persona en: in the office of the probate clerk within the time required by law beginning February 21, 2023.

ST. HILAIRE, BONNIE CHERYL, estate.

Mark Spooner of Mesquite, NV has qualified as Administrator and has appointed Rebecca E. Dupras, Esq. of North Providence as his agent in Rhode Island: creditors must file their claims in the office of the probate clerk within the time required by law beginning February 21, 2023.

100 Legals

100 Legals **CITY OF PAWTUCKET**

137 ROOSEVELT AVENUE PAWTUCKET, RI 02860

A Draft Phase II Stormwater Annual Report, prepared in accordance with the Rhode Island Pollution Discharge Elimination System (RIPDES) The premises described in the mortgage will be program general permit for facilities operated by regulated small MS4s, will be available for review at the Department of Public Works Office starting March 1st, 2023

RIPDES PERMIT NUMBER: RIR040024

For any questions contact: Dylan Zelazo, Director of Administration City of Pawtucket 137 Roosevelt Avenue, Pawtucket, RI 02860 (401) 728-0500, Extension 281 dpw@pawtucketri.com

The administrative record containing all documents is on file and may inspected by appointment at the Department of Public Works, 250 Armistice Boulevard, Pawtucket, RI 02860, between 8:30 a.m. and 4:30 p.m. Monday through Friday except holidays.

Notice should be taken that if the City of Pawtucket receives a request from twenty-five (25) people, a governmental agency or subdivision, or an Association having no less than twenty-five (25) members, in writing, on or before 4:00 PM March 7, 2023, a public hearing will be held at the following time:

March 8, 2021 @ 1-2 PM

Interested persons should contact the City of Pawtucket in advance at dpw@pawtucketri.com to receive virtual meeting details and to confirm if a meeting will be held at the time noted above.

NOTICE OF A PUBLIC MEETING

SAGE Environmental, Inc., on behalf of the City of Central Falls is hereby providing Notice of a Public Meeting per RIGL Chapter 23-19.14 (The Industrial Property Remediation and Reuse Act/School Siting Law of 2013), more specifical-Iv Sections 23-19.14-4 (Objectives of Environmental Clean-Up) and 23-19.14-5 (Environmenal Equity and Public Participation).

The purpose of this meeting is to discuss the environmental investigations associated with the reuse of 756 and 770 Lonsdale Avenue, located in Central Falls, as a school.

The record for the public meeting shall be open for a period of not less than ten (10) and not more than twenty (20) business days after the Petition to Compromise and Settle Claim: for meeting for the receipt of public comment and will close at 4:30 PM on April 7, 2023. Public comments relative to the environmental investigation of the proposed project must be submitted in writing to: Ms. Joanna Pawlina, RI Department of Environmental Management - Office of Land Revitalization & Sustainable Materials Management, 235 Promenade Street, Providence, RI 02908. For more information regarding this notice, please contact Joanna Pawlina by telephone at (401) 222-2797 ext. 2777117, or by E-mail at Joanna.Pawlina@dem.ri.gov.

Date: March 22, 2023

Place: Office of Planning and Economic Development at NORIEGA, JONATHAN B. 1280 High Street, Central Falls, RI

4:30 pm **AVISO DE UNA REUNIÓN PÚBLICA**

SAGE Environmental, Inc., en nombre de la Ciu-Christine A. Danesi of Rehoboth, MA has quali- dad de Central Falls, proporciona por la prefied as Administratrix and has appointed Robert sente un Aviso de una eting pública según el March 15, 2023.

J. Ameen, Esq. of Pawtucket to be her agent in Capítulo 23-19.14 de RIGL (Ley de MeReme-Rhode Island: creditors must file their claims in diación y Reutilización de la Propiedad Industrial WUNSCHEL, LINDSEY JANET, change of name. Ley de Ubicación Escolar de 2013), más específicamente las Secciones 23-19.14-4 (Objetivos de la limpieza ambiental) y 23-19.14-5 (Equidad ambiental y participación pública).

Kimberly V. Sousa of Pawtucket has qualified as El propósito de esta reunión es discutir las in Administratrix: creditors must file their claims in vestigaciones ambientales asociadas conla reutien Central Falls, como escuela.

El registro de la reunión pública estará abierto ROY, GERARD R., estate. por un período de no menos de diez (10) y no más de veinte (20) días hábiles después de la reunión para la recepción de comentarios públicos fice of the probate clerk within the time required $_{
m V}$ se cerrará a las 4:30 PM del 7 de abril de 2023. Los comentarios públicos relativos a la investigación ambiental del proyecto propuesto deben enviarse por escrito a: Sra. Joanna Pawlina, De-Steven Pandolfi of Pawtucket has qualified as partamento de Gestión Ambiental de RI Oficina SOUSA, ADELINO R. Executor: creditors must file their claims in the de Revitalización de Tierras y Gestión de Materiales Sostenibles, 235 Promenade Street, Providence, RI 02908. Para obtener más información sobre este aviso, comuníquese con Joanna the office of the probate clerk within the time re-Pawlina por teléfono al (401) 222-2797 ext. quired by law beginning February 28, 2023. Armand A. Morrissette of Encinitas, CA has 2777117, o por correo electrónico a Joanna.Pawlina@dem.ri.gov.

Fecha: marzo 22, 2023

Lugar: Oficina de Planificación y Desarrollo Económico en 1280 High Street, Central Falls, RI

Hora:

100 Legals **LEGAL NOTICE**

INFORMATION _egal Notices may be


mailed to: The Times. P.O. Box 307, Pawtucket, RI 02860

(401) 767-8509 or Emailed to: classified@pawtuckettimes.com

Complete instructions should include: Publication dates, Billing information and the Name and Phone number of individual to contact if necessary.

LEGAL NOTICES MUST BE RECEIVED 3 BUSINESS DAYS PRIOR TO **PUBLICATION**

For further information Call 365-1438 Monday thru Friday; 8:30 a.m. To 4:30 p.m.

105 Announcments

CREDIT FOR ERRORS

Each advertiser is asked to check his/her adver-tisement on the first day of publication and to report any error to the Times classified department (365-1438) as soon as pos-sible for correction.

No adjustment will be given for typographical errors, which do not change the meaning or lessen the value of the advertisement.

Credit will be allowed only to that portion of the advertisement where the error oc-curred. 301 Room - No

Board

PAWTUCKET: Near center, laundry facilities, wall to wall carpets. \$100 & up 401-726-0995.

100 Legals 100 Legals

STATE OF RHODE ISLAND

PROBATE COURT OF THE

CITY OF PAWTUCKET

The Probate Court of the City of Pawtucket hereby gives notice of matters pending and for hearing in said Court in the City of Pawtucket. Court ified in notices below for hearing on said matters in the City Council Chambers, City Hall, 137 Roosevelt Avenue, 3rd Floor, Pawtucket, Rl.

(alias Jon Noriega), change of name.

Change of birth name from Jonnathan Benjamin Noriega to Jonathan Benjamin Noriega: for hearing March 15, 2023.

VALDEZ, ALINA,

adult adoption and change of name.

Adoption by Daniel Perez and change of name to Alina Crisalis Perez Delvillar: for hearing

Change of name to Lindsey James Wunschel: for hearing March 15, 2023.

JOHNSTON JR, RAYMOND HUGH., estate.

Raymond Hugh Johnston III of Pawtucket has qualified as Administrator: creditors must file their claims in the office of the probate clerk lización de 756 y 770 Lonsdale Avenue, ubicada within the time required by law beginning Febru-

David B. Chickering of Vineyard Haven, MA has qualified as Executor and has appointed Peter A. Hainley, Esq. of Cumberland as his agent in Rhode Island: creditors must file their claims in the office of the probate clerk within the time required by law beginning February 28, 2023.

(alias Adelino Sousa), estate. Joana D. Sousa of Pawtucket has qualified as Administratrix: creditors must file their claims in

SWIADER, VIOLA, estate.

Stephen Swiader of Smithfield has qualified as Executor: creditors must file their claims in the office of the probate clerk within the time required by law beginning February 28, 2023.

TETREAULT, LOIS J., estate.

David Nelson of North Dighton, MA has qualified as Administrator and has appointed Jillian K. Boughner of Pawtucket as his agent in Rhode Island: creditors must file their claims in the office of the probate clerk within the time required by law beginning February 28, 2023.

 Gas and Electric Water Heater Replacement Tankless Water Heaters.

REBATE PROGRAM AVAILABLE (401) 724-4129

AD TO RECEIVE

FOR ALL YOUR PLUMBING AND HEATING NEEDS

We Do Big or Small Jobs - FREE ESTIMATES

"There's More \$\$\$ In That Old Car, Truck, Van or Motorcycle That You Thought."

You'll fill up when you sell that old set of wheels through the Classifieds and this offer available only to subscribers.

5 LINES ONLY ad appears up to 60 days (No Dealers)

Call one of our Classified **Customer Service Reps** The Call - 767-8503 or The Times - 365-1438

MAKE SURE **THEY'RE** IN THE RIGHT CAR SEAT

NHTSA.gov/TheRightSeat

** NHTSA account

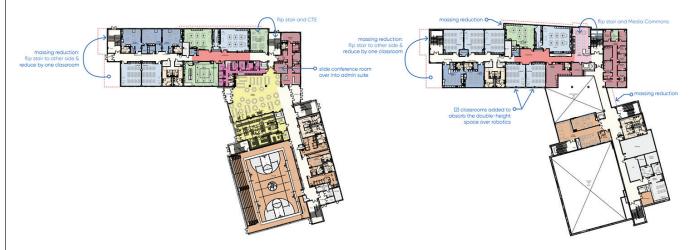
Don't miss a single issue, subscribe today! www.pawtuckettimes.com E-subscriptions available!

6

Stop & Shop celebrates healthy initiatives with Boys & Girls Club

Members of the **BOYS & GIRLS CLUB OF PAWTUCKET** celebrate completion of a new mural they painted with staff at Stop & Shop.

PAWTUCKET – Stop & Shop recently presented a \$75,000 donation to the Boys & Girls Club of Pawtucket to support youth programming focusing on overcoming health barriers, including food insecurity, nutrition education, and access to mental health care.


On Feb. 22, club members were treated to a reception in the club at 1 Moeller Place honoring the young talented artists who helped paint a mural alongside Stop & Shop associates in the club's dining space. Murals were also installed in the club's teen center, all designed to reflect Stop & Shop's and the club's shared commitment to providing access to nutritious food and promoting a health and active lifestyle for local youth, states a news release.

The Boys & Girls Club of Pawtucket directly impacts local children living in poverty and struggling to meet their basic daily needs of food, clothing, and shelter. Those are barriers to academic success, and those young people are at high risk of dropping out of school,

See **INITIATIVES**, Page 7

Central Falls School District

VE Lindates Lifest and second floors

First and second floor layouts of the proposed new **CENTRAL FALLS HIGH SCHOOL**.

CFHS construction and renovation plans forge ahead

By LUZJENNIFER MARTINEZ

Valley Breeze Deputy Editor

luzjennifer@valleybreeze.com

CENTRAL FALLS – Plans for a reconstructed Central Falls High School and a brand new dual-language K-8 learning center, along with several other area school renovations, are moving ahead after getting the green light from city officials over the last several months.

Since reported by *The Breeze* last September, stages one, two, and three of the proposed major land development project submitted to the Rhode Island Department of Elementary and Secondary Education has gotten approval from the Central Falls Board of Trustees, and City Solicitor Matt Jerzyk also confirmed that the Planning Board has given its first round of approvals and will provide another round once plans are further developed.

The proposal has also been

approved by the City Council and School Building committee but is awaiting stage three approvals from the Rhode Island Department of Education.

Meanwhile, RIDE agreed to fund the project in December, which is now projected to cost \$170 million.

Per RIDE, stages one and two of the project are part of the "necessity of school construction" application, which consists of an "identification of need" through a "letter of intent, facility assessment and projection preparations," and a "development of solution," which requires "schematic design development documentation that can be used to provide dependable cost estimates" for the project.

Stage three of the project is a design review, which is a requirement "for all projects that are part of a multi-year capital improvement plan that exceeds \$500,000, regardless of eligibility for housing aid"

"Geotechnical and Environmental testing are ongoing," said Jerzyk.
"The stage three submission to RIDE required much more detailed plans and drawings."

The Zoning Board will also be meeting tonight, March 8, to review and vote on the school construction project, to make sure it passes all zoning ordinances.

The plans to construct a high school at the site of the city-owned Higginson Avenue/Francis Corrigan Sports complex, convert Central Falls High School into a dual-language K-8 facility, and renovate Calcutt Elementary, Veterans Memorial Elementary, and Ella Risk Elementary schools, which are now slated for completion by December 2027.

In November 2022, Central Falls voters approved a question to provide \$250 million in bond funds "for the construction, renovation, and rehabilitation of the state's public schools."

NOTICE OF A PUBLIC MEETING

SAGE Environmental, Inc., on behalf of the City of Central Falls is hereby providing Notice of a Public Meeting per RIGL Chapter 23-19.14 (The Industrial Property Remediation and Reuse Act/School Siting Law of 2013), more specifically Sections 23-19.14-4 (Objectives of Environmental Clean-Up) and 23-19.14-5 (Environmental Equity and Public Participation).

The purpose of this meeting is to discuss the environmental investigations associated with the reuse of 756 and 770 Lonsdale Avenue, located in Central Falls, as a school.

The record for the public meeting shall be open for a period of not less than ten (10) and not more than twenty (20) business days after the meeting for the receipt of public comment and will close at 4:30 PM on April 7, 2023. Public comments relative to the environmental investigation of the proposed project must be submitted in writing to: Ms. Joanna Pawlina, RI Department of Environmental Management – Office of Land Revitalization & Sustainable Materials Management, 235 Promenade Street, Providence, RI 02908. For more information regarding this notice, please contact Joanna Pawlina by telephone at (401) 222-2797 ext. 2777117, or by E-mail at Joanna.Pawlina@dem.ri.gov.

The meeting will be held in person on:

Date: March 22, 2023

Place: Office of Planning and Economic Development at 1280 High Street, Central Falls, RI

Time: 4:30 pm

AVISO DE UNA REUNIÓN PÚBLICA

SAGE Environmental, Inc., en nombre de la Ciudad de Central Falls, proporciona por la presente un Aviso de una eting pública según el Capítulo 23-19.14 de RIGL (Ley de MeRemediación y Reutilización de la Propiedad Industrial / Ley de Ubicación Escolar de 2013), más específicamente las Secciones 23-19.14-4 (Objetivos de la limpieza ambiental) y 23-19.14-5 (Equidad ambiental y participación pública).

El propósito de esta reunión es discutir las investigaciones ambientales asociadas conla reutilización de 756 y 770 Lonsdale Avenue, ubicada en Central Falls, como escuela.


El registro de la reunión pública estará abierto por un período de no menos de diez (10) y no más de veinte (20) días hábiles después de la reunión para la recepción de comentarios públicos y se cerrará a las 4:30 PM del 7 de abril de 2023. Los comentarios públicos relativos a la investigación ambiental del proyecto propuesto deben enviarse por escrito a: Sra. Joanna Pawlina, Departamento de Gestión Ambiental de RI – Oficina de Revitalización de Tierras y Gestión de Materiales Sostenibles, 235 Promenade Street, Providence, RI 02908. Para obtener más información sobre este aviso, comuníquese con Joanna Pawlina por teléfono al (401) 222-2797 ext. 2777117, o por correo electrónico a Joanna.Pawlina@dem.ri.gov.

La reunión se llevará a cabo en persona en:

Fecha: marzo 22, 2023

Lugar: Oficina de Planificación y Desarrollo Económico en 1280 High Street, Central Falls, RI

Hora: 16:30

January 26, 2023

Joanna Pawlina, Environmental Scientist Rhode Island Department of Environmental Management Office of Land Revitalization & Sustainable Material Management 235 Promenade Street Providence, RI 02908

RE: International Meat Market 756 & 770 Lonsdale Avenue Central Falls, Rhode Island Plat Map 6 / Lots 26 & 203

Dear Ms. Pawlina:

Attached is the Public Notice document notifying abutters of the Site Investigation activities at the above-referenced property. A list of recipients notified via certified mail is provided in the following table.

Abutting Properties to 756 & 770 Lonsdale Avenue Central Falls, Rhode Island

Plat/Lot	Property Address	Owner/Occupant
9/173	738 Lonsdale Avenue	Beatrice Somuah
8/185	743 Lonsdale Avenue	Sandra Cano
8/186	61-63 Claremont Street	Gregorio Morales
8/200	767-771 Lonsdale Avenue	Estate of Roger Garant
9/207	776 Lonsdale Avenue	Renaissance Development Corp
9/50	10 Higginson Avenue	City of Central Falls

Should you have any questions, comments or require further information, please contact this office.

Sincerely,

SAGE Environmental, Inc.

Acob H. Butterworth, MS, LSP

Vice President

JHB:alm

Notification to Abutters
International Meat Market
756 & 770 Lonsdale Avenue
Central Falls, Rhode Island
Plat Map 6 / Lots 26 & 203

January 26, 2023

In accordance with the Rhode Island Department of Environmental Management's (RIDEM's) <u>Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases</u> (the <u>Remediation Regulations</u>), **City of Central Falls** is providing notice to abutters of their intent to conduct a **Site Investigation** at the property addressed as **756 & 770 Lonsdale Avenue in Central Falls**, **Rhode Island**. The goal of this investigation is to determine if a release of hazardous materials has occurred on the property. The investigation will involve the sampling of environmental media (specifically soil, and groundwater) by **SAGE Environmental, Inc.** personnel. The property is further designated as Plat **6**, Lots **26 & 203** of the City of **Central Falls** Tax Assessor's plat maps. RIDEM has determined that conducting this investigation is in the public interest.

The investigation is scheduled to be conducted in **February 2023** and is expected to take approximately **three to four weeks**. The results of the investigation should be available by **March/April 2023**.

For more information regarding this notice or this investigation contact **Joanna Pawlina** at (401) 222-2797, extension **777117** or via email at **Joanna.Pawlina@dem.ri.gov**. To make arrangements to review Department records pertaining to this property location, contact **Angela Spadoni** at (401) 222-2797, extension **2777307** or via email at **Angela.Spadoni@dem.ri.gov**.

Notificación a Abutters Mercado Internacional de la Carne 756 y 770 Lonsdale Avenue Central Falls, Rhode Island Mapa Plat 6 / Lotes 26 y 203

enero 26, 2023

De acuerdo con las Reglas y Regulaciones del Departamento de Gestión Ambiental de Rhode Island (RIDEM) para la Investigación y Remediación de Emisiones de Materiales Peligrosos (las Regulaciones de Remediación), la Ciudad de Central Falls está notificando a los abutters de su intención de realizar una Investigación del Sitio en la propiedad dirigida como 756 y 770 Lonsdale Avenue en Central Falls, Rhode Island. El objetivo de esta investigación es determinar si se ha producido una liberación de materiales peligrosos en la propiedad. La investigación incluirá el muestreo de medios ambientales (específicamente suelo y aguas subterráneas) por parte de SAGE Environmental, Inc. personal. La propiedad se designa además como Plat 6, Lotes 26 y 203 de los mapas de la plataforma del Asesor de Impuestos de la Ciudad de Central Falls. RIDEM ha determinado que llevar a cabo esta investigación es de interés público.

La investigación está programada para febrero de **2023** y se espera que dure aproximadamente **de tres a cuatro semanas**. Los resultados de la investigación deberían estar disponibles para marzo/abril de **2023**.

Para obtener más información sobre este aviso o esta investigación, comuníquese con **Joanna Pawlina** al (401) 222-2797, extensión **777117** o por correo electrónico a **Joanna.Pawlina@dem.ri.gov**. Para hacer arreglos para revisar los registros del Departamento relacionados con la ubicación de esta propiedad, comuníquese con **Angela Spadoni** al (401) 222-2797, extensión **2777307** o por correo electrónico a **Angela.Spadoni@dem.ri.gov**.

Site-Specific Fact Sheet International Meat Market 756 & 770 Lonsdale Avenue Central Falls, Rhode Island Plat Map 6 / Lots 26 & 203

SAGE Environmental, Inc. (SAGE) has prepared the Site-Specific Fact Sheet in accordance with Rule 1.8.7(B)(i) of the Rhode Island Department of Environmental Management (RIDEM) Remediation Regulations.

In December 2022, SAGE

conducted a Phase I Environmental Site Assessment and Limited Subsurface Investigation (LSI) of the referenced property. The Site's historical utilization was identified as a dry-cleaning operation between 1957 to 1971. Additionally, an unknown heating source was utilized at the Site within a former structure. Finally, potential historical filling activities within the surrounding area had occurred between at least 1939 through 1972. Based on these findings, SAGE conducted a LSI. In summary, impacts have been identified at the Site and include:

- Laboratory analytical results for select soil samples collected from the Site identified a number of semi volatile organic compounds (SVOCs), arsenic, lead, and total petroleum hydrocarbons (TPH) in excess of the RIDEM Method 1 Residential Direct Exposure Criteria (R-DEC); and
- No groundwater impacts were identified above RIDEM GB Groundwater Objectives at the Site.

Should you have any questions, please feel free to contact SAGE Environmental, Inc. at (401) 723-9900 or RIDEM Office of Land Revitalization and Sustainable Materials Management Project Manager Joanna Pawlina at (401) 222-2797 x 2777117 or via email at Joanna.Pawlina@dem.ri.gov.

Hoja informativa específica del sitio Mercado Internacional de la Carne 756 y 770 Lonsdale Avenue Central Falls, Rhode Island Mapa Plat 6 / Lotes 26 y 203

SAGE Environmental, Inc. (SAGE) ha preparado la Hoja de Datos Específicos del Sitio de acuerdo con la Regla 1.8.7(B)(i) de las Regulaciones de Remediación del Departamento de Gestión Ambiental de Rhode Island (RIDEM).

En diciembre de 2022, SAGE realizó una Evaluación Ambiental del Sitio de Fase I e Investigación Limitada del Subsuelo (LSI) de la propiedad referenciada. La utilización histórica del sitio se identificó como una operación de limpieza en seco entre 1957 y 1971. Además, se utilizó una fuente de calor desconocida en el sitio dentro de una estructura anterior. Finalmente, las posibles actividades de relleno histórico dentro del área circundante habían ocurrido entre al menos 1939 y 1972. Sobre la base de estos hallazgos, SAGE realizó un LSI. En resumen, se han identificado impactos en el Sitio e incluyen:

- 1. Los resultados analíticos de laboratorio para muestras de suelo seleccionadas recolectadas en el Sitio identificaron una serie de compuestos orgánicos semivolátiles (SVOC), arsénico, plomo e hidrocarburos totales de petróleo (TPH) que exceden los Criterios de Exposición Directa Residencial (R-DEC) del Método 1 de RIDEM; y
- 2. No se identificaron impactos en las aguas subterráneas por encima de los objetivos de agua subterránea de RIDEM GB en el sitio.

Si tiene alguna pregunta, no dude en comunicarse con SAGE Environmental, Inc. al (401) 723-9900 o con la Gerente de Proyectos de la Oficina de Revitalización de Tierras y Gestión de Materiales Sostenibles de RIDEM, Joanna Pawlina, al (401) 222-2797 x 2777117 o por correo electrónico a Joanna.Pawlina@dem.ri.gov.

<u>The Rhode Island Department of Environmental Management's</u> <u>Site Remediation Program & Environmental Justice</u>

DEM's SITE REMEDIATION PROGRAM

WHO WE ARE

The Rhode Island Department of Environmental Management (DEM) is the state agency responsible for preserving the quality of Rhode Island's environment. In 1995, Rhode Island passed the Industrial Property Remediation and Reuse Act (amended in 1997) and established a voluntary program for brownfields cleanup through DEM. This Act created the Office of Land Revitalization & Sustainable Material Management's (LRSMM) Site Remediation Program. The Program encourages and supports the redevelopment and reuse of contaminated properties throughout RI. The Program was established to provide fair, comprehensive, and consistent regulation of the investigation and remediation of hazardous waste, hazardous material, and petroleum releases. The State program is designed to determine if a site poses a threat to human health and the environment and efficiently determine a remedy that is effective but not overly burdensome to the parties involved.

PROGRAM PURPOSE

The purpose of the Site Remediation Program is to regulate and provide technical oversight for the investigation and remediation of releases of hazardous waste or hazardous material to the environment; to ensure that those investigations and remedial activities are conducted in a consistent manner that adequately protects human health and the environment; and to enforce regulations regarding the proper disposal of abandoned hazardous waste.

THE PROCESS

Cleaning a contaminated site requires investigation, planning, and action. The Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (https://rules.sos.ri.gov/regulations/part/250-140-30-1) define the specific documents that are needed, or may be needed as part of that process:

- Notification of Release
- Site Investigation Work Plan (SIWP)
- Public Notice of Investigation
- Site Investigation Report (SIR)
- Public Notice of Completed Site Investigation & Public Comment Period on Technical Feasibility of Proposed Remedy
- Remedial Action Work Plan (RAWP)
- Remedial Action
- Closure Report

Email: Provided in Letter

• Environmental Land Usage Restriction (ELUR), if applicable

FOR MORE INFORMATION, PLEASE CONTACT:

OR

DEM Contact in Attached Letter

RIDEM/OLRSMM – Site Remediation 235 Promenade Street, Suite 380 Providence, RI 02908 Phone: 401-222-2797 Ashley L. Blauvelt, P.E., Environmental Engineer IV RIDEM/OLRSMM – Site Remediation 235 Promenade Street, Suite 380 Providence, RI 02908 Phone: 401-222-2797 x 2777126

Email: Ashley.blauvelt@dem.ri.gov

BROWNFIELDS

WHAT IS A BROWNFIELD

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.

DETERMING IF A SITE IS A BROWNFIELD OR IS CONTAMINATED

To determine if a site is a brownfield, a Phase I Environmental Site Assessment (ESA) should be conducted. This will determine the history of the property in which one is interested. The Phase I ESA will also determine any Recognized Environmental Concerns (RECs). If RECs are determined, a Phase II ESA, otherwise referred to as a site investigation, will be conducted. The Phase II ESA will determine whether contamination exists at a site.

TYPES OF CONTAMINANTS

- Metals
- Volatile Organic Compounds (VOCs)
- Semi-VOCs
 - Polycyclic Aromatic
 Hydrocarbons (PAHs)
- Polychlorinated Biphenyls (PCBs)
- Petroleum Hydrocarbons

EXAMPLES OF BROWNFIELDS

- Abandoned Mills
- Gasoline & Service Stations
- Manufacturing Companies
- Dry Cleaners
- Print Shops

- Commercial / Strip Malls
 - Hair & Nail Salons
 - Home Improvement / Paint Stores
- Doctor, Dentist, Veterinary Clinic
- Farms & Orchards

ADVANTAGES TO REDEVELOPING A BROWNFIELD

- Existing infrastructure
- Tax incentives
- Labor concentration
- Improve public health and safety
- Improve air and water quality
- Preserve historical landmarks and heritage architecture
- Beautify urban landscapes
- Reduce neighborhood blight
- Facilitate job growth

REDEVELOPMENT POSSIBILITIES

- Open Space / Green Space / Athletic Fields
- Affordable Housing
- Industrial/Commercial Space
- Mixed-Use Space
- So much more!

ENVIRONMENTAL JUSTICE

HOW IT STARTED

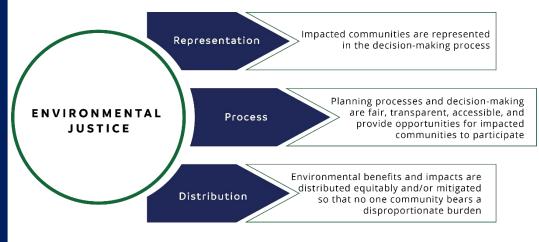
As a result of Rhode Island's industrial history and heritage, many properties in the State have been impacted by past activities. Impacts include environmental contamination by oil and hazardous chemicals that were used in these operations. Many of the impacted sites are in the urban centers of the State. In many cases, low income and minority populations live in the communities around the sites. These populations have been subject to many historical inequities. Addressing these inequities and providing a fair, effective process for future involvement in site remediation projects is a main premise of environmental justice.

WHAT IS ENVIRONMENTAL JUSTICE (EJ)

EJ is the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income, with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies.

WHAT IS AN EJ AREA

EJ focus areas are defined as United States Census block groups that are in the highest fifteen percent (15%) of all Census block groups in RI with respect to the percent population identified as racial minorities or the highest fifteen percent (15%) of RI census block groups with respect to percent population with income identified as being twice the federal poverty level or below (utilizing the most recent and readily available data from the United States Census).


IS MY PROPERTY IN AN EJ AREA

Check out DEM's ArcGIS map:

https://ridemgis.maps.arcgis.com/apps/webappviewer/index.html?id=87e104c8ad b449eb9f905e5f18020de5

HOW DEM ADDRESSES EJ

Reference RIGL §23-19.14-5 to learn more about environmental equity and public participation.

Source: https://deltacouncil.ca.gov/environmental-justice

El Programa de Rehabilitación de Terrenos y Justicia Ambiental del Departamento de Gestión Ambiental de Rhode Island

PROGRAMA DE REHABILITACIÓN DE TERRENOS DEL DEM PROGRAMA

PROGRAMAS DE REHABILITACIÓN DE TERRENOS DEL DEM

QUIÉNES SOMOS

El Departamento de Gestión Ambiental de Rhode Island (DEM) es la agencia estatal responsable de preservar la calidad del medio ambiente de Rhode Island. En 1995, Rhode Island aprobó la Ley de Rehabilitación y Reutilización de la Propiedad Industrial (modificada en 1997) y estableció un programa voluntario de limpieza de terrenos edificados abandonados a través del DEM. Esta ley creó el Programa de Rehabilitación de Terrenos de la Oficina de Revitalización del Suelo y Gestión de Materiales Sostenibles (LRSMM). El programa fomenta y apoya la reutilización de propiedades contaminadas en todo RI. El Programa se estableció para proporcionar una regulación justa, exhaustiva y coherente de la investigación y rehabilitación de residuos peligrosos, materiales peligrosos y emisiones de petróleo. El programa estatal está diseñado para determinar si un sitio representa una amenaza para la salud humana y el medio ambiente, y para identificar una solución que sea eficaz pero que no sea excesivamente costosa para las partes involucradas.

OBJETIVO DEL PROGRAMA

El objetivo del Programa de Rehabilitación de Terrenos es regular y proporcionar supervisión técnica para la investigación y la rehabilitación de las liberaciones de residuos peligrosos o materiales peligrosos en el medio ambiente; asegurar que esas investigaciones y actividades de rehabilitación se lleven a cabo de una manera uniforme que proteja adecuadamente la salud humana y el medio ambiente; y hacer cumplir los reglamentos relativos a la eliminación adecuada de los residuos peligrosos abandonados.

EL PROCESO

La limpieza de un terreno contaminado requiere investigación, planificación y acción. Las normas y reglamentos para la investigación y rehabilitación de vertidos de materiales peligrosos (https://rules.sos.ri.gov/regulations/part/250-140-30-1) definen los documentos específicos que se necesitan o pueden necesitarse como parte de ese proceso:

- Notificación de divulgación
- Plan de trabajo de investigación del sitio (SIWP)
- Aviso público de la investigación
- Informe de investigación del sitio (SIR)
- Aviso público sobre la finalización de la investigación del terreno y período de comentarios públicos sobre la viabilidad técnica de la solución propuesta
- Plan de trabajo de la acción de rehabilitación (RAWP)
- Acción de rehabilitación
- Informe de finalización
- Restricción del uso del suelo para fines ambientales (ELUR), si corresponde

PARA OBTENER MAS INFORMACION, COMUNIQUESE CON:

Contacto del DEM en la carta adjunta

RIDEM/OLRSMM – Rehabilitación de sitios 235 Promenade Street, Suite 380 Providence, RI 02908 Teléfono: 401-222-2797 Correo electrónico: Proporcionado en la carta Ashley L. Blauvelt, P.E.,
Ingeniera Ambiental IV RIDEM/OLRSMM –
Rehabilitación de terrenos 235 Promenade
Street, Suite 380
Providence, RI 02908
Teléfono: 401-222-2797 x 2777126
Correo electrónico:
Ashley blauvelt@dem ri goy

QUÉ ES UN TERRENO EDIFICADO ABANDONADO

Los terrenos edificados abandonados son bienes inmuebles cuya ampliación, rehabilitación o reutilización puede complicarse por la presencia o posible presencia de una sustancia peligrosa o un material contaminante.

CÓMO DETERMINAR SI UN SITIO ES UN TERRENO EDIFICADO ABANDONADO O SI ESTÁ CONTAMINADO

Para determinar si un sitio es un terreno edificado abandonado, se debe realizar una Evaluación Ambiental del Sitio (ESA) de Fase I. Esto determinará la historia de la propiedad en la que se está interesado. La fase I de la ESA también determinará cualquier problema ambiental reconocido (REC). Si se determina la presencia de un REC, se llevará a cabo una ESA de fase II, también conocida como investigación del sitio. La fase II de la ESA determinará si el sitio está contaminado.

TIPOS DE CONTAMINANTES

- Metales
- Compuestos orgánicos volátiles (VOC)
- Semi-VOC

 Hidrocarburos aromáticos policíclicos (PAH)
- Bifenilos policlorados (PCB)
- Hidrocarburos de petróleo

EJEMPLOS DE TERRENOS EDIFICADOS ABANDONADOS

- Molinos abandonados
- Gasolineras y estaciones de servicio
- Fábricas
- Tintorerías
- Imprentas

- Centros comerciales
 Salones de peluquería y manicura
 Tiendas de pintura y ferreterías
- Clínicas médicas, dentales y veterinarias
- Granjas y huertos

VENTAJAS DE LA REURBANIZACIÓN DE UN TERRENO EDIFICADO ABANDONADO

- Infraestructura existente
- Incentivos fiscales
- Concentración de mano de obra
- Mejora de la salud y la seguridad públicas
- Mejora de la calidad del aire y del agua
- Preservación de los monumentos históricos y de la arquitectura patrimonial
- Embellecimiento de los paisajes urbanos
- Reducción del deterioro de los vecindarios
- Fomento del crecimiento del empleo

POSIBILIDADES DE REURBANIZACIÓN

- Espacios abiertos/espacios verdes/campos de deporte
- Viviendas asequibles
- Espacio industrial/comercial
- Espacio de uso mixto
- Y mucho más

JUSTICIA AMBIENTAL

DE QUÉ MANERA SE COMENZÓ

Como resultado de la historia y el patrimonio industrial de Rhode Island, muchas propiedades del estado han sido impactadas por actividades pasadas. Los impactos incluyen la contaminación ambiental por petróleo y productos químicos peligrosos que se utilizaron en estas operaciones. Muchos de los sitios afectados se encuentran en los centros urbanos del Estado. En muchos casos, hay comunidades de bajos ingresos y grupos marginados que viven alrededor de estos sitios. Estas poblaciones han sufrido muchas desigualdades históricas. Una de las principales premisas de la justicia ambiental es abordar estas desigualdades y ofrecer un proceso justo y eficaz para la futura participación en los proyectos de rehabilitación de sitios.

QUÉ ES LA JUSTICIA AMBIENTAL (EJ)

La justicia ambiental es el trato justo y la participación significativa de todas las personas, independientemente de su raza, color, origen nacional o ingresos, con respecto al desarrollo, la aplicación y el cumplimiento de las leyes, reglamentos y políticas ambientales.

QUÉ ES UN ÁREA DE JUSTICIA AMBIENTAL

Las áreas de enfoque de justicia ambiental se definen como grupos de bloques del censo de los Estados Unidos que se encuentran en el quince por ciento (15%) más alto de todos los grupos de bloques del censo de RI con respecto al porcentaje de población identificada como minorías raciales o el quince por ciento (15%) más alto de los grupos de bloques del censo de RI con respecto al porcentaje de población con ingresos identificados como el doble del nivel federal de pobreza o por debajo de este (utilizando los datos más recientes y disponibles del censo de los Estados Unidos).


¿ESTÁ MI PROPIEDAD EN UN ÁREA DE JUSTICIA AMBIENTAL?

Consulte el mapa ArcGIS del DEM:

 $\frac{https://ridemgis.maps.arcgis.com/apps/webappviewer/index.html?id=87e104c8ad}{b449eb9f905e5f18020de5}$

CÓMO EL DEM ABORDA LA JUSTICIA AMBIENTAL

Consulte la Ley General de Rhode Island (RIGL) §23-19.14-5 para obtener más información sobre la equidad ambiental y la participación pública.

Fuente: https://deltacouncil.ca.gov/environmental-justice

Plat/Lot	Address	Owner	Owner Address
9/173	738 Lonsdale Avenue	Beatrice Somuah	738 Lonsdale Avenue, Central Falls, RI 02860
8/185	743 Lonsdale Avenue	Sandra Cano	302 Pullen Avenue, Pawtucket, RI 02861
8/186	61-63 Claremont Street	Gregorio Morales	61 Claremont Street, Central Falls, RI 02863
8/200	767-771 Lonsdale Avenue	Estate of Roger Garant	771 Lonsdale Avenue, Central Falls, RI 02863
9/207	776 Lonsdale Avenue	Renaissance Development Corp	35 Sockanosset Crossroad, Cranston, RI 02920
9/50	10 Higginson Avenue	City of Central Falls	508 Broad Street, Central Falls, RI 02863

ENVIRONMENTAL INVESTIGATION – REMEDIATION PROJECT INVESTIGACIÓN AMBIENTAL – PROYECTO DE REMEDIACIÓN

International Meat Market 756 & 770 Lonsdale Avenue Plat Map 6 / Lots 26 & 203 Central Falls, Rhode Island

FOR MORE INFORMATION, CONTACT: PARA OBTENER MÁS INFORMACIÓN, CONTACTO:

Joanna Pawlina, Environmental Scientist
RI Department of Environmental Management
Office of Land Revitalization and Sustainable Materials
Management

Site Remediation & Brownfields 235 Promenade Street Providence, RI 02908

Phone: (401) 222-2797 x 2777117 Email: Joanna.Pawlina@dem.ri.gov Joanna Pawlina, científica ambiental Departamento de Gestión Ambiental de RI Oficina de Revitalización de Tierras y Gestión Sostenible de Materiales

Remediación del sitio y terrenos industriales abandonados 235 Promenade Street Providence, RI 02908

Teléfono: (401) 222-2797 x 2777117 Correo electrónico: Joanna.Pawlina@dem.ri.gov

OR

SAGE Environmental, Inc. 301 Friendship Street Providence, RI 02903 401-723-9900 www.SAGE-Enviro.com

Beatrice Somuah 738 Lonsdale Avenue Central Falls, RI 02860

RE: Site Investigation Activities
International Meat Market
756 & 770 Lonsdale Avenue
Plat Map 6 / Lots 26 & 203
Central Falls, Rhode Island

Dear Property Owner:

The attached Public Notice is being provided to inform you that Site Investigation activities at the referenced property will commence. This property neighbors your property, located at 738 Lonsdale Avenue in Central Falls, Rhode Island.

Should you have any questions or comments concerning this correspondence, please do not hesitate to contact this office at (401) 723-9900 or the designated contact at the Rhode Island Department of Environmental Management, Office of Land Revitalization & Sustainable Materials Management, stipulated in the Notice.

Sincerely,

SAGE Environmental, Inc.

Jacob H. Butterworth, MS, LSP

Jacob H. Butterworth

Vice President

Sandra Cano 302 Pullen Avenue Pawtucket, RI 02861

RE: Site Investigation Activities

International Meat Market 756 & 770 Lonsdale Avenue Plat Map 6 / Lots 26 & 203 Central Falls, Rhode Island

Dear Property Owner:

The attached Public Notice is being provided to inform you that Site Investigation activities at the referenced property will commence. This property neighbors your property, located at 743 Lonsdale Avenue in Central Falls, Rhode Island.

Should you have any questions or comments concerning this correspondence, please do not hesitate to contact this office at (401) 723-9900 or the designated contact at the Rhode Island Department of Environmental Management, Office of Land Revitalization & Sustainable Materials Management, stipulated in the Notice.

Sincerely,

SAGE Environmental, Inc.

Jacob H. Butterworth, MS, LSP

Jacob H. Butterworth

Vice President

Gregorio Morales 61 Claremont Street Central Falls, RI 02863

RE: Site Investigation Activities

International Meat Market 756 & 770 Lonsdale Avenue Plat Map 6 / Lots 26 & 203 Central Falls, Rhode Island

Dear Property Owner:

The attached Public Notice is being provided to inform you that Site Investigation activities at the referenced property will commence. This property neighbors your property, located at 61-63 Claremont Street in Central Falls, Rhode Island.

Should you have any questions or comments concerning this correspondence, please do not hesitate to contact this office at (401) 723-9900 or the designated contact at the Rhode Island Department of Environmental Management, Office of Land Revitalization & Sustainable Materials Management, stipulated in the Notice.

Sincerely,

SAGE Environmental, Inc.

Jacob H. Butterworth, MS, LSP

Jacob H. Butterworth

Vice President

Estate of Roger Garant 771 Lonsdale Avenue Central Falls, RI 02863

RE: Site Investigation Activities

International Meat Market 756 & 770 Lonsdale Avenue Plat Map 6 / Lots 26 & 203 Central Falls, Rhode Island

Dear Property Owner:

The attached Public Notice is being provided to inform you that Site Investigation activities at the referenced property will commence. This property neighbors your property, located at 767-771 Lonsdale Avenue in Central Falls, Rhode Island.

Should you have any questions or comments concerning this correspondence, please do not hesitate to contact this office at (401) 723-9900 or the designated contact at the Rhode Island Department of Environmental Management, Office of Land Revitalization & Sustainable Materials Management, stipulated in the Notice.

Sincerely,

SAGE Environmental, Inc.

Jacob H. Butterworth, MS, LSP

Jacob H. Butterworth

Vice President

Renaissance Development Corp 35 Sockanosset Crossroad Cranston, RI 02920

RE: Site Investigation Activities

International Meat Market 756 & 770 Lonsdale Avenue Plat Map 6 / Lots 26 & 203 Central Falls, Rhode Island

Dear Property Owner:

The attached Public Notice is being provided to inform you that Site Investigation activities at the referenced property will commence. This property neighbors your property, located at 776 Lonsdale Avenue in Central Falls, Rhode Island.

Should you have any questions or comments concerning this correspondence, please do not hesitate to contact this office at (401) 723-9900 or the designated contact at the Rhode Island Department of Environmental Management, Office of Land Revitalization & Sustainable Materials Management, stipulated in the Notice.

Sincerely,

SAGE Environmental, Inc.

Jacob H. Butterworth, MS, LSP

Jacob H. Butterworth

Vice President

City of Central Falls 508 Broad Street Central Falls, RI 02863

RE: Site Investigation Activities
International Meat Market
756 & 770 Lonsdale Avenue
Plat Map 6 / Lots 26 & 203
Central Falls, Rhode Island

Dear Property Owner:

The attached Public Notice is being provided to inform you that Site Investigation activities at the referenced property will commence. This property neighbors your property, located at 10 Higginson Avenue in Central Falls, Rhode Island.

Should you have any questions or comments concerning this correspondence, please do not hesitate to contact this office at (401) 723-9900 or the designated contact at the Rhode Island Department of Environmental Management, Office of Land Revitalization & Sustainable Materials Management, stipulated in the Notice.

Sincerely,

SAGE Environmental, Inc.

Jacob H. Butterworth, MS, LSP

Jacob H. Butterworth

Vice President

DO NOT REMOVE THIS PAGE INTENTIONALLY LEFT BLANK

PHASE I ENVIRONMENTAL SITE ASSESSMENT

and

LIMITED SUBSURFACE INVESTIGATION

10 Higginson Avenue
A Portion of Assessor's Plat 9, Lot 50
Central Falls, Rhode Island

Prepared for:

L.A. Torrado 35 Greenwich Street Providence, Rhode Island 02907

Prepared by:

SAGE Environmental, Inc. 172 Armistice Boulevard Pawtucket, Rhode Island 02860

SAGE Project #S3969

November 8, 2021

TABLE OF CONTENTS

EXECU	ITIVE S	SUMMARY	I		
FIND	INGS		IV		
OPIN	IIONS		۰۷		
Cond	CLUSION	l	V		
1.0	INTE	RODUCTION	1		
1.1	Purp	OSE	1		
1.2	SCOPE OF SERVICES				
1.3		FICANT ASSUMPTIONS			
1.4		AL TERMS AND CONDITIONS			
1.5		RELIANCE			
1.6	DEVIA	ATIONS	2		
1.7	DATA	GAPS	2		
2.0	SITE	DESCRIPTION	2		
3.0		R PROVIDED INFORMATION			
3.1		RONMENTAL LIENS OR ENVIRONMENTAL LAND USE RESTRICTION (ELUR)			
3.2		ALIZED KNOWLEDGE			
3.3		ATION REDUCTION FOR ENVIRONMENTAL ISSUES			
3.4		ER, PROPERTY MANAGER AND OCCUPANT INFORMATION			
3.5		ON FOR PERFORMING PHASE I			
3.6		IOUS ENVIRONMENTAL ASSESSMENTS			
4.0	REC	ORDS REVIEW	4		
		RONMENTAL RECORD SOURCES (FEDERAL AND STATE)			
	.1.1	Site Related Records Review/Discussion			
4	.1.2	Surrounding Locations Related Records Review/Discussion	5		
4	.1.3	Non-Geocoded Records Review Summary			
4.2	Mun	ICIPAL RECORDS AND FILE REVIEWS	8		
4	.2.1	Chain-Of-Title Records	8		
4	.2.2	Fire Department	8		
4	.2.3	Building and Zoning Records	8		
4	.2.4	Public Works Records	8		
4.3	PHYS	ical Setting			
4	.3.1	Geology and Hydrology	9		
4	.3.2	Priority Resources GIS Map	9		
4.4	Н	ISTORICAL USE INFORMATION ON THE SITE AND ADJOINING PROPERTIES			
4	.4.1	Sanborn Maps			
	.4.2	Aerial Photographs			
4		Local Street Directories			
5.0	SITE	RECONNAISSANCE	12		
5.1		HODOLOGY AND LIMITING CONDITIONS			
5.2	GENE	ral Site Setting & Site Reconnaissance Observations			
5	.2.1	Notable Site Walkover Conditions			
_	5.2.2 Interior Inspection				
	5.2.3 Exterior Inspection				
6.0		OR ENCROACHMENT SCREEN VIA ASTM E2600-15			
6.1		1 Screening Evaluation			
6.2		2 Screening Evaluation			
7.0	INTE	RVIEWS	15		

7.1	Interview with Owner	
7.2	Interview with Local Government Officials	15
7.3	Interview with Others	15
8.0	ADDITIONAL SERVICES	15
8.2	SOIL BORING ADVANCEMENT/MONITORING WELL INSTALLATIONS	15
8.3	SOIL SAMPLING	
8.4	GROUNDWATER SAMPLING	17
8.5	GROUNDWATER ELEVATION SURVEY	17
8.6	SOIL ANALYTICAL RESULTS SUMMARY	18
8.7	GROUNDWATER ANALYTICAL RESULTS SUMMARY	20
9.0	FINDINGS & CONCLUSIONS	20
9.1	FINDINGS	20
9.2	OPINIONS	20
9.3	CONCLUSION	21
10.0	SIGNATURES AND QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONALS	21
11.0	LIMITATIONS	
12.0	REFERENCES	23

ATTACHMENTS

Figures

Photographs

Attachment 1 EDR Report

Attachment 2 Site Municipal Records

Attachment 3 EDR Sanborn Maps

Attachment 4 EDR City Directory Report

Attachment 5 Soil Boring/Groundwater Monitoring Well Construction Logs

Attachment 6 Laboratory Analytical Report & Chain of Custody Documentation - Soil

Attachment 7 Laboratory Analytical Report & Chain of Custody Documentation - Groundwater

EXECUTIVE SUMMARY

This report presents the findings of a Phase I Environmental Site Assessment (ESA) and Limited Subsurface Investigation (LSI) conducted by SAGE Environmental, Inc. (SAGE) of one (1) parcel(s) addressed as 10 Higginson Avenue in Central Falls, Rhode Island (A Portion of Assessor's Plat 9, Lot 50) (hereinafter, "Site"). The Phase I ESA was performed in conformance with the scope and limitations of the American Society for Testing and Materials (ASTM) Designation E1527–13: Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process and the United States Environmental Protection Agency's (U.S. EPA's) All Appropriate Inquiries (AAI) Rule under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), 40 CFR § 312 (2005). The LSI was conducted in accordance with standard industry practice. Any exceptions to or deletions from this practice are described in **Section 1.6** of this report titled "Deviations."

The results of the Phase I ESA opined that the following finding constituted a Recognized Environmental Condition (REC) in connection to the Site:

Suspect filling activities: A review of historical aerial images and topographical maps indicated that the Site was formerly a lowland wetland area that had been filled over time. During a review of available documentation, SAGE did not identify evidence of laboratory analysis of the soils brought on Site during the filling of the former lowland wetland area. Typical historical fill material often included contaminated soils. Given that no laboratory analysis documentation was identified for the fill material brought onto the Site, it is possible that this material contains contaminants and may have resulted in a release to the environment. As such, this finding constitutes a REC.

Based on the listed REC, a Limited Subsurface Investigation (LSI) was performed to evaluate subsurface conditions. Further details of the LSI are provided in Section 8.0 of this report.

In summary, the LSI included ten (10) soil borings, three (3) of which were completed as groundwater monitoring wells within the planned redevelopment footprint of the Site. The remainder of the borings were advanced to two (2) feet below surface grade (BSG) to characterize surficial soils in anticipation of the redevelopment of the Site as a school. Results of soil sample analysis indicate the presence of several semi-volatile organic compounds (SVOCs), metals, and total petroleum hydrocarbons (TPH) in excess of the applicable Rhode Island Department of Environmental Management (RIDEM) Method 1 Residential Direct Exposure Criteria (R-DEC). Laboratory analytical results for all groundwater samples analyzed did not indicate the presence of any contaminants of concern in excess of laboratory detection limits.

These findings constitute a release to the environment at the Site as defined by the RIDEM Remediation Regulations. Accordingly, upon the owner and/or operator of the Site obtaining knowledge of these findings, reporting is required to the RIDEM Office of Land Revitalization and Sustainable Materials Management by the Responsible Party within 15 days of receiving such knowledge. A component of the notification will also need to include an applicability request of the Site relative to the Safe School Siting Act.

The following table summarizes the conclusions of this Phase I ESA and should be reviewed in conjunction with the entire report.

DI-+/I -+	A Posting of Assessable Plat C. Lat 50
Plat/Lot	A Portion of Assessor's Plat 9, Lot 50
Site Area	The Site parcel is comprised of approximately 8.31 acres; however, the portion of the Site parcel subject to this assessment is comprised of approximately 7.84 acres.
Current Site Usage	The Site is currently utilized as a sports complex facility.
Historical Site	Information reviewed to evaluate historical Site use included that maintained by City offices
Usage/	as well as historical aerial photographs, Sanborn Fire Insurance Maps, and historical address
Research Notes	directories. These resources indicate that the Site was formerly a lowland wetland area that
	had subsequently been filled in and developed as a sports complex facility over time. The
	southwestern portion of the Site was developed as an industrial/commercial facility;
	however, this portion of the Site parcel is not included in this assessment or the planned
	redevelopment of the Site as a school.
Zoning	Park District (P)
Site Access	The Site is accessible via Higginson Avenue, Crow Point Road, and Moshassuck Industrial
	Highway.
Structure	The Site is improved with one (1) single-story structure constructed slab-on-grade with a
Description	concrete/cinderblock exterior that is identified by the City of Central Falls as a field
	house/cabana associated with the sport's complex. The interior portion of this structure
	was not accessed during this assessment; however, given its use as a fieldhouse/storage
	area for the sports complex, it is unlikely this will impact the findings of this report.
	The southwestern portion of the Site parcel is also improved with a single-story
	industrial/commercial structure that is reportedly currently utilized as part of a trade school
	training facility. This structure and portion of the Site parcel were not accessed during this
	assessment, as it is understood that this portion of the Site parcel is not included in the
	planned redevelopment of the Site as a school. As such, this portion of the Site parcel is
	excluded from the Site boundary.
Year Built	According to information obtained from the Central Falls online Tax Assessor's database,
	the fieldhouse/cabana was constructed circa 1965.
Site Surfaces	Site surfaces consist of the fieldhouse/cabana building footprint, an asphalt-paved parking
	and driveway area, a turf field and running track, and a basketball court. A small portion of
	the Site is covered in woodchips within a plastic berm playground area.
Sanitary Sewer	According to the Narragansett Bay Commission, sewer service could not be verified for the
	Site.
Heating Source	No heating utilities were identified at the Site.
Water	According to the Central Falls Department of Public Works, the Site is serviced by the
	municipal water system.
Use of Adjoining	Adjoining properties consist of:
Properties	A restaurant and manufacturing facility to the north;
	A paper distributor and junkyard to the west;
	An industrial/commercial property along the southwestern portion of the Site;
	A number of residences and a butcher shop to the east; and
	➤ The Narragansett Bay Commission's wet weather sewer discharge outfall to the
	south.

Construction 1	
Groundwater Classification	GB, which is defined as groundwater that is presumed not suitable for use as a public or
	private drinking water supply without prior treatment.
State & Federal Records Notes	A public records search was conducted by SAGE through an Environmental Data Resources, Inc. (EDR) FirstSearch Report. The Site is not identified as a property of environmental concern in the EDR Report.
	 Several surrounding properties were identified and selected for additional review: 600 Moshassuck Valley Industrial Highway is identified as an underground storage tank (UST) facility and a State Hazardous Waste Site (SHWS); 756 Lonsdale Avenue is identified as a UST facility; 2-3 Crow Point Road is identified as a UST facility and a small quantity generator of hazardous materials under the Resource Conservation and Recovery Act (RCRASQG); and 16 North Crow Point Road is identified as a SHWS facility and an Activity and Use Limitation (AUL) facility.
	Further information is provided in Section 4.1.
Site Walkover	Interior Site Walkover Notes
Notes	The interior of the Site fieldhouse/cabana structure was not accessed during the course of this assessment.
	Exterior Site Walkover Notes
	During the exterior walkover, SAGE observed one (1) pad-mounted transformer along the western portion of the Site. Visual observation did not identify evidence of a release or threat of release from the transformer, and the transformer appeared to be in good condition. As such, it is unlikely that this has impacted the Site.
Additional Services	As requested by L.A. Torrado, additional services provided as part of this assessment included an LSI to characterize Site soil and groundwater in anticipation of Site redevelopment as a school facility. SAGE oversaw the advancement of ten (10) soil borings (SE-101 through SE-110) at select locations throughout the Site. Three (3) of the borings (SE-101, SE-102, and SE-103) were subsequently completed as groundwater monitoring wells. Groundwater was encountered at depths ranging from 3 feet to 5.5 feet below surface grade (BSG).
	Select soil samples were collected from the borings and submitted to a State-certified laboratory for analysis of total metals <i>via</i> Environmental Protection Agency (EPA) Methods 6010C, 7471B and 7010, volatile organic compound (VOCs) <i>via</i> EPA Method 8260C, semi-volatile organic compounds (SVOCs) <i>via</i> EPA Method 8270C, polychlorinated biphenyls (PCBs) via EPA Method 3540, and total petroleum hydrocarbons (TPH) <i>via</i> EPA Method 8100M. Groundwater samples collected from the three (3) newly installed groundwater monitoring wells identified as SE-101(MW), SE-102(MW), and SE-103(MW) were submitted to a State-certified laboratory for VOC analysis <i>via</i> EPA Method 8260.
	Several target SVOCs, metals and TPH were detected in excess of applicable RIDEM Residential Direct Exposure Criteria (R-DEC) in soil samples collected throughout the Site. No target analytes were detected above laboratory detection limits in the groundwater samples collected.

	Based on the results of the LSI, evidence of a release at the Site was identified. Further details of the LSI are provided in Section 8.0 .
Deviations	The lien search required by Section 312.25 of the AAI Rule was not performed during the course of this assessment. During the local records review, a cursory search for environmental liens was conducted; however, such information was not found and/or provided by the User. Please note this review is limited and is not intended to suffice a full search or a level of diligence commensurate with a title company. If such detailed evaluation is required, this service can be provided outside of the subject scope.

ASTM E1527-13 Definitions of a Recognized Environmental Condition (REC), Controlled REC (CREC), and Historical REC (HREC)

A Recognized Environmental Condition (REC) is defined by the ASTM Standard Practice E1527-13 as the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment.

Other forms of RECs evaluated as part of this assessment include Historical REC (HRECs) and Controlled REC (CRECs). HRECs are past releases of any hazardous substances or petroleum products that occurred in connection with the property and have been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls). CRECs are past releases of hazardous substances or petroleum products that have been addressed to the satisfaction of the applicable regulatory authority (for example, as evidenced by the issuance of a no further action letter or equivalent, or meeting risk-based criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls).

FINDINGS

The following summarizes key findings of the Phase I ESA based on observations during the Site walkover, review of existing historical resources, and interviews with current or past owners. Included in the summary are known or suspected RECs, CRECs, HRECs and *de minimis* conditions.

<u>Suspected RECs and *de minimis* conditions at the Site:</u>

- > Transformer: During the Site walkover, SAGE observed one (1) pad-mounted transformer along the western portion of the Site; and
- Suspect filling activities: A review of historical aerials and topographical maps indicated that the Site was formerly a large lowland wetland area that had been filled in over time.

ASTM E2600-15 Vapor Encroachment Screen

During this assessment, SAGE also conducted a Vapor Encroachment Screen (VES) via ASTM E2600-15.

Based upon the results of the Tier II Screening, SAGE has determined a Vapor Encroachment Condition (VEC) does not exist based on the findings of the additional limited subsurface investigation conducted during this assessment, which did not identify volatile organic compounds (VOCs) in soil or groundwater in excess of laboratory detection limits and/or applicable standards.

OPINIONS

Based upon the results of this assessment and the ASTM E1527-13 definitions of a REC, HREC, and CREC, the following opinions have been developed by SAGE along with a rationale for such determinations.

Non-REC Findings:

> Transformer: Visual observation of the pad-mounted transformer along the western portion of the Site did not identify evidence of a release or threat of release, and the transformer appeared to be in good condition. As such, it is unlikely this has impacted the Site.

REC Findings:

Suspect filling activities: During a review of available documentation, SAGE did not identify evidence of laboratory analysis of the soils brought on Site during the filling of the former lowland wetland area. Typical historical fill material often included contaminated soils. Given that no laboratory analysis documentation was identified for the fill material brought onto the Site, it is possible that this material contains contaminants and may have resulted in a release to the environment. As such, this finding constitutes a REC.

Follow-up investigation of this REC did identify several SVOCs, metals, and TPH in Site soils in excess of the applicable RIDEM R-DEC. No contaminants of concern were identified in groundwater in excess of laboratory detection limits. This information is further discussed in **Section 8.0** of this report.

HREC Findings:

Conditions indicative of an HREC were not identified during the course of this assessment.

CREC Findings:

> Conditions indicative of a CREC were not identified during the course of this assessment.

CONCLUSION

SAGE has performed the Phase I ESA of the Site in conformance with the scope and limitations of ASTM Practice E1527-13 and the EPA's AAI Rule. Based on the listed REC, a LSI was performed to evaluate subsurface conditions. Further details of the LSI are provided in **Section 8.0** of this report.

In summary, the LSI included ten (10) soil borings, three (3) of which were completed as groundwater

monitoring wells within the planned redevelopment footprint of the Site. The remainder of the borings were advanced to two (2) feet BSG to characterize surficial soils in anticipation of the redevelopment of the Site as a school. Results of soil sample analysis indicate the presence of several SVOCs, metals, and TPH in excess of the applicable RIDEM Method 1 R-DEC. Laboratory analytical results for all groundwater samples analyzed did not indicate the presence of any contaminants of concern in excess of laboratory detection limits.

These findings constitute a release to the environment at the Site as defined by the RIDEM Remediation Regulations. Accordingly, upon the owner and/or operator of the Site obtaining knowledge of these findings, reporting is required to the RIDEM Office of Land Revitalization and Sustainable Materials Management by the Responsible Party within 15 days of receiving such knowledge. A component of the notification will also need to include an applicability request of the Site relative to the Safe School Siting Act.

1.0 Introduction

1.1 Purpose

This report presents the findings of a Phase I Environmental Site Assessment (ESA) and Limited Subsurface Investigation (LSI) conducted of one (1) parcel(s) addressed as 10 Higginson Avenue in Central Falls, Rhode Island (A Portion of Assessor's Plat 9, Lot 50) (hereinafter, "Site"). The purpose of this assessment is to identify "Recognized Environmental Conditions" (RECs) associated with the Site. The term recognized environmental conditions means the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to any release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment. De minimis conditions are not recognized environmental conditions. De minimis conditions are those that generally do not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies.

Other forms of RECs evaluated as part of this assessment include historical recognized environmental conditions (HRECs) and controlled recognized environmental conditions (CRECs). HRECs are past releases of any hazardous substances or petroleum products that occurred in connection with the property and have been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls). CRECs are past releases of *hazardous substances* or *petroleum products* that have been addressed to the satisfaction of the applicable regulatory authority (for example, as evidenced by the issuance of a no further action letter or equivalent, or meeting risk-based criteria established by regulatory authority), with *hazardous substances* or *petroleum products* allowed to remain in place subject to the implementation of required controls (for example, *property use restrictions, activity and use limitations, institutional controls*, or *engineering controls*).

1.2 Scope of Services

This assessment was prepared in accordance with generally acceptable engineering practices utilizing the American Society for Testing and Materials (ASTM) Designation E1527–13: Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process. As such, it meets the requirements set forth in the United States Environmental Protection Agency's (U.S. EPA's) All Appropriate Inquiries (AAI) Rule under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), 40 CFR. § 312 (2005).

The scope of this investigation does not include ASTM defined exclusions such as radon, asbestos, biological agents, lead-based paint (LBP), mold, lead in drinking water, wetlands, regulatory compliance, cultural and historical resources, industrial hygiene, health and safety, ecological resources, endangered species, indoor air quality or high voltage power lines.

As requested by L.A. Torrado, additional services provided as part of this assessment included a LSI to characterize Site soil and groundwater in anticipation of Site redevelopment as a school facility. The findings of the LSI are summarized in **Section 8.0**.

1.3 Significant Assumptions

The file and data review was limited to information obtained by SAGE Environmental, Inc. (SAGE) from prior reports, and the offices for the City of Central Falls. The Site reconnaissance description is based upon the condition of the Site on the day it was observed. The Site was observed by walking the property.

1.4 Special Terms and Conditions

No special terms or conditions were agreed upon for the completion of this report.

1.5 User Reliance

This Phase I ESA and LSI report have been prepared on behalf of, and for the exclusive use of, L.A. Torrado. This report and the findings herein shall not, in whole or in part, be disseminated or conveyed to any other party, nor used by any other party in whole or in part, without the prior written consent of SAGE. However, SAGE acknowledges and agrees that our client may convey this report to potential developers, lenders and title insurers associated with the current development or financing of the Site.

1.6 Deviations

This investigation was performed in general accordance with ASTM E2247-16 and AAI with the following deviation. The lien search required by Section 312.25 of the AAI final rule was not performed during the course of this assessment.

During the local records review, a cursory search for environmental liens was conducted; however, such information was not found and/or provided by the User. Please note this review is limited and is not intended to suffice a full search or a level of diligence commensurate with a title company. If such detailed evaluation is required, this service can be provided outside of the subject scope.

1.7 Data Gaps

SAGE did not identify the presence of significant data gaps (as defined in §312.10 of AAI final rule and §12.7 of ASTM E1527-13).

2.0 SITE DESCRIPTION

A Site Location Map depicting the Site on the "Pawtucket, Rhode Island" United States Geological Survey (USGS) 7.5-minute topographic map is included as **Figure 1**; a Site Plan, depicting the approximate Site boundary and pertinent Site features, is included as **Figure 2**; and a map showing the Rhode Island Department of Environmental Management (RIDEM) Groundwater Classification, nearby wells, nearby wetlands and rare and endangered species habitats is included as **Figure 3**. Site photographs are included in the **Photographs Attachment**.

Table 1
Site Description
10 Higginson Avenue
Central Falls, RI

Plat/Lot A Portion of Assessor's Plat 9, Lot 50

Site Area	The Site parcel is comprised of approximately 8.31 acres; however, the portion of the Site parcel subject to this assessment is comprised of approximately 7.84 acres.
Current Site Usage	The Site is currently utilized as a sports complex facility.
Historical Site Usage/ Research Notes	Information reviewed to evaluate historical Site use included that maintained by City offices as well as historical aerial photographs, Sanborn Fire Insurance Maps, and historical address directories. These resources indicate that the Site was formerly a lowland wetland area that had subsequently been filled in and developed as a sports complex facility over time. The southwestern portion of the Site was developed as an industrial/commercial facility; however, this portion of the Site parcel is not included in this assessment or the planned redevelopment of the Site as a school.
Zoning	Park District (P)
Site Access	The Site is accessible via Higginson Avenue, Crow Point Road, and Moshassuck Industrial Highway.
Structure Description	The Site is improved with one (1) single-story structure constructed slab-on-grade with a concrete/cinderblock exterior that is identified by the City of Central Falls as a field house/cabana associated with the sport's complex. The interior portion of this structure was not accessed during this assessment; however, given its use as a fieldhouse/storage area for the sports complex, it is unlikely this will impact the findings of this report. The southwestern portion of the Site parcel is also improved with a single-story industrial/commercial structure that is reportedly currently utilized as part of a trade school training facility. This structure and portion of the Site parcel were not accessed during this assessment, as it is understood that this portion of the Site parcel is not included in the planned redevelopment of the Site as a school. As such, this portion of the Site parcel is excluded from the Site boundary.
Year Built	According to information obtained from the Central Falls online Tax Assessor's database, the fieldhouse/cabana was constructed circa 1965.
Site Surfaces	Site surfaces consist of the fieldhouse/cabana building footprint, an asphalt-paved parking and driveway area, a turf field and running track, and a basketball court. A small portion of the Site is covered in woodchips within a plastic berm playground area.
Sanitary Sewer	According to the Narragansett Bay Commission, sewer service could not be verified for the Site.
Heating Source	No heating utilities were identified at the Site.
Water	According to the Central Falls Department of Public Works, the Site is serviced by the municipal water system.
Use of Adjoining Properties	 Adjoining properties consist of: A restaurant and manufacturing facility to the north; A paper distributor and junkyard to the west; An industrial/commercial property along the southwestern portion of the Site; A number of residences and a butcher shop to the east; and The Narragansett Bay Commission's wet weather sewer discharge outfall to the south.

3.0 USER PROVIDED INFORMATION

An environmental questionnaire was not supplied to SAGE as part of this assessment.

3.1 Environmental Liens or Environmental Land Use Restriction (ELUR)

SAGE did not identify an environmental lien or ELUR associated with the Site. Please see further details in **Section 1.6, Deviations**.

3.2 Specialized Knowledge

SAGE was not supplied with specialized knowledge for the Site.

3.3 Valuation Reduction for Environmental Issues

SAGE was not made aware of a valuation reduction for environmental issues.

3.4 Owner, Property Manager and Occupant Information

SAGE was not provided with any information regarding the Owner(s), Property Manager(s), or Occupant(s) of the Site by the User.

3.5 Reason for Performing Phase I

This Phase I ESA is being conducted as part of general due diligence for the planned redevelopment of a portion of the Site to accommodate a high school facility.

3.6 Previous Environmental Assessments

A previous assessment of the Site was not found or made available to SAGE during the course of this assessment.

4.0 RECORDS REVIEW

4.1 Environmental Record Sources (Federal and State)

A public records search was conducted by SAGE through an Environmental Data Resources, Inc. (EDR) FirstSearch Report.¹ This report consists of a review of state and federal databases, as required by the ASTM Standard. Databases reviewed include, but are not limited to, the National Priority List (NPL), the Superfund Enterprise Management System (SEMS, formerly CERCLIS), Rhode Island State-listed hazardous waste properties (SHWS), leaking underground storage tanks (LUSTs), registered underground storage tanks (USTs), and the Resource Conservation and Recovery Act (RCRA) hazardous waste generator list. A summary of the number of properties identified within ASTM radii for each category is presented below in **Table 2**, and the EDR report is presented as **Attachment 1**.

¹ The EDR Report contains information from a variety of public and government sources. The information presented in the report is limited by the information that is available. Some areas are limited due to inadequate address information and may contain government listed properties that are not mapped or mapped incorrectly. Based on these limitations, SAGE cannot be held accountable for properties that may be within the applicable radius, but are not present within the EDR Report.

Table 2
Radius Summary
10 Higginson Avenue
Central Falls, RI

Database	Site Inclusion	Locations within Radius of Site	Research Radius from Site (miles)	Non-Geocoded Locations 2
NPL	No	0	1.0	0
Delisted NPL	No	0	0.5	0
CERCLIS	No	0	0.5	0
CERCLIS NFRAP	No	1	0.5	0
State Equivalent CERCLIS (SHWS)	No	54	1.0	90
SWF	No	1	0.5	0
RCRA CORRACTS	No	2	1.0	0
RCRA non-CORRACTS TSD	No	2	0.5	0
RCRA Generators List	No	1	Site and adjoining properties	0
State/Tribal UST(s)	No	4	Site and adjoining properties	0
State/Tribal LUST(s)	No	14	0.5	5
ERNS	No	N/A	Site only	0
Federal/State Brownfield(s)	No	2	0.5	0
Federal/State Institutional Control	No	9	0.5	0

Select locations described further in the following subsections.

4.1.1 Site Related Records Review/Discussion

The Site was not listed in the database report as a property of concern.

4.1.2 Surrounding Locations Related Records Review/Discussion

As part of the surrounding area review, SAGE evaluated select locations within the radius report and reviewed files maintained by the RIDEM Office of Land Revitalization and Sustainable Materials Management for select properties. Summaries of these reviews have been provided below.

Identified Property:	New England Tractor Trailer, Browning Ferris Industries
Database(s):	UST, SHWS (SR-26-0184)
Address:	600 Moshassuck Valley Industrial Highway
Distance:	790 feet south/southwest
Gradient:	Topographically Downgradient

This property is identified as a UST facility regarding one (1) 4,000-gallon UST that historically contained floor drain water. This UST was reportedly closed-in-place, and the RIDEM required three (3) soil samples collected beneath the tank to be analyzed for volatile organic compounds (VOCs). While no analytical results were identified in available documentation, records indicate that the results were received by

² The EDR report also maintains a database of non-geocoded properties, which are properties that could not be spatially located in reference to distance from the subject Site due to missing geographical information. EDR provides a summary of these properties for reference purposes. Summaries of any non-geocoded properties that were reviewed during the course of this assessment are provided in **Section 4.1.3**.

Identified Property: New England Tractor Trailer, Browning Ferris Industries

the RIDEM. Based on the results, the RIDEM issued a Certificate of Closure and letter of No Further Action for this UST on October 17, 2005. As such, it is unlikely this listing has impacted the Site subsurface.

This property is also identified as a SHWS facility regarding the identification of arsenic impacted soils in one (1) sample collected at a depth of 1-2 below surface grade, which had arsenic concentrations of 17 parts per million (ppm) compared to the RIDEM Industrial/Commercial-Direct Exposure Criteria (I/C-DEC) of 3.8 ppm. Given that only one (1) of seven (7) soil samples had an increased level of arsenic concentrations, Resource controls Associates, Inc. opined that these results may not be representative of soil conditions at the property. Groundwater samples were submitted for laboratory analysis of total petroleum hydrocarbons (TPH), VOCs, and RCRA 8 Metals, though none of the constituents of concern were identified in excess of applicable standards.

Based on these results, resampling of the arsenic-impacted area was conducted. Of the fifteen (15) additional samples collected from the property, only one (1) exceeded the RIDEM I/C-DEC at a concentration of 4.3 ppm. According to the Environmental Site Assessment Report, this property was formerly utilized as a sewage treatment facility, bleachery, and municipal waste hauling facility associated with truck repair; however, no historical property uses or surrounding properties were identified as a likely source of the arsenic detections. A statistical analysis of the soil samples collected from the property indicated that the detections were certified as background. A February 19, 2001 letter from the RIDEM indicated that the Office of Waste Management had determined that the property did not require any additional further response actions. Based on this information, limited impacts to soil, and lack of groundwater impacts, it is unlikely that this property has impacted the Site subsurface.

Identified Property:	International Meat Market
Database(s):	UST
Address:	756 Lonsdale Avenue
Distance:	Adjacent east
Gradient:	Topographically Upgradient

This property is identified as a UST facility regarding the historical presence of one (1) 1,000-gallon fuel oil no. 2 UST. According to available documentation, this UST was closed by removal on November 21, 2018, and no holes, pitting, or corrosion were observed. While soils were observed to contain urban fill materials, no stains or odors were identified. As such, no soil samples were required by the RIDEM. This property received a Closure Certificate on November 26, 2018. Based on this information, it is unlikely this property has impacted the Site subsurface.

Identified Property:	Fortune Metal Inc. of RI, Fortune Metals
Database(s):	UST, RCRA-SQG
Address:	2-3 Crow Point Road
Distance:	Adjacent west
Gradient:	Topographically Crossgradient

This property is identified as a UST facility regarding the historical presence of one (1) 3,000-gallon diesel UST, two (2) 1,000-gallon fuel oil no. 2 USTs, one (1), 1,100-gallon gasoline UST, and one (1) 4,000-gallon diesel UST. In addition, this property also has one (1) 1,000-gallon fuel oil no. 2 UST that is currently in

Identified Property: Fortune Metal Inc. of RI, Fortune Metals

use. According to an April 12, 1999 Underground Storage Tank Closure Assessment, the 4,000-gallon diesel UST was closed by removal, and soils within the tank grave were not observed to have been impacted. Furthermore, groundwater encountered at approximately five (5) feet BSG was not observed to have evidence of impacts (i.e., floating product or sheen). Minor rusting and pitting was observed on the UST, though no holes were identified. Upon review of this UST Closure Assessment, the RIDEM issued a letter of No Further Action on June 21, 1999 and a Closure Certificate on June 22, 1999.

In addition, one (1) of the 1,000-gallon fuel oil USTs and the 3,000-gallon diesel UST were closed-in-place at the property. While no documentation of analysis of soils within the vicinity of the tanks was identified, these USTs were issued a Certificate of Closure on August 9, 1989. The 1,000-gallon fuel oil no. 2 UST was reportedly closed in place. According to available documentation, a test pit dug next to the UST did not identify evidence of a release to soils or groundwater. the RIDEM issued a Closure Certificate for this UST on January 16, 1990. the 1,100-gallon gasoline was reportedly closed by removal. While no documentation was available regarding the closure activities, a Closure Certificate was issued for this UST on December 24, 1991.

This property is identified as a RCRA-SQG facility regarding the handling, small-quantity generation, and historical generation of D001-listed ignitable waste (waste oil) and D008-listed lead wastes. According to available documentation, this facility has received notices of violations regarding the lack of certification of the hazardous waste containment building, lack of weekly inspection logs, lack of written procedures for hazardous waste removal, lack of proper labeling, open waste storage containers, lack of a contingency plan, lack of personnel training. While a letter of compliance was not identified in a review of available information, the EDR Report indicates that the property has returned to compliance in relation to all documented violations. Based on this information, it is unlikely this property has impacted the Site subsurface.

Identified Property:	Robinson Property
Database(s):	SHWS, AUL (SR-18-1506)
Address:	16 North Crow Point Road
Distance:	740 feet west/northwest
Gradient:	Topographically Downgradient

This property is identified as a SHWS and AUL facility regarding metal, TPH, and semi-volatile organic compound (SVOC) impacts to soil identified during a 1998 subsurface investigation, a number of which were identified in excess of applicable regulations. In addition, detectable TPH concentrations were also identified in one (1) groundwater sample, though at a relatively low concentration (1.3 mg/L). A sludge sample was collected from within the septic system of the property, which was identified as containing detectable levels of SVOC, VOC, TPH, and Metal constituents. The septic system and a storm drain were subsequently closed, as the suspected source of contamination. Samples collected from the base and sidewalls of the septic system still contained concentrations of either TPH or SVOCs, though only one (1) SVOC was detected in excess of applicable regulations. As the sample was collected greater than two (2) feet below surface grade, an Environmental Land Use Restriction (ELUR) was recommended limiting the use of this portion of the property to industrial/commercial. An ELUR was subsequently recorded for the property on January 10, 2000. Upon receipt of the recorded ELUR, the RIDEM issued a letter of No

Identified Property: Robinson Property

Further Action. Based on this information, it is unlikely this property has impacted the Site subsurface.

4.1.3 Non-Geocoded Records Review Summary

A total of 95 unplottable properties were identified in the radius report.

Based on a review of information available in the radius report, no unplottable properties are likely to have an environmental impact on the subject Site.

4.2 Municipal Records and File Reviews

4.2.1 Chain-Of-Title Records

Title records were reviewed at the Central Falls City Hall/through the Central Falls on-line Land Title Records database. This information is provided for historical purposes only and is not intended for legal purposes. The current owner of the Site is The City of Central Falls, who took ownership of the Site on 6/30/2004 (554/202). Copies of the field cards are included in **Attachment 2**.

Table 3 Owner Chronology 10 Higginson Avenue Central Falls, RI A Portion of Assessor's Plat 9, Lot 50

Grantee	Date of Transfer	Book/Page
The City of Central Falls	6/30/2004	554/202

4.2.2 Fire Department

SAGE contacted the Central Falls Fire Prevention Office to determine if that office maintained information regarding possible USTs located at the Site and prior incidents (i.e., spills or fires) that could have caused a release of oil or hazardous materials to the environment.

The Fire Prevention staff indicated that no records relating to petroleum products or hazardous materials were identified for the Site at their office.

4.2.3 Building and Zoning Records

SAGE personnel contacted the Central Falls Building/Zoning Department in an effort to obtain information relative to the Site. The Building/Zoning Department provided copies of the available permits, which are included in **Attachment 2**. Of note, one (1) building permit dated September 6, 2019 for the rehab of "the old Dexter Tool building for industrial use as a carpentry shop." This permit is likely in reference to the industrial/commercial structure along the southwestern portion of the Site parcel, which is not included in this assessment or the planned redevelopment of the Site as a school.

4.2.4 Public Works Records

SAGE personnel contacted the Central Falls Public Works Department in an effort to obtain information relative to the Site. The Public Works Department provided information regarding the sewer and water

connections at the Site. The Site is reportedly serviced by the municipal sewer and water systems.

4.3 Physical Setting

The Site is situated at approximately 47 feet above mean sea level (MSL). The Site is graded to be relatively flat

4.3.1 Geology and Hydrology

The Flood Insurance Rate Map (FIRM) for the Site was reviewed online through the Federal Emergency Management Agency (FEMA), and the geologic information was reviewed through USGS. A summary of this information can be found below in **Table 4**.

Table 4 Geology and Hydrology Information 10 Higginson Avenue Central Falls, RI

Bedrock:	Pnbr, Rhode Island formation			
Terrane:	Avalon			
Subterranean:	Esmond-Dedham			
Rock Type:	Stratified			
Age:	Pennsylvanian			
Surficial Geology:	Outwash			
Waterbodies:	Adjacent to unnamed body of water and 646 feet east of the Moshassuck River			
FIRM:	44007C0194J, effective on 10/02/2015			
Flood Zone:	 The Site is within three (3) separate flood zones: Zone X (unshaded), which is defined as an area of minimal flood hazard, with a less than 0.2% annual chance of flooding. Zone X (shaded), which is defined as an area of moderate flood hazard with a 0.2-1% annual chance of flooding. Zone AE, which is defined as a high risk flood zone with a 1% annual chance of flooding, where base elevations have been determined. 			

4.3.2 Priority Resources GIS Map

Based on a review of maps obtained from the Rhode Island Geographic Information System (RIGIS) database for the Site and vicinity, groundwater at the Site and immediate surrounding area is classified as GB, which is defined as groundwater that is presumed not suitable for use as a public or private drinking water supply without prior treatment.

Additionally, the Site is located within an area of emergent marsh/meadow wetlands along the southern portion of the Site and scrub-shrub swamp along the southern and western portions of the Site.

4.4 Historical Use Information on the Site and Adjoining Properties

Historical research was conducted through data providers and at State and City agencies. Historical information sources researched include aerial photographs, Sanborn maps, and historical address

directories.

4.4.1 Sanborn Maps

Sanborn map coverage was found to exist for the Site and immediately surrounding area as summarized in **Table 5** below. Copies of the maps are attached as **Attachment 3**.

Table 5
Sanborn Descriptions
10 Higginson Avenue
Central Falls, RI

Year	Site Description
1902	The Site appears to be vacant, though a portion of the Site property does not appear to have Sanborn coverage for this year. Properties to the east of the Site appears to be improved with several dwelling style structures. Properties to the north and west of the Site do not appear to have coverage for this year.
1923	The southern portion of the Site is listed as Low Land. No other significant changes were observed.
1949	The northern portion of the Site is listed as Vacant. No other significant changes were observed.
1965	A storefront appears to have been constructed near the northeastern portion of the Site. No other significant changes were observed.

4.4.2 Aerial Photographs

Historical aerial photographs were viewed online using ArcGIS's Historic Aerial Mapper (https://www.arcgis.com/home/item.html?id=1dcafa7631154874bf78b408351afb9e) for the years 1939, 1951-52, 1962, 1972, 1981, 1988, 1997, 2008, 2011, 2014, 2018, 2019, 2020, and 2021. A summary of the Site and surrounding property descriptions is below.

Table 6
Historical Aerial Descriptions
10 Higginson Avenue
Central Falls, RI

Year	Site Description
1939	The Site appears to be vacant with a large area of clearing along the western and northern portions of the Site. Additionally, two (2) potential pathways that appear similar to mosquito trenches are apparent running from east to west near the northern and central portions of the Site. A review of the USGS Topographical Map from 1938 indicates that the Site consisted of wetlands at this time. Property to the west of the Site appears to be improved with several industrial/commercial style structures and additional areas of clearing. Property to the north of the Site appears to consist of cleared land. Property to the south of the Site appears to consist of cleared land and a small potential industrial/commercial style structure. Properties to the east of the Site appear to be improved with a number of residential style structures.
1951-52	The Site appears to have been potentially filled in, with several areas of clearing still apparent along the southwestern portion of the Site. A large shadow is apparent along the southeastern portion of

Year	Site Description
	the Site that may be indicative of a large ridge within this vicinity. No other significant changes were observed.
1962	The Site appears to have a large area of clearing along the northern and western portions of the Site, and property to the west of the Site also appears have been razed/cleared. These areas may be indicative of potential filling activity at the Site and western properties. In addition, a potential trench appears to traverse the Site from the northeast to the southwest and appears to lead to a pond along the southern portion of the Site. This appears to be a stream in USGS Topographic Maps data 1979. Property to the south/southwest of the Site appears to have several large aboveground tanks and potential settling pools. Based on the information reviewed from the RIDEM, it is likely this property was utilized as a sewage treatment facility. Property to the west of the southern portion of the Site appears to have been constructed with several industrial/commercial style structures.
1972	A potential parking lot appears to have been constructed along the northern portion of the Site, with a baseball field to the south of the parking lot. An industrial/commercial style structure appears to have been constructed along the southwestern portion of the Site. Property to the west/northwest of the Site appears to have been developed with an industrial/commercial style structure. The former potential sewage treatment facility is no longer apparent to the south/southwest of the Site. No other significant changes were observed.
1981	A potential additional baseball diamond appears to have been developed near the central portion of the Site, and a potential trail/pathway appears along the southwestern portion of the Site. No other significant changes were observed.
1988	No significant changes were observed.
1997	A potential soccer field appears to have been developed to the south/southeast of the baseball diamond. No other significant changes were observed.
2008	A running track appears to have been constructed around the previously identified soccer field and an additional soccer field appears to have been developed to the east of the formerly identified Site structure. An industrial/commercial style structure appears to have been constructed to the west/north of the Site. No other significant changes were observed.
2011	No significant changes were observed.
2014	Property to the south/southwest of the Site appears to be under development and a portion of the pond to the south of the Site appears to have potentially been filled in order to accommodate this development. No other significant changes were observed.
2018	Property to the south of the Site appears to have been developed with a small potential industrial/commercial structure with a potential lagoon/runoff pond along the southern portion of the property. No other significant changes were observed.
2019	The parking lot of the Site appears to be under construction. No other significant changes were observed.
2020	The parking lot of the Site appears to have been repaved. No significant other changes were observed.
2021	No significant changes were observed.

4.4.3 Local Street Directories

A City directory search was conducted through EDR. Directories were reviewed beginning in 1961 and in approximate five-year intervals through the most current listing. The following is the result of this research. Copies of the directories are included in **Attachment 4**.

Table 7 Historical Directory Descriptions 10 Higginson Avenue Central Falls, RI

Year	Owner
1961 – 2017	Not identified/not listed

5.0 SITE RECONNAISSANCE

5.1 Methodology and Limiting Conditions

On October 21, 2021, Ms. Lacy Reyna of SAGE conducted a Site reconnaissance. Accessible areas of the Site were observed by walking. The adjoining properties were observed from roadways and from the Site boundaries.

The Site walkover was conducted to observe the possible indication of releases of petroleum products or hazardous materials. A plan depicting the approximate parcel boundaries and pertinent Site features observed during the walkover has been provided as **Figure 2**, and photographs of the Site are included in the **Photographs Attachment**.

5.2 General Site Setting & Site Reconnaissance Observations

The Site consists of one (1) parcel that comprises approximately 361,984 square feet. The parcel is zoned for Park District (P) use; adjacent lots are zoned as Heavy Industrial District (M-2), General Commercial District (C-2), Two Household District (R-2), and Park District (P). Currently, the Site is utilized as a private sports complex and playground. The southwestern portion of the Site parcel is occupied by an industrial/commercial style building. This portion of the Site parcel is not subject to this assessment. According to publicly available information, the parcel was most recently operated by The City of Central Falls.

5.2.1 Notable Site Walkover Conditions

The following notable conditions were observed during the Site reconnaissance. **Table 8** below identifies specific conditions noted in ASTM E1527-13 Section 9.4. Conditions that were identified at the Site are described in **Sections 5.2.2** and **5.2.3**.

Table 8
Notable Site Conditions
10 Higginson Avenue
Central Falls, RI

Feature		Interior		Ext	erior
Unoccupied Spaces	Yes □	No □	N/A ☑	Yes □	No ☑
Hazardous Materials	Yes □	No □	N/A ☑	Yes □	No ☑
Petroleum Products	Yes □	No □	N/A ☑	Yes □	No ☑
Storage Tanks	Yes □	No □	N/A ☑	Yes □	No ☑
Pools of Liquid	Yes □	No □	N/A ☑	Yes □	No ☑

Feature		Interior		Exte	erior
Sumps	Yes □	No □	N/A ☑	Yes □	No ☑
Floor Drains	Yes □	No □	N/A ☑	Yes □	No ☑
Drums	Yes ☑	No □	N/A ☑	Yes □	No ☑
Unidentified Containers	Yes □	No □	N/A ☑	Yes □	No ☑
Indications of Possible Polychlorinated Biphenyl (PCB)-Containing Equipment	Yes □	No □	N/A ☑	Yes □	No ☑
Stains or Corrosion	Yes □	No □	N/A ☑	Yes □	No ☑
Odors	Yes □	No □	N/A ☑	Yes □	No ☑
Solid Waste	Yes □	No □	N/A ☑	Yes □	No ☑
Pits, Ponds or Lagoons	Yes □	No □	N/A ☑	Yes □	No ☑
Stressed Vegetation	Yes □	No □	N/A ☑	Yes □	No ☑
Wells	Yes □	No □	N/A ☑	Yes □	No ☑
Indications of Prior Environmental Investigation/Remediation	Yes □	No □	N/A ☑	Yes □	No ☑
Wastewater Discharge	Yes □	No □	N/A ☑	Yes □	No ☑

5.2.2 Interior Inspection

The interior of the Site fieldhouse/cabana structure was not accessed during the course of this assessment.

5.2.3 Exterior Inspection

> During the exterior walkover, SAGE observed one (1) pad-mounted transformer along the western portion of the Site. Visual observation did not identify evidence of a release or threat of release from the transformer, and the transformer appeared to be in good condition. As such, it is unlikely that this has impacted the Site.

6.0 VAPOR ENCROACHMENT SCREEN VIA ASTM E2600-15

Under the ASTM E1527 – 13 standard, vapor impacts must now be considered, similar to the way potential soil and groundwater impacts have been evaluated in the past. ASTM Designation E2600 – 15 Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions (2015) provides a method of identifying a vapor encroachment condition (VEC), which is the presence or likely presence of chemicals of concern (COC) vapors in sub-surface of the subject Site caused by the release of vapors from contaminated soil or groundwater either on or near the Site. The Vapor Encroachment Screen (VES) process is a two-tiered screening process.

The conclusion3 of a VES is (1) a VEC exists at the subject Site; or (2) a VEC does not exist at the subject Site, however the determination that a VEC exists at the subject Site does not necessarily represent an REC.

³ The VES is intended to reduce, but not eliminate, uncertainty regarding whether or not a VEC exists in connection with the subject Site, and evaluations conducted during the course of this VES are intended to be non-exhaustive. Additionally, the performance of an invasive Tier 2 Screen is not within the Scope of an ASTM Phase I ESA and is considered an Additional Service.

6.1 Tier 1 Screening Evaluation

The purpose of a Tier 1 Screening Evaluation in conjunction with the Phase I ESA is to evaluate whether a VEC exists at the subject Site by using information collected during the course of the Phase I ESA process. Information evaluated for the Tier 1 Screen includes past, present, and anticipated usage and oil and/or hazardous material usage at the Site, the Site's geological and hydrogeological setting, the presence or potential presence of preferential pathways for contaminant migration, and environmental records for the Site and surrounding properties.

The VES Guide recommends reviewing environmental records for properties within 1/10-mile of the Site to evaluate whether a VEC exists from petroleum hydrocarbon COCs, and a radius of 1/3-mile surrounding the Site to evaluate whether a VEC exists from any other volatile non-petroleum hydrocarbon COCs. **Table 9**, below summarizes the number of properties identified within the target VES search distance. This information was obtained through a review of records provided in the EDR report.

Table 9
Tier 1 Screening Table Summary
10 Higginson Avenue
Central Falls, RI

Database	Site Inclusion	Non-Petroleum Contaminated Properties (1/3-mile Search Radius)	Petroleum Contaminated Properties (1/10-mile Search Radius)
NPL	No	0	0
CERCLIS	No	0	0
State Equivalent CERCLIS	No	5	0
SWF	No	0	0
RCRA – SITE ONLY	No	N/A	N/A
RCRA CORRACTS	No	0	0
RCRA non-CORRACTS	No	0	0
State/Tribal USTs – SITE ONLY	No	N/A	N/A
State/Tribal LUSTs	No	0	0
ERNS	No	0	0
Federal/State Brownfields	No	0	0
Federal/State Institutional Control – SITE ONLY	No	N/A	N/A

Based upon the results of the Tier 1 Screen, a VEC exists based on the listings identified within the search radius.

6.2 Tier 2 Screening Evaluation

If a VEC is found to exist for the subject Site during the performance of the Tier 1 Screen, a Tier 2 invasive or non-invasive Screen may be conducted to obtain greater certainty of the presence of a VEC. A non-invasive Tier 2 Screen applies numeric screening criteria to existing soil, soil gas, and/or groundwater analytical data for the Site and/or surrounding properties and evaluates the influence of off-Site contaminated properties with respect to existing information pertaining to known COCs and known or

inferred direction of groundwater flow. A Tier 2 invasive Screen involves the collection of soil, soil gas, and/or groundwater analytical data at the subject Site.

Based on the information obtained during the course of this assessment and the conclusion of the Tier 1 Screen, a VEC exists at the subject Site. As such, SAGE conducted an invasive Tier 2 Screening Evaluation to obtain greater certainty of this conclusion. The invasive Tier 2 Screening Evaluation consisted of soil and groundwater sampling for volatile contaminants and other contaminants of concern. These activities and the results of the investigation are further described in **Section 8.0** of this report. Based upon the results of the Tier 2 invasive screen, a VEC does not exist based on the lack of volatile compounds above laboratory detection limits and/or applicable standards identified at the Site during additional investigation activities.

7.0 Interviews

7.1 Interview with Owner

The Owner was not interviewed for this assessment.

7.2 Interview with Local Government Officials

Local government officials were interviewed as part of this assessment, including staff at the City of Central Falls Fire Prevention Office and local offices. Information provided during these interviews has been incorporated into this assessment.

7.3 Interview with Others

No other person with any personal knowledge of the Site was interviewed.

8.0 Additional Services

As requested by L.A. Torrado, additional services provided as part of this assessment included a LSI to characterize Site soil and groundwater in anticipation of Site redevelopment as a school facility.

8.2 Soil Boring Advancement/Monitoring Well Installations

Prior to advancing soil borings at the Site, SAGE marked the areas to be investigated and contacted DigSafe such that underground utilities could be marked prior to commencement of field work. SAGE returned to the Site on October 21, 2021, and advanced ten (10) soil borings (SE-101 through SE-110) at select locations throughout the Site. The soil borings were advanced by SAGE EnviroTech Drilling Services utilizing a hand auger and a track-mounted Geoprobe® rig. Three (3) of the borings (SE-101, SE-102, and SE-103) were subsequently completed as groundwater monitoring wells. Soil boring/monitoring well locations are identified on **Figure 2**. A summary of boring placement rationale is provided in **Table 10**.

While advancing the borings, continuous soil samples were collected and field screened for the presence volatile compounds in the form of total volatile organic vapors (TVOVs) *via* the jar headspace method using a MiniRAE Photoionization Detector (PID) calibrated to 100 parts per million by volume (ppmv) isobutylene standard. TVOV screening values for each sample are summarized below in **Table 10**, below.

Table 10

Boring Placement Rationale and TVOV Screening Results
10 Higginson Avenue
Central Falls, RI

Boring Placement Rationale	Boring ID	Depth (Feet BSG)	TVOV Result (ppmv)
	SE-101(MW)	0-2*	ND
Within planned redevelopment area footprint		2-5*	1.8
within planned redevelopment area lootprint		5-10	ND
		10-13	NS
	SE-102(MW)	0-2*	ND
Within planned redevalorment area feathrint		2-5	ND
Within planned redevelopment area footprint		5-10*	ND
		10-13	NS
	SE-103(MW)	0-2*	ND
Within planned redevelopment area footprint		2-5*	ND
within planned redevelopment area lootprint		5-10	ND
		10-11	NS
General surficial soil characterization sample within the central portion of the Site	SE-104	0-2*	ND
General surficial soil characterization sample within the central portion of the Site	SE-105	0-2*	ND
General surficial soil characterization sample near the southern portion of the Site	SE-106	0-2*	ND
General surficial soil characterization sample within the southern portion of the Site	SE-107	0-2*	ND
General surficial soil characterization sample within the southern portion of the Site	SE-108	0-2*	ND
General surficial soil characterization sample within the southern portion of the Site	SE-109	0-2*	ND
General surficial soil characterization sample within the southern portion of the Site	SE-110	0-2*	ND

BSG=Below surface grade

ND=Non-detect (<1ppmv)

Subsurface soil conditions observed during boring advancement varied and consisted predominantly of gravelly sands with sand/silt mixtures. Boring SE-104 also identified asphalt at a depth of 0.25 to 0.5 feet below surface grade (BSG). Borings SE-101 and SE-102 were advanced to a terminal depth of approximately 13 feet BSG; boring SE-103 was advanced to a terminal depth of 11 feet BSG and borings SE-104 through SE-110 were advanced to 2 feet BSG. Groundwater was encountered at depths ranging from 3 feet to 5.5 feet BSG. Soil lithology observations and monitoring well construction details are provided in soil boring/monitoring well installation logs included as **Attachment 5**.

^{*}Sample submitted for laboratory analysis

8.3 Soil Sampling

Select soil samples were collected in laboratory supplied containers, labeled in the field, placed in a cooler on ice, and transported under chain of custody protocol to a State-certified laboratory for analysis of total metals *via* Environmental Protection Agency (EPA) Methods 6010C, 7471B and 7010, volatile organic compounds (VOCs) *via* EPA Method 8260C, semi-volatile organic compounds (SVOCs) *via* EPA Method 8270C, polychlorinated biphenyls (PCBs) *via* EPA Method 3540, and total petroleum hydrocarbons (TPH) *via* EPA Method 8100M.

8.4 Groundwater Sampling

SAGE returned to the Site on October 22, 2021, to collect groundwater samples from the three (3) newly-installed groundwater monitoring wells identified as SE-101(MW), SE-102(MW), and SE-103(MW). Groundwater samples were collected from the monitoring wells for analysis of VOCs *via* EPA Method 8260.

Prior to sample collection, SAGE gauged each well utilizing a Geotech® Electronic Interface Probe to determine depth to groundwater and to assess the groundwater surface to evaluate for the potential presence of non-aqueous phase liquid (NAPL). NAPL was not detected during well gauging of any of the wells sampled. Next, each well was purged with a peristaltic pump utilizing a modified version of the EPA Region 1 Standard Operating Procedure titled "Low Stress (low -flow) Purging and Sampling Procedure for the Collection of Groundwater Samples" from Monitoring Wells" Revision 3, July 19, 2010, which included the removal of a minimum of three static well volumes prior to sample collection in the vicinity of the well screen and allow the free flow of groundwater into the well. Additionally, a Geotech Portable Turbidity Meter was utilized throughout groundwater purging to ensure the turbidity of each sample was less than 5 Nephelometric Turbidity Units (NTUs) to ensure a representative sample.

8.5 Groundwater Elevation Survey

During the October 22, 2021, groundwater sampling event, a relative groundwater elevation survey was performed to determine the approximate groundwater flow direction. Using an arbitrary benchmark of 100 feet, each well was surveyed to establish relative elevations. Based on the elevation survey, groundwater at the Site appears to flow in a south/southwesterly direction. Groundwater contours are depicted on **Figure 2**. A summary of the groundwater gauging and elevation survey has been provided in **Table 11**.

Table 11
Groundwater Gauging Results
10 Higginson Avenue
Central Falls, RI

Well #	Well Dia. (in)	MP Elevation (ft)	Depth To Product (ft)	Depth to Water (ft)	Product Thickness (ft)	Equivalent Head Elev. (ft)
SE-101(MW)	1	100.00	N/D	4.9	N/D	95.10
SE-102(MW)	1	101.69	N/D	5.88	N/D	95.81
SE-103(MW)	1	99.29	N/D	4.70	N/D	94.59

N/D = No separate-phase petroleum detected

Once purged, groundwater samples were collected in laboratory-supplied, analyte-specific containers, labeled in the field, placed in a cooler on ice, and transported under chain of custody protocol to a state-certified laboratory for analysis.

8.6 Soil Analytical Results Summary

As depicted in **Table 12**, below, several target SVOCs, metals and TPH were detected in excess of applicable RIDEM R-DEC in soil samples collected throughout the Site. Please note that only analytes detected above laboratory detection limits are included in **Table 12**. A complete list of analytes tested for is included in the laboratory analytical report, along with chain of custody documentation, which is included as **Attachment 6**.

Table 12 Detected Soil Analytical Results Summary 10 Higginson Avenue Central Falls, RI

Sample ID / (Depth in Feet) / Date	SE-101(MW) (0-2)	SE-101(MW) (2-5)	SE-102(MW (0-2)	SE-102(MW) (5-10)	SE-103(MW) (0-2)	SE-103(MW) (2-5)	SE-104 (0-2)	SE-105 (0-2)	SE-106 (0-2)	SE-107 (0-2)	SE-108 (0-2)	SE-109 (0-2)	SE-110 (0-2)	RIDEM Method 1 Residential	RIDEM Method 1 GB Leachability
	10/21/2021	10/21/2021	10/21/2021	10/21/2021	10/21/2021	10/21/2021	10/21/2021	10/21/2021	10/21/2021	10/21/2021	10/21/2021	10/21/2021	10/21/2021	Direct Exposure	Criteria
Analyte	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result	Criteria	
Polychlorinated Biphenyls (PCBs) (mg/				T		1	•								
Aroclor-1268	<0.067	<0.074	<0.071	<0.092	<0.07	<0.078	<0.072	0.1	<0.073	<0.074	<0.073	<0.069	<0.073	see PCBs (Total)	see PCBs (Total)
PCBs (Total)	<0.067	<0.074	<0.071	<0.092	<0.07	<0.078	<0.072	0.1	<0.073	<0.074	<0.073	<0.069	<0.073	10	NE
Semi-volatile organic compounds (mg/	kg)														
Acenaphthylene	<0.274	<0.291	0.166	<0.183	<0.138	<0.15	<0.141	<0.14	0.398	<0.149	<0.141	<0.27	<0.143	23	NE
Anthracene	0.317	0.442	<0.134	0.297	<0.138	<0.15	<0.141	0.297	0.312	0.276	<0.141	<0.27	<0.143	35	NE
Benzo(a)anthracene	1.12	1.35	0.54	0.807	0.226	0.37	0.404	1.02	1.23	0.893	<0.141	<0.27	0.342	0.9	NE
Benzo(a)pyrene	1.17	1.43	0.66	0.815	0.272	0.356	0.408	1.02	1.55	0.854	<0.141	<0.27	0.312	0.4	NE
Benzo(b)fluoranthene	1.6	2.09	0.824	1.13	0.395	0.537	0.561	1.26	1.96	1.14	<0.141	<0.27	0.405	0.9	NE
Benzo(g,h,i)perylene	0.986	1.15	0.553	0.648	0.226	0.234	0.339	0.703	1.26	0.604	<0.141	<0.27	0.221	0.8	NE
Benzo(k)fluoranthene	0.556	0.759	0.335	0.412	<0.138	0.209	0.187	0.457	0.643	0.416	<0.141	<0.27	<0.143	0.9	NE
Chrysene	1.16	1.61	0.639	0.939	0.288	0.386	0.434	1.07	1.31	0.919	<0.141	<0.27	0.331	0.4	NE
Dibenz(a,h)anthracene	<0.274	<0.291	0.147	<0.183	<0.138	<0.15	<0.141	0.179	0.335	0.177	<0.141	<0.27	<0.143	0.4	NE
Fluoranthene	2.15	3.03	0.972	1.95	0.41	0.868	0.798	2.07	1.98	1.68	<0.141	0.319	0.56	20	NE
Indeno(1,2,3-cd)pyrene	1	1.21	0.575	0.697	0.255	0.262	0.357	0.771	1.37	0.671	<0.141	<0.27	0.245	0.9	NE
Phenanthrene	1.44	1.79	0.483	1.46	0.204	0.645	0.46	1.68	1.03	1.23	<0.141	<0.27	0.361	40	NE
Pyrene	2.42	3.31	1.29	2.09	0.503	0.836	0.984	2.35	2.17	1.82	<0.141	0.346	0.639	13	NE
Total Metals (mg/kg)															
Antimony	1.66	0.78	0.57	<0.49	<0.57	<0.43	5.11	17.2	1.13	1.47	<0.58	0.57	<0.51	10	NE
Arsenic	5.94	3.4	70.2	1.16	5.13	3.84	2.56	7.12	2.62	4.47	4.07	3.04	2.69	7	NE
Cadmium	1.97	0.75	0.89	0.48	1.13	1	1.21	31.6	1.39	1.48	1.45	1.69	1.08	39	NE
Chromium	9.27	6.45	7.49	3.12	8.34	6.89	8.14	19.5	9.48	9.65	9.09	11.8	7.73		NE
Copper	21	17.6	26.7	2.98	8.39	5.79	12.9	113	36.5	31.3	10.1	36.3	16.5	3100	NE
Lead	125	106	410	3.05	45.8	16.4	44.7	192	102	125	12.7	83	30.9	150	NE
Nickel	13.8	5.15	5.83	2.84	5.72	5.05	6.58	30.5	8.1	10.2	10.4	8.93	7.13	1000	NE
Zinc	91.7	80.8	63.3	27.6	37.2	23.7	60	216	108	98.5	36.9	79.5	44.1	6000	NE
Mercury	0.16	0.686	0.168	0.029	0.08	0.034	0.048	0.174	0.127	0.098	0.028	0.154	0.059	23	NE
Total Petroleum Hydrocarbons (mg/kg)														
Total Petroleum Hydrocarbons	356	250	880	<38	91	<31	111	190	364	122	<29	560	62	500	2500
Volatile Organic Compounds (mg/kg)															
Toluene	<0.005	<0.005	<0.005	<0.007	<0.005	<0.005	<0.005	<0.006	<0.006	<0.006	<0.007	<0.006	0.008	190	54
Calls with this color indicate:	Caraca vida a variable a		and the car the contains the falls	a Dante and a date	•	•	•		•	•	•				

Cells with this color indicate: Cases where the analyte was detected but is within the limits provided.

Cells with this color indicate: Cases where the analyte concentration violates one or more of the limits provided. (The violated limits are colored as well.)

<x: Indicates analyte concentration not detected at or above specified laboratory quantitation limit (x)

NE: Standard not established for this substance

8.7 Groundwater Analytical Results Summary

No target analytes were detected above laboratory detection limits in the groundwater samples collected; as such a summary table has not been included. A complete list of analytes tested for is included in the laboratory analytical report, along with chain of custody documentation, which is included as **Attachment 7**.

9.0 FINDINGS & CONCLUSIONS

SAGE has performed a Phase I ESA of the Site in general conformance with the scope and limitations of ASTM Practice E1527-13 and the EPA's AAI Rule and those exceptions identified in this report. Any exceptions to or deletions from this practice are described in **Section 1.6** of this report titled "Deviations".

9.1 Findings

The following summarizes key findings of the Phase I ESA based on observations during the Site walkover, review of existing historical resources, and interviews with current or past owners. Included in the summary are known or suspected RECs, CRECs, HRECs and *de minimis* conditions.

Suspected RECs and de minimis conditions at the Site:

- > Transformer: During the Site walkover, SAGE observed one (1) pad-mounted transformer along the western portion of the Site; and
- Suspect filling activities: A review of historical aerials and topographical maps indicated that the Site was formerly a large lowland wetland area that had been filled in over time.

ASTM E2600-15 Vapor Encroachment Screen

During this assessment, SAGE also conducted a Vapor Encroachment Screen (VES) via ASTM E2600-15. Based upon the results of the Tier II Screening, SAGE has determined a Vapor Encroachment Condition (VEC) does not exist based on the findings of the additional limited subsurface investigation conducted during this assessment, which did not identify volatile organic compounds (VOCs) in soil or groundwater in excess of laboratory detection limits and/or applicable standards.

9.2 OPINIONS

Based upon the results of this assessment and the ASTM E1527-13 definitions of a REC, HREC, and CREC, the following opinions have been developed by SAGE along with a rationale for such determinations.

Non-REC Findings:

> **Transformer:** Visual observation of the pad-mounted transformer along the western portion of the Site did not identify evidence of a release or threat of release, and the transformer appeared to be in good condition. As such, it is unlikely this has impacted the Site.

REC Findings:

> Suspect filling activities: During a review of available documentation, SAGE did not identify

evidence of laboratory analysis of the soils brought on Site during the filling of the former lowland wetland area. Typical historical fill material often included contaminated soils. Given that no laboratory analysis documentation was identified for the fill material brought onto the Site, it is possible that this material contains contaminants and may have resulted in a release to the environment. As such, this finding constitutes a REC.

Follow-up investigation of this REC did identify several SVOCs, metals, and TPH in Site soils in excess of the applicable RIDEM R-DEC. No contaminants of concern were identified in groundwater in excess of laboratory detection limits. This information is further discussed in **Section 8.0** of this report.

HREC Findings:

> Conditions indicative of an HREC were not identified during the course of this assessment.

CREC Findings:

Conditions indicative of a CREC were not identified during the course of this assessment.

9.3 CONCLUSION

SAGE has performed the Phase I ESA of the Site in conformance with the scope and limitations of ASTM Practice E1527-13 and the EPA's AAI Rule. Based on the listed REC, a LSI was performed to evaluate subsurface conditions. Further details of the LSI are provided in **Section 8.0** of this report.

In summary, the LSI included ten (10) soil borings, three (3) of which were completed as groundwater monitoring wells within the planned redevelopment footprint of the Site. The remainder of the borings were advanced to two (2) feet BSG to characterize surficial soils in anticipation of the redevelopment of the Site as a school. Results of soil sample analysis indicate the presence of several SVOCs, metals, and TPH in excess of the applicable RIDEM Method 1 R-DEC. Laboratory analytical results for all groundwater samples analyzed did not indicate the presence of any contaminants of concern in excess of laboratory detection limits.

These findings constitute a release to the environment at the Site as defined by the RIDEM Remediation Regulations. Accordingly, upon the owner and/or operator of the Site obtaining knowledge of these findings, reporting is required to the RIDEM Office of Land Revitalization and Sustainable Materials Management by the Responsible Party within 15 days of receiving such knowledge. A component of the notification will also need to include an applicability request of the Site relative to the Safe School Siting Act.

10.0 SIGNATURES AND QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONALS

This report summarizes the findings of SAGE's Phase I ESA. The Phase I ESA was based upon Site reconnaissance, interviews with public and private parties as well as a review of all appropriate federal, state and local files. The information and findings contained within the Environmental Site Assessment are true and correct to the best of SAGE's knowledge.

We declare that, to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in 312.10 of 40 CFR 312.10. We have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. We have developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR § 312.

Qualified professionals experienced in conducting Phase I Environmental Site Assessments have prepared this report.

Lacy Reyna 11/8/2021
Date

Environmental Scientist

Jacob H. Butterworth

pacob H. Butterworth, MS, LSP

Date

Vice President

11.0 LIMITATIONS

Data obtained from public agencies, Site inspections, and data mapping sources were used in the characterization of this Site. The accuracy of the conclusions derived from these data is based solely on the accuracy of the data reported and/or supplied. Should information be made available concerning the Site which is not included in this report, it should be reported to SAGE so that findings, conclusions, and/or recommendations can be altered and modified (if necessary).

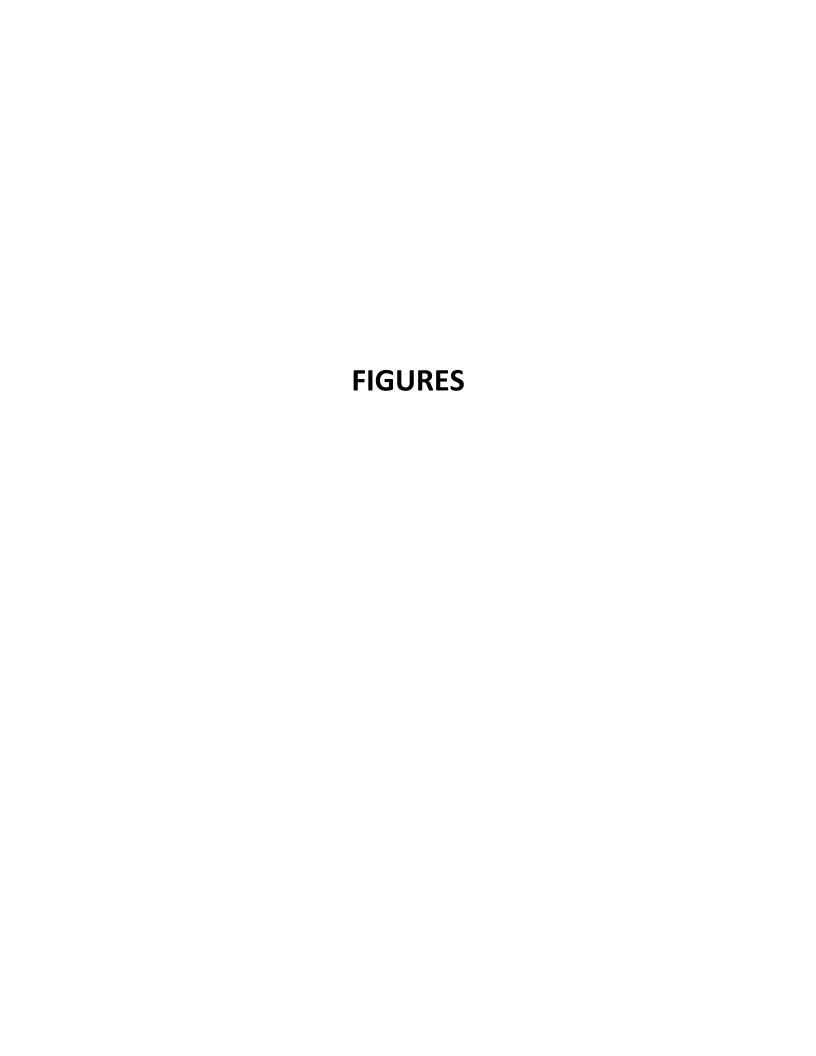
Events occurring on the Site after on-Site inspection are beyond the scope of this report. As such, SAGE makes no expressed or implied representations, warranties or guarantees regarding any changes in the condition of the premises after the date of the on-Site inspection.

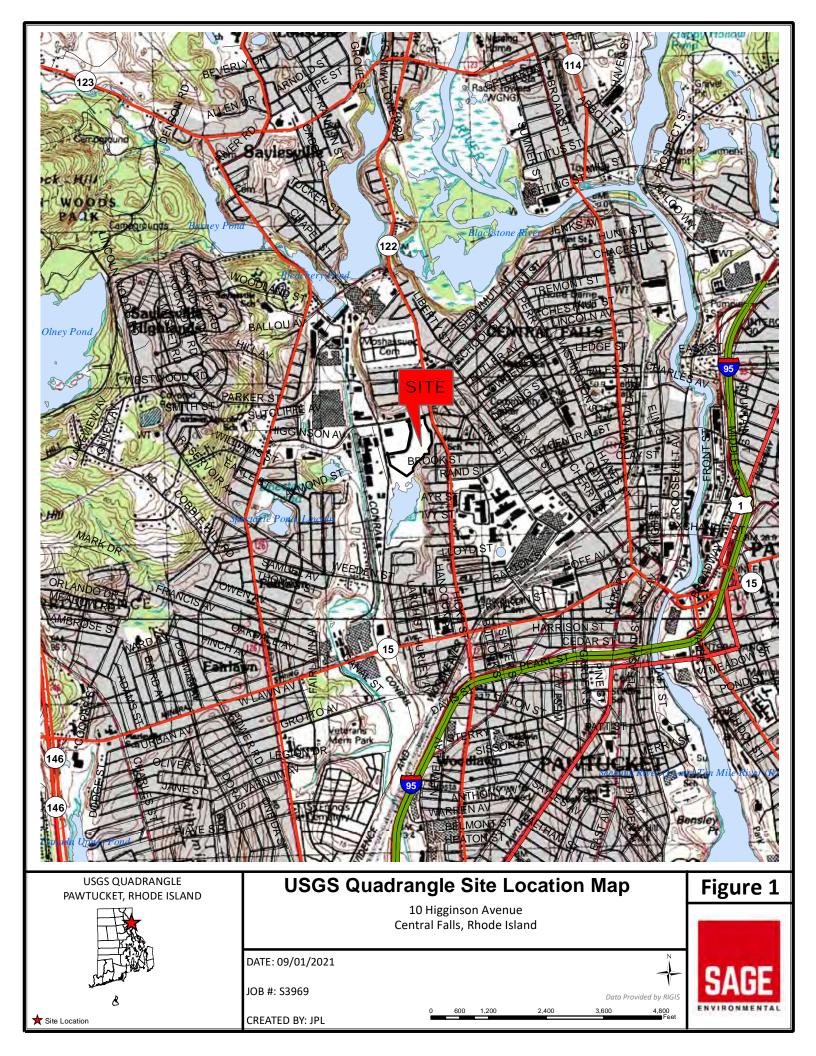
Any qualitative or quantitative information regarding the Site, which was not available to SAGE at the time of this assessment, may result in modification(s) to the conclusions and/or representations made in this report. The Phase I ESA and VES are intended to be non-exhaustive assessments and as such, information reviewed during the assessment is limited to that which is practically reviewable as defined in ASTM E1527 – 13 (3.2.69). This report is intended to reduce the uncertainty regarding the potential of a Recognized Environmental Condition to be present at the Site, however no environmental assessment can wholly eliminate uncertainty regarding the potential Recognized Environmental Conditions to be present at the Site.

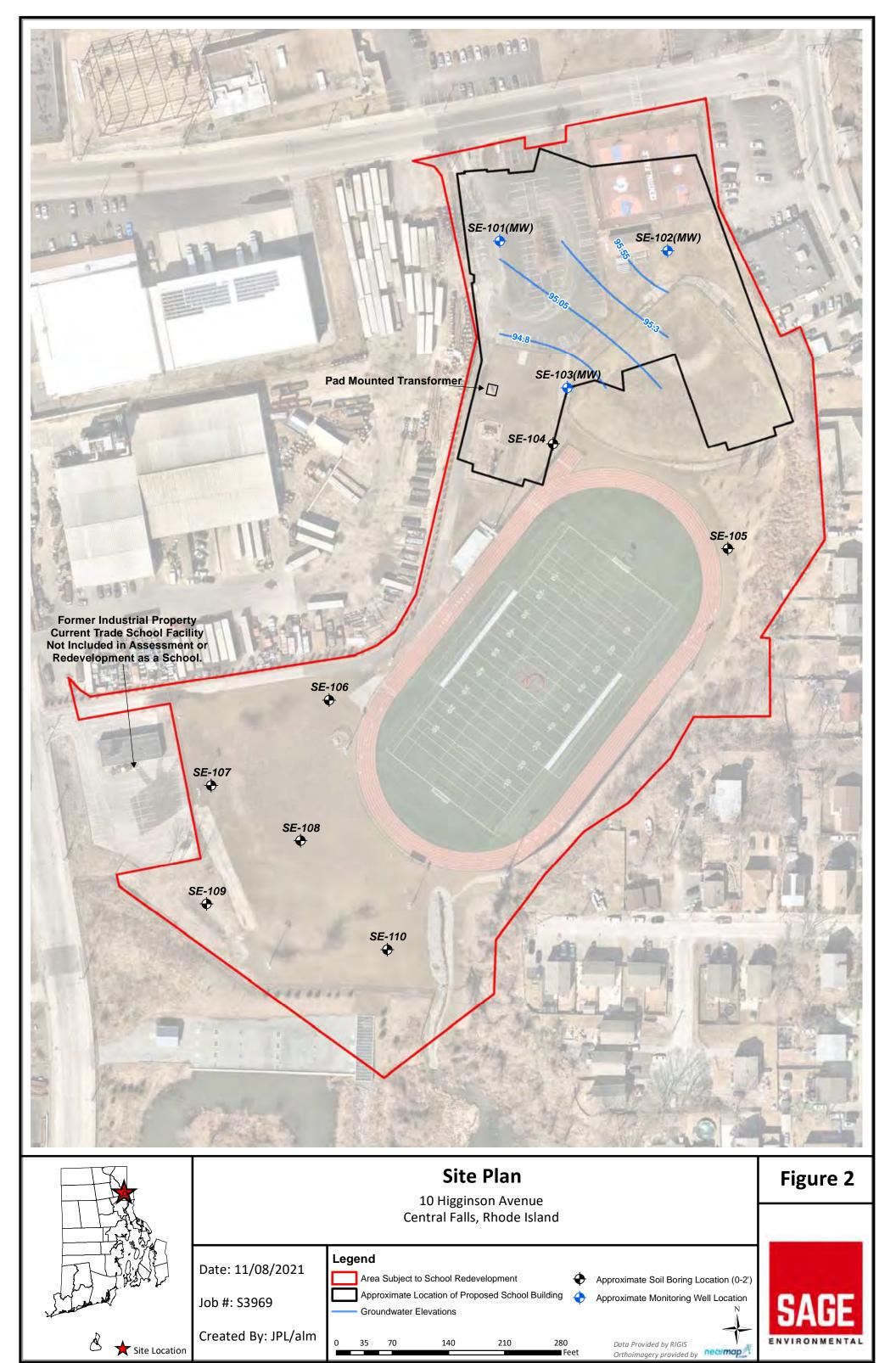
Due to the fact that geological and soil formations are inherently random, variable, and indeterminate (heterogeneous) in nature, the professional services and opinions provided by SAGE under our agreement are not guaranteed to be a representation of complete Site conditions, which are variable and subject to change with time or as the result of natural or man-made processes. Although our services are extensive, opinions, findings, and conclusions presented are limited to and by the data supplied, reported, and obtained. Additionally, unless specified or otherwise included herein, this assessment did not include an evaluation of business environmental risk as defined in ASTM E1527 - 13 (3.2.11) and non-scope

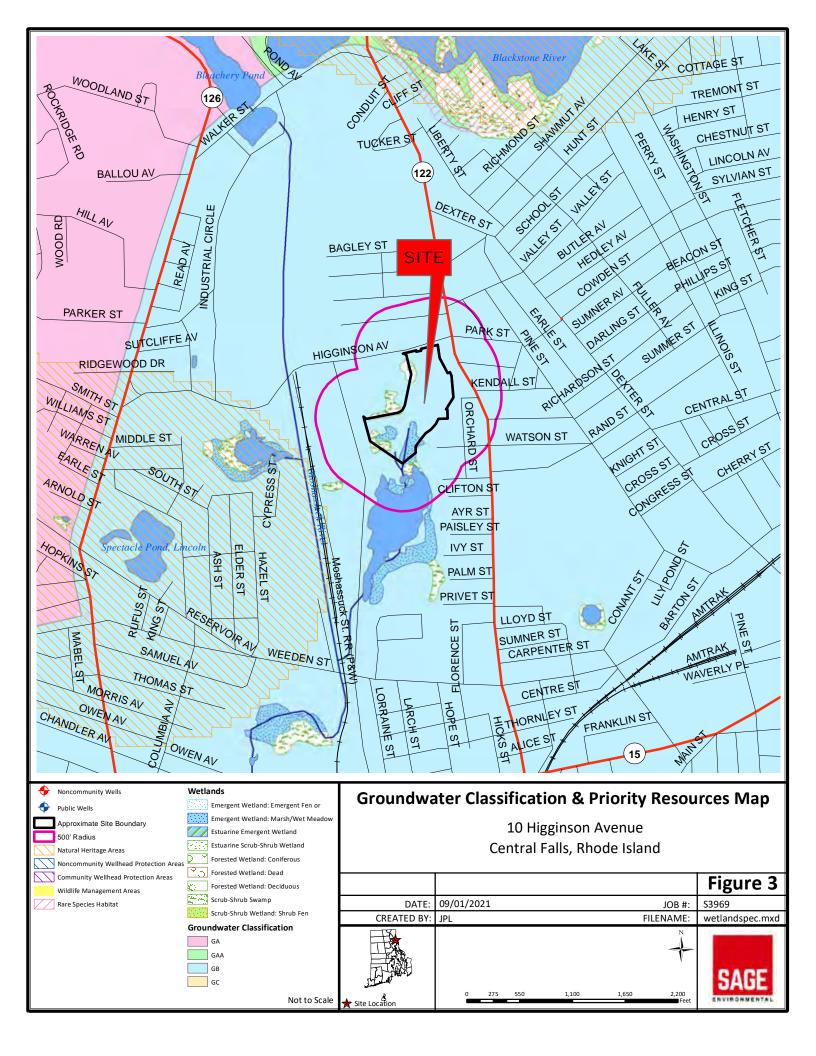
considerations as identified in ASTM E1527 - 13 (13). Such non-scope considerations include, but are not limited to, evaluation of: asbestos-containing materials, biological agents, radon, lead-based paint, lead in drinking water, wetlands, regulatory compliance, industrial hygiene, health and safety, OSHA compliance, cultural and historic resources, ecological resources, endangered species, indoor air quality, electromagnetic fields, formaldehyde, high-voltage power lines, non-point sources or best management practices for silviculture. Under the terms of the agreement no attempt was made to determine the compliance or regulatory status of present or former owners or operators of the Site with respect to federal, state, municipal, environmental, and land use laws or regulations.

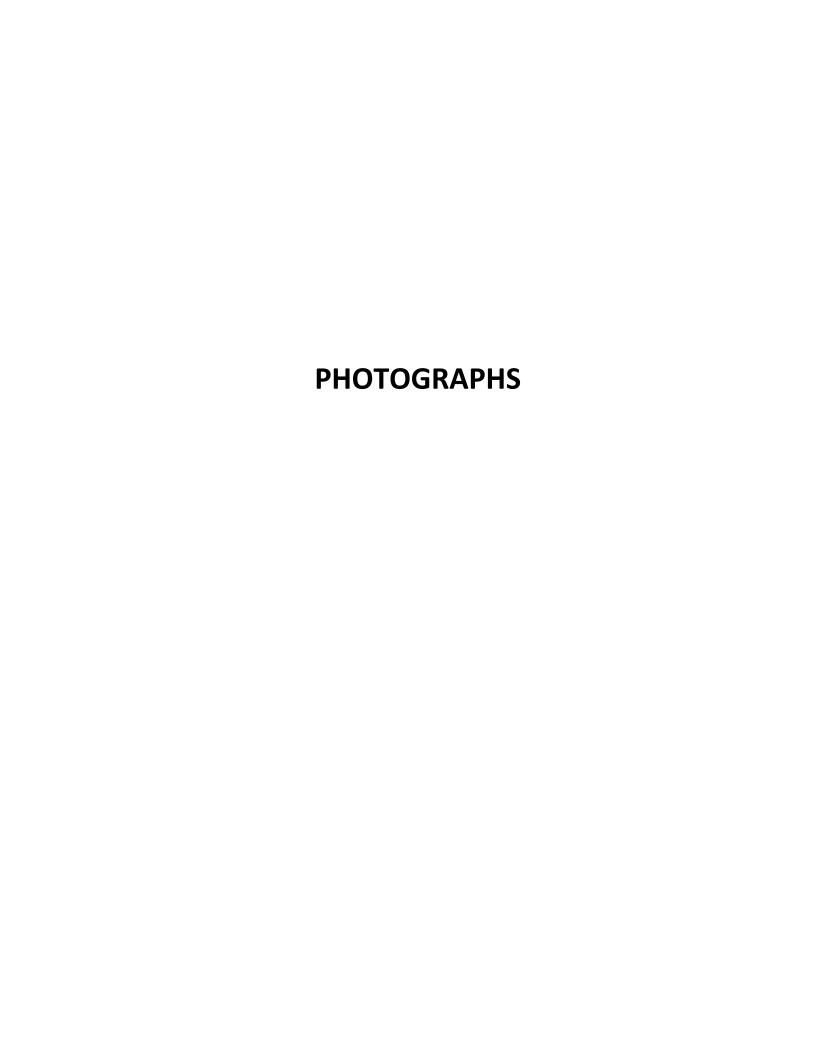
SAGE has retained a copy of this report. No deletions or additions are permitted without the written consent of SAGE. This report, including the data, maps, and figures contained herein, are not suitable for use in its present form, for any ongoing or pending litigation. Use of this report in whole or in part by parties other than those authorized by SAGE is prohibited.


12.0 REFERENCES


ASTM E1527-13, Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, ASTM International, West Conshohocken, PA, 2013, www.astm.org


ASTM E2600-15, Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions, ASTM International, West Conshohocken, PA, 2015, www.astm.org


Item	Date of Access	Source
"Pawtucket, Rhode Island" Quadrangle	September 1, 2021	USGS
Regulatory Database Report	August 2, 2021	Environmental Data Resources, Inc. (EDR)
Soils Information	September 1, 2021	USDA Web Soil Survey websoilsurvey.nrcs.usda.gov
Groundwater Classification	September 1, 2021	RIGIS database
Sanborn Map Report	August 4, 2021	EDR
Aerial Photographs	September 16, 2021	ArcGIS Historical Aerial Mapper
Street Directories	September 9, 2021	EDR
Building Records	October 28, 2021	Central Falls Building Department
Fire Prevention Records	October 28, 2021	Central Falls Fire Prevention Office
Site Reconnaissance Performed by Ms. Lacy Reyna	October 21, 2021	



Example Site conditions.

Example Site conditions and fieldhouse/cabana exterior.

Example Site conditions.

Example Site conditions.

Example Site conditions.

Example Site conditions.

Example Site conditions.

Example pad-mounted transformer along the western portion of the Site.

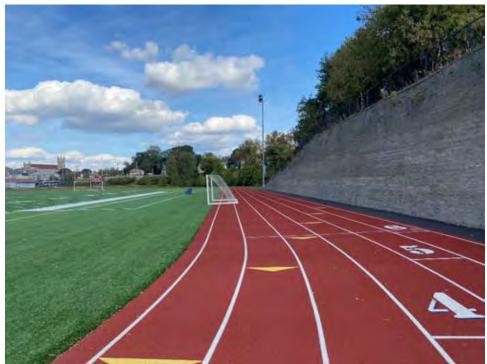
Example Site conditions.

Example Site conditions.

Example Site conditions.

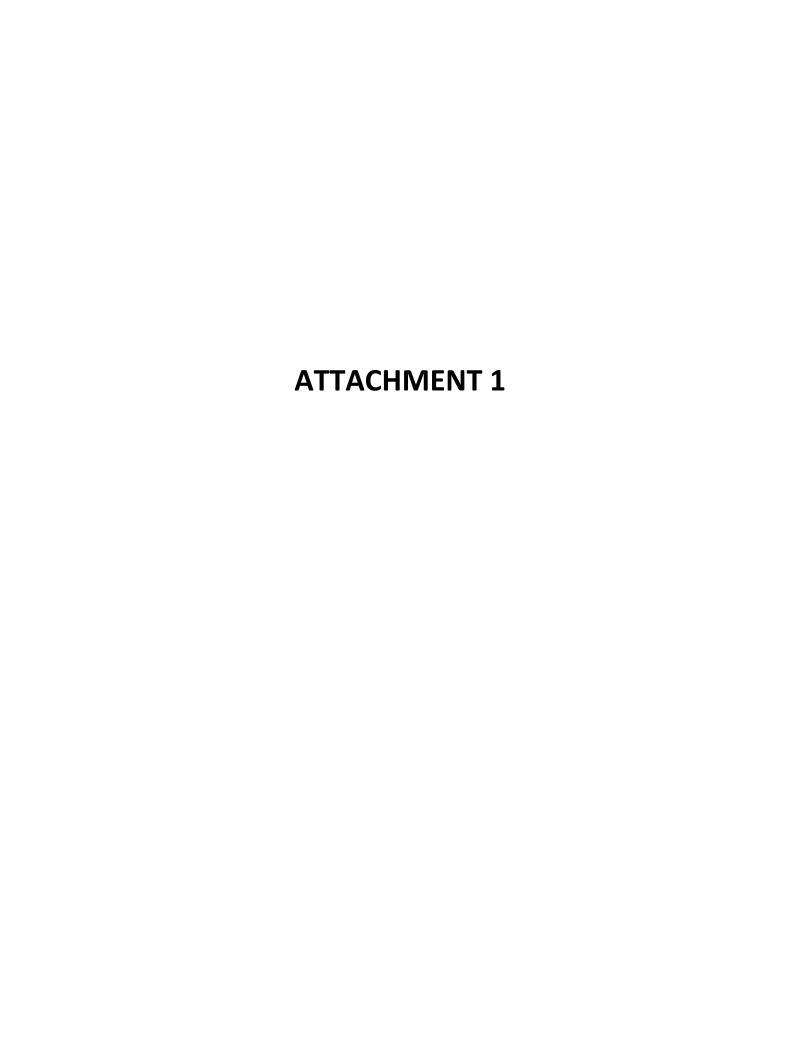
Industrial/commercial building along the southern portion of the Site.

(NOT INCLUDED IN THIS ASSESSMENT)



Example Site conditions.

Example Site conditions.



Example Site conditions.

Example Site conditions.

P7037

10 Higginson Avenue Central Falls, RI 02863

Inquiry Number: 6602106.2s

August 02, 2021

FirstSearch Area/Linear Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Search Summary Report

TARGET SITE 10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863

Category	Sel	Site	1/8	1/4	1/2	> 1/2	ZIP	TOTALS
		_	_				_	_
NPL	Υ	0	0	0	0	0	0	0
NPL Delisted	Υ	0	0	0	0	0	0	0
CERCLIS	Υ	0	0	0	0	-	0	0
NFRAP	Υ	0	1	0	0	-	0	1
RCRA COR ACT	Υ	0	0	0	1	1	0	2
RCRA TSD	Υ	0	0	0	2	-	0	2
RCRA GEN	Υ	0	2	3	-	-	0	5
Federal IC / EC	Υ	0	0	0	0	-	0	0
ERNS	Υ	0	-	-	-	-	0	0
State/Tribal CERCLIS	Υ	0	3	1	14	36	90	144
State/Tribal SWL	Υ	0	0	0	1	-	0	1
State/Tribal LTANKS	Υ	0	2	2	10	-	5	19
State/Tribal Tanks	Υ	0	12	10	-	-	0	22
State/Tribal IC / EC	Υ	0	1	0	8	-	0	9
ST/Tribal Brownfields	Υ	0	0	0	2	-	0	2
US Brownfields	Υ	0	0	0	4	-	0	4
Other Haz Sites	Υ	0	-	-	-	-	0	0
Spills	Υ	0	-	-	_	-	0	0
Other	Υ	0	3	9	-	-	0	12
	- Totals	0	24	25	42	37	95	223

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Search Summary Report

TARGET SITE: 10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863

Category	Database	Update	Radius	Site	1/8	1/4	1/2	> 1/2	ZIP	TOTALS
NPL	NPL	04/27/2021	1.000	0	0	0	0	0	0	0
	Proposed NPL	04/27/2021	1.000	0	0	0	0	0	0	0
NPL Delisted	Delisted NPL	04/27/2021	1.000	0	0	0	0	0	0	0
CERCLIS	SEMS	04/27/2021	0.500	0	0	0	0	-	0	0
NFRAP	SEMS-ARCHIVE	04/27/2021	0.500	0	1	0	0	-	0	1
RCRA COR ACT	CORRACTS	03/22/2021	1.000	0	0	0	1	1	0	2
RCRA TSD	RCRA-TSDF	03/22/2021	0.500	0	0	0	2	-	0	2
RCRA GEN	RCRA-LQG	03/22/2021	0.250	0	0	0	-	-	0	0
	RCRA-SQG	03/22/2021	0.250	0	2	2	-	-	0	4
	RCRA-VSQG	03/22/2021	0.250	0	0	1	-	-	0	1
Federal IC / EC	US ENG CONTROLS	02/22/2021	0.500	0	0	0	0	-	0	0
	US INST CONTROLS	02/22/2021	0.500	0	0	0	0	-	0	0
ERNS	ERNS	03/22/2021	TP	0	-	-	-	-	0	0
State/Tribal CERCLIS	SHWS	04/07/2021	1.000	0	3	1	14	36	90	144
State/Tribal SWL	SWF/LF	04/07/2021	0.500	0	0	0	1	-	0	1
State/Tribal LTANKS	LUST	03/01/2021	0.500	0	2	2	10	_	5	19
	INDIAN LUST	10/01/2020	0.500	0	0	0	0	-	0	0
State/Tribal Tanks	UST	03/01/2021	0.250	0	11	9	-	-	0	20
	AST	06/01/2020	0.250	0	1	1	-	-	0	2
	INDIAN UST	10/01/2020	0.250	0	0	0	-	-	0	0
State/Tribal IC / EC	AUL	04/07/2021	0.500	0	1	0	8	-	0	9
ST/Tribal Brownfields	BROWNFIELDS	04/07/2021	0.500	0	0	0	2	-	0	2
US Brownfields	US BROWNFIELDS	03/15/2021	0.500	0	0	0	4	-	0	4
Other Haz Sites	US CDL	12/07/2020	TP	0	-	-	-	-	0	0

Search Summary Report

TARGET SITE: 10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863

Category	Database	Update	Radius	Site	1/8	1/4	1/2	> 1/2	ZIP	TOTALS
Spills	HMIRS	03/22/2021	TP	0	-	-	-	_	0	0
	SPILLS	11/15/2004	TP	0	-	-	-	-	0	0
	SPILLS 90	01/04/2001	TP	0	-	-	-	-	0	0
Other	RCRA NonGen / NLR	03/22/2021	0.250	0	3	9	_	_	0	12
	TSCA	12/31/2016	TP	0	-	-	-	-	0	0
	TRIS	12/31/2018	TP	0	-	-	-	-	0	0
	SSTS	04/19/2021	TP	0	-	-	-	-	0	0
	RAATS	04/17/1995	TP	0	-	-	-	-	0	0
	PRP	12/30/2020	TP	0	-	-	-	-	0	0
	PADS	11/19/2020	TP	0	-	-	-	-	0	0
	ICIS	11/18/2016	TP	0	-	-	-	-	0	0
	FTTS	04/09/2009	TP	0	-	-	-	-	0	0
	MLTS	03/08/2021	TP	0	-	-	-	-	0	0
	RADINFO	07/01/2019	TP	0	-	-	-	-	0	0
	INDIAN RESERV	12/31/2014	1.000	0	0	0	0	0	0	0
	US AIRS	10/12/2016	TP	0	-	-	-	-	0	0
	FINDS	02/03/2021	TP	0	-	-	-	-	0	0
	- Totals			0	24	25	42	37	95	223

Site Information Report

Request Date:AUGUST 2, 2021Search Type:COORDRequest Name:KORIE TURGEON NICHOLSJob Number:P7037

Target Site: 10 HIGGINSON AVENUE

CENTRAL FALLS, RI 02863

Site Location

 Degrees (Decimal)
 Degrees (Min/Sec)
 UTMs

 Longitude:
 71.402926
 71.4029260 - 71° 24′ 10.53″
 Easting: 300625.2

 Latitude:
 41.884890
 41.8848900 - 41° 53′ 5.60″
 Northing: 4639574.5

 Elevation:
 47 ft. above sea level
 Zone: Zone 19

Demographics

Sites: 128 Non-Geocoded: 95 Population: N/A

RADON

Federal EPA Radon Zone for PROVIDENCE County: 2

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for Zip Code: 02863

Number of sites tested: 2

% 4-20 pCi/L % >20 pCi/L Area Average Activity % <4 pCi/L Living Area - 1st Floor Not Reported Not Reported Not Reported Not Reported Not Reported Living Area - 2nd Floor Not Reported Not Reported Not Reported **Basement** 1.750 pCi/L 100% 0% 0%

Federal Area Radon Information for PROVIDENCE COUNTY, RI

Number of sites tested: 179

 Area
 Average Activity
 % <4 pCi/L</th>
 % 4-20 pCi/L
 % >20 pCi/L

Living Area - 1st Floor 1.050 pCi/L 83% 17% 0%

Living Area - 2nd Floor Not Reported Not Reported Not Reported Not Reported

Basement 2.649 pCi/L 83% 17% 1%

Site Information Report

			ormation R	<u> </u>	
State Database	o: Pl Podon				
Radon Test					
Zipcode		# < 4 pCi/L	4 to 20	# > 20 pCi/L	Maximum
02863	77	69	8	0	10.3

Target Site Summary Report

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

TOTAL: 223 GEOCODED: 128 NON GEOCODED: 95

DB Type

Map ID --ID/Status Site Name Address Dist/Dir ElevDiff Page No.

No sites found for target address

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
A1	UST UST-3763 Permanently Closed	NEW ENGLAND TRACTOR TRAILER TR	600 MOSHASSUCK VALLEY IND PAWTUCKET, RI	0.02 WSW	+ 5	1
B2	UST UST-4830 Permanently Closed	INTERNATIONAL MEAT MARKET	756 LONSDALE AVE CENTRAL FALLS, RI	0.02 NNE	+ 16	2
А3	UST UST-1807 Permanently Closed In Use	FORTUNE METAL INC. OF RI	3 CROW POINT RD LINCOLN, RI	0.04 WSW	+ 3	3
C4	UST UST-1647 Permanently Closed In Use	FORTUNE METAL INC. OF RI	2 CROW POINT RD LINCOLN, RI	0.04 West	+ 3	4
C5	RCRA-SQG RID987486164	FORTUNE METALS	CROW POINT ROAD LINCOLN, RI	0.04 West	+ 3	5
C5	SEMS-ARCHIVE 0105941 RID987486164	FORTUNE METALS	CROW POINT ROAD LINCOLN, RI	0.04 West	+3	21
В6	UST UST-15090 Permanently Closed	J&JINVESTMENT	781 LONSDALE AVE PAWTUCKET, RI	0.05 NNE	+ 28	22
C7	SHWS Inactive BROF-HWM SR-26-0184	BROWNING FERRIS INDUSTRIES	600 MOSHASSUCK VALLEY PAWTUCKET, RI	0.05 West	+ 0	23
D8	AST 180008 E-In Use	MCD AIR TRANSPORT	25 NORTH CROW POINT RD LINCOLN, RI	0.08 SW	- 1	24
D9	UST UST-18147 Permanently Closed	J A R BAKER'S SUPPLY	12 CROW POINT RD LINCOLN, RI	0.08 SW	- 3	25

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No
D9	LUST 1823-ST UST-18147	J A R BAKER'S SUPPLY	12 CROW POINT RD LINCOLN, RI	0.08 SW	- 3	26
D10	RCRA NonGen / NLF RIR000517920	R GOOD DEAL TRANSPORTATION	12 CROW POINT RD LINCOLN, RI 02865	0.08 SW	- 3	27
E11	UST UST-15080 Permanently Closed	JANCO COMPANY	800 LONSDALE AVE PAWTUCKET, RI	0.08 NNE	+ 16	31
E12	UST UST-16211 Permanently Closed	HOLIDAY AUTO ANNEX	97 CROSSMAN ST PAWTUCKET, RI	0.08 NNE	+ 16	32
D13	AUL SR-18-1506	ROBINSON PROPERTY	16 NORTH CROW POINT ROAD LINCOLN, RI	0.08 SW	- 3	33
D13	SHWS Inactive TRP-HWM SR-18-1506	ROBINSON PROPERTY	16 NORTH CROW POINT ROAD LINCOLN, RI	0.08 SW	- 3	34
D14	RCRA NonGen / NLF RID987469467	R M & D TRANSPORTATION INC	26 N CROW POINT RD LINCOLN, RI 02865	0.08 SW	- 3	35
15	UST UST-16296 Permanently Closed	ROSE CONNOLLY	73 KENDALL ST PAWTUCKET, RI	0.09 East	+ 50	39
D16	UST UST-15518 Permanently Closed	COLLINS TRANSPORTATION	CROW POINT RD LINCOLN, RI	0.09 WSW	- 4	40
E17	RCRA-SQG RIR000508796	B & L AUTO SALES	824 LONSDALE AVE CENTRAL FALLS, RI 02863	0.09 NNE	+ 18	41
D18	RCRA NonGen / NLF RID987472479	R ROBINSON WASTE DISPOSAL INC	CROW POINT RD LINCOLN, RI 02865	0.09 SW	+ 4	52

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
F19	SHWSActiveMAMO-SFAMAMO-HWMSR-18-0776	MAJESTIC MOTORS	1300 EDDIE DOWLING HIGHWA LINCOLN, RI	0.12 SW	+ 10	56
F20	UST UST-2320 Permanently Closed	TAGGART SAND PRODUCTS CORPORAT	520 MOSHASSUCK VALLEY IND LINCOLN, RI	0.12 SW	+ 10	57
F20	LUST 1820-LS 1815-LS UST-2320	TAGGART SAND PRODUCTS CORPORAT	520 MOSHASSUCK VALLEY IND LINCOLN, RI	0.12 SW	+ 10	58
G21	RCRA NonGen / NLR RID981063712	GARCIAS AUTO SALES	595 LONSDALE AVE CENTRAL FALLS, RI 02863	0.13 SE	+ 49	59
G22	RCRA NonGen / NLR RI5000002097	GARCIAS AUTO SALES	595 LONSDALE AVE CENTRAL FALLS, RI 02863	0.13 SE	+ 49	62
G23	RCRA NonGen / NLR RI5000011890	BUFFINTON F H CO	575 LONSDALE AVE CENTRAL FALLS, RI 02863	0.15 SE	+ 51	66
H24	RCRA-SQG RID987467347	MILLERS TRUCK REPAIR INC	145 HIGGINSON AVE LINCOLN, RI 02865	0.16 WNW	+ 3	69
H25	UST UST-3315 In Use Permanently Closed	DURASTONE CORPORATION	150 HIGGINSON AVE LINCOLN, RI	0.17 WNW	+3	72
H25	LUST Soil Removal Only; I 1836-ST UST-3315	DURASTONE CORPORATION No Further Action Required	150 HIGGINSON AVE LINCOLN, RI	0.17 WNW	+3	73
26	UST UST-16466 Permanently Closed	PROVIDENCE & WORCESTER RAILROA	135 HIGGINSON AVE LINCOLN, RI	0.18 West	+ 18	74

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

TOTAL: GEOCODED: 128 NON GEOCODED: 95 223

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
127	RCRA NonGen / NLR RID063889356	NURSERY ORIGINALS INC	280 RAND ST CENTRAL FALLS, RI 02863	0.19 ESE	+ 53	75
128	SHWSActiveRAND-HWMSR-04-1206	RAND STREET COMPLEX	280 RAND STREET CENTRAL FALLS, RI	0.19 ESE	+ 53	79
129	UST UST-18193 Permanently Closed	SCHOOL HOUSE CANDY	280 RAND ST CENTRAL FALLS, RI	0.19 ESE	+ 53	80
130	RCRA NonGen / NLR RID980671010	SCHOOL HOUSE CANDY CO	280 RAND ST CENTRAL FALLS, RI 02863	0.19 ESE	+ 53	81
J31	RCRA NonGen / NLR RID166426973	MOBIL STA/KINGS MOBIL SERVICE	890 DEXTER ST CENTRAL FALLS, RI 02863	0.21 NE	+ 17	89
J31	UST UST-3197 Permanently Closed In Use	MOBIL STA/KINGS MOBIL SERVICE	890 DEXTER ST CENTRAL FALLS, RI 02863	0.21 NE	+ 17	93
K32	UST UST-1322 Permanently Closed	HIGGINSON AVENUE ENTERPRISES	125 HIGGINSON AVE LINCOLN, RI	0.22 West	+ 31	95
K32	LUST 1827-LS UST-1322	HIGGINSON AVENUE ENTERPRISES	125 HIGGINSON AVE LINCOLN, RI	0.22 West	+ 31	96
K33	RCRA NonGen / NLR RID001190578	CORRADO ANTHONY INC	125 HIGGENSON AVE LINCOLN, RI 02865	0.22 West	+ 31	97
K34	AST 180009 O-Other	HIGGINSON ENTERPRISES- WOOD &	125 HIGGINSON AVE LINCOLN, RI	0.22 West	+ 31	100
J35	UST UST-15952 Permanently Closed	DEXTER CREDIT UNION	934 DEXTER ST PAWTUCKET, RI	0.22 NNE	+ 19	101

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

	DB Type	St. 11		D: (D:	E! D://	
Map ID	ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
36	RCRA-SQG RID982752834	NISSEN JOHN J BAKING CO INC	817 DEXTER ST CENTRAL FALLS, RI 02863	0.22 NE	+ 21	102
J37	UST UST-18391 Permanently Closed	CITY OF CENTRAL FALLS (FORMER	925 DEXTER ST CENTRAL FALLS, RI	0.22 NNE	+ 19	105
38	RCRA NonGen / NLR RID982766032	CHOICE CLEANERS & LAUNDRY	744 DEXTER ST CENTRAL FALLS, RI 02863	0.23 ENE	+ 27	106
38	UST UST-15716 Permanently Closed	CHOICE CLEANERS & LAUNDRY	744 DEXTER ST CENTRAL FALLS, RI 02863	0.23 ENE	+ 27	110
J39	RCRA NonGen / NLR	CENTRAL FALLS SCHOOL DISTRICT	949 DEXTER ST CENTRAL FALLS, RI 02863	0.23 NNE	+ 20	111
40	UST UST-2077 Permanently Closed	ST. MATTHEW CHURCH	1030 DEXTER ST PAWTUCKET, RI	0.24 NNE	+ 40	114
L41	RCRA-VSQG RIR000517847	PRICE RITE OF PAWTUCKET	465 LONSDALE AVE PAWTUCKET, RI 02860	0.24 SSE	+ 54	115
L42	LUST Soil Removal Only; I 2658-LS UST-18197	HAXTONS LIQUORS No Further Action Required	457 LONSDALE AVE PAWTUCKET, RI	0.27 SSE	+ 51	120
43	LUST Soil Removal Only; I 0412-LS UST-18263	FRUITLAND (FORMERLY) No Further Action Required	969 LONSDALE AVE CENTRAL FALLS, RI	0.29 North	+ 54	121
44	BROWNFIELDS I PRI-SUBC	T&C WOODWORKING, INC.	31 PRIVET ST PAWTUCKET, RI 02860	0.31 SSE	+ 45	122
44	AUL SR-26-1137 A	T&C WOODWORKING, INC.	31 PRIVET ST PAWTUCKET, RI 02860	0.31 SSE	+ 45	123

P7037

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB:

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
44	SHWSInactivePRI-SUBCPRIV-HWMSR-26-1137 BSR-26-1137 A	T&C WOODWORKING, INC.	31 PRIVET ST PAWTUCKET, RI 02860	0.31 SSE	+ 45	124
M45	BROWNFIELDS I COLL-BRF	COLLYER INSULATED WIRE	100 HIGGINSON AVE LINCOLN, RI 02865	0.35 West	+ 53	125
M45	AUL SR-18-1674	COLLYER INSULATED WIRE	100 HIGGINSON AVE LINCOLN, RI 02865	0.35 West	+ 53	126
M45	LUST Soil Removal Only; 1811-LS UST-1374	COLLYER INSULATED WIRE No Further Action Required	100 HIGGINSON AVE LINCOLN, RI 02865	0.35 West	+ 53	127
M45	SHWSInactiveCOLL-BRFCOLL-HWMSR-18-1674	COLLYER INSULATED WIRE	100 HIGGINSON AVE LINCOLN, RI 02865	0.35 West	+ 53	128
M46	US BROWNFIELDS 12956 	COLLYER WIRE	100 HIGGINSON AVENUE LINCOLN, RI -	0.35 West	+ 53	129
47	AUL SR-04-0425	EFRAIN PLEITEZ (BANCO POPULAR	502-510 DEXTER STREET CENTRAL FALLS, RI	0.35 East	+ 37	133
47	SHWSInactiveEFRP-HWMSR-04-0425	EFRAIN PLEITEZ (BANCO POPULAR	502-510 DEXTER STREET CENTRAL FALLS, RI	0.35 East	+ 37	134
48	US BROWNFIELDS 219846 	PCF 2016 PHASE I - 39 KNIGHT S	39 KNIGHT STREET CENTRAL FALLS, RI 02863	0.38 ESE	+ 40	135
49	AUL SR-26-1026	NULCO LIGHTING CO.	30 BEECHER ST PAWTUCKET, RI 02860	0.40 SSE	+ 45	142

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
49	SHWS Inactive NULC-HWM SR-26-1026	NULCO LIGHTING CO.	30 BEECHER ST PAWTUCKET, RI 02860	0.40 SSE	+ 45	143
50	US BROWNFIELDS 95821 09/20/2017	LAUREL HILL PLAYGROUND	370 LONSDALE AVENUE PAWTUCKET, RI 02860	0.41 SSE	+ 47	144
N51	LUST Soil Removal Only; 2620-LS 2656-ST UST-3469	PARAMOUNT CARDS, INC. No Further Action Required	400 PINE ST PAWTUCKET, RI	0.41 ESE	+ 39	182
N52	SHWS Inactive PCAR-HWM SR-26-1059	PARAMOUNT CARDS	400 PINE STREET PAWTUCKET, RI	0.41 ESE	+ 39	183
53	AUL SR-26-0203	C & E TRUCKING (FORMER)	500 MOSHASSUCK VALLEY IND PAWTUCKET, RI	0.43 SSW	+ 1	184
53	SHWS Inactive C&ET-HWM SR-26-0203	C & E TRUCKING (FORMER)	500 MOSHASSUCK VALLEY IND PAWTUCKET, RI	0.43 SSW	+ 1	185
54	LUST 2654-ST UST-3543	GALEGO COURT	483 WEEDEN ST PAWTUCKET, RI	0.43 South	+ 19	186
N55	SHWS Active ART-HWM SR-26-0073 A	STRETCH PRODUCTS CORP	392 PINE ST PAWTUCKET, RI 02860	0.43 ESE	+ 39	187
N56	US BROWNFIELDS 238352 	THE PINE	390 PINE STREET PAWTUCKET, RI 02860	0.44 ESE	+ 39	188

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

TOTAL: GEOCODED: 128 NON GEOCODED: 95 223

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
N57	AUL SR-26-0073 B	VACANT MILL BUILDING	390 PINE ST PAWTUCKET, RI 02860	0.44 ESE	+ 39	198
N57	SHWS Active ARTB-HWM SR-26-0073 B	VACANT MILL BUILDING	390 PINE ST PAWTUCKET, RI 02860	0.44 ESE	+ 39	199
O58	SHWSInactiveSAYB-HWMSR-18-1404	SAYLESVILLE BLEACHERY (FORMER)	55 INDUSTRIAL CIRCLE & 80 LINCOLN, RI	0.44 NW	+ 15	200
O59	LUST 1835-ST UST-4207	CAPITAL RECORD MANAGEMENT	65 INDUSTRIAL CIR LINCOLN, RI	0.44 NW	+ 9	201
O60	SWF/LF Active	FUTURE HEALTHCARE SYSTEM, INC	65 INDUSTRIAL CIRCLE LINCOLN, RI	0.44 NW	+ 9	202
O60	SHWS Inactive FHSI-NJD NJD-17-0017	FUTURE HEALTHCARE SYSTEM, INC	65 INDUSTRIAL CIRCLE LINCOLN, RI	0.44 NW	+ 9	203
O61	LUST 1824-LS UST-18229	50 INDUSTRIAL CIRCLE	50 INDUSTRIAL CIR LINCOLN, RI	0.45 NW	+ 10	204
62	AUL SR-18-0202	LINCOLN LOFTS	90 INDUSTRIAL CIR LINCOLN, RI 02865	0.46 NW	+ 13	205
62	SHWS Active CFT-HWM SR-18-0202	LINCOLN LOFTS	90 INDUSTRIAL CIR LINCOLN, RI 02865	0.46 NW	+ 13	206
63	SHWS Active APCI-HWM SR-18-0068	ARCH SPECIALTY CHEMICALS INC.	40 MOSHASSUCK RD. LINCOLN, RI 02865	0.47 NNW	+ 16	207

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
63	RCRA-TSDF RID001202589	ARCH SPECIALTY CHEMICALS INC.	40 MOSHASSUCK RD. LINCOLN, RI 02865	0.47 NNW	+ 16	208
63	CORRACTS RID001202589	ARCH SPECIALTY CHEMICALS INC.	40 MOSHASSUCK RD. LINCOLN, RI 02865	0.47 NNW	+ 16	221
64	LUST Soil Removal Only 1830-LS 1830A-LS UST-1635	FAIRLAWN OIL SERVICE ; No Further Action Required	935 SMITHFIELD AVE LINCOLN, RI	0.47 West	+ 55	223
65	LUST Soil Removal Only 2626-LS UST-1227	FORMER VERIZON BUILDING ; No Further Action Required	20 CONGRESS ST PAWTUCKET, RI	0.48 ESE	+ 51	224
66	LUST Soil Removal Only 0414-LS UST-1864	PUBLIC SAFETY CTR FIRE DEPT ; No Further Action Required	150 ILLINOIS ST CENTRAL FALLS, RI	0.49 ENE	+ 45	225
P67	SHWSInactiveMOBC-NJDNJD-26-0027	MONARCH BRASS & COPPER	371 PINE STREET PAWTUCKET, RI	0.49 ESE	+ 39	226
Q68	RCRA-TSDF RIR000511642	TANURY G PLATING CO	200 CONANT ST - BLDG 2 PAWTUCKET, RI 02860	0.50 SE	+ 35	227
Q69	AUL SR-26-0284 A	CONANT STREET MILL	200 CONANT STREET PAWTUCKET, RI	0.50 SE	+ 35	233
Q69	SHWS Inactive COSM-HWM SR-26-0284 A	CONANT STREET MILL	200 CONANT STREET PAWTUCKET, RI	0.50 SE	+ 35	234
P70	SHWSActiveSTAN-HWMSTAN-SUBCSR-26-1472	STANDARD UNIFORM	354 PINE ST PAWTUCKET, RI 02860	0.50 ESE	+ 39	235

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
71	SHWS Active CAS-HWM SR-26-1709	JP COLLISION INC	616 WEEDEN ST PAWTUCKET, RI 02860	0.50 SW	+ 45	236
72	SHWSInactiveGLNF-HWMSR-26-0542	NORTH EAST KNITTING	179 CONANT ST PAWTUCKET, RI 02860	0.52 SE	+ 34	237
73	SHWS Active CFLIN-HWM SR-18-1893	CUMBERLAND FARMS STORE#RI0484	823 SMITHFIELD AVENUE (79 LINCOLN, RI	0.57 WSW	+ 47	238
74	SHWSInactiveBSD-HWMSR-04-0111	BEACON STREET DISPOSAL	BEACON & WASHINGTON ST CENTRAL FALLS, RI	0.58 ENE	+ 41	239
75	SHWSActiveCTN-SUBCSR-26-0322 B	C-TOWN	300 BARTON STREET PAWTUCKET, RI	0.59 ESE	+ 35	240
76	SHWSActiveAUTOZ-HWMSR-26-0322 A	AUTO ZONE	262 BARTON STREET PAWTUCKET, RI	0.63 ESE	+ 35	241
R77	SHWSActivePCFT-HWMSR-26-1938	PAWTUCKET/CENTRAL FALLS COMMUT	280 PINE STREET PAWTUCKET, RI	0.70 SE	+ 31	242
R78	SHWSActivePCFT-DOTSR-26-	PAWTUCKET/CENTRAL FALLS COMMUT	280 PINE STREET PAWTUCKET, RI	0.70 SE	+ 31	243
79	SHWS Active MSM-HWM SR-26-1139 A	LEVIN PLATING CO.	560 MINERAL SPRING AVE PAWTUCKET, RI 02860	0.73 SSW	+ 3	244

JOB:

P7037

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property:

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
80	SHWS Inactive MFDN-HWM SR-18-0798	MCFADDEN PROPERTY	51 WILLIAMS STREET LINCOLN, RI	0.74 West	+ 172	245
81	SHWS Inactive CFBS-HWM SR-04-1758	CUMBERLAND FARMS #3809	478 BROAD ST CENTRAL FALLS, RI 02863	0.74 East	+ 56	246
82	SHWS Active PINE-HWM SR-26-1109	PINE STREET ASSOCIATES	258 PINE STREET PAWTUCKET, RI	0.74 SE	+ 32	247
83	SHWS Inactive FDP-HWM SR-04-1753	CHARISMA MANUFACTURING CO.	400 BROAD ST CENTRAL FALLS, RI 02863	0.75 East	+ 56	248
84	SHWS Active WLOO-HWM SR-26-1976	UNION WADDING CO.	125 GOFF AVE PAWTUCKET, RI 02862	0.77 ESE	+ 29	249
85	SHWSInactivePRM-SFASR-26-1762	PROVIDENCE METALLIZING	51 FAIRLAWN AVENUE PAWTUCKET, RI 02860	0.79 SSW	+ 6	250
85	CORRACTS RID001187277	PROVIDENCE METALLIZING	51 FAIRLAWN AVENUE PAWTUCKET, RI 02860	0.79 SSW	+ 6	251
86	SHWS Inactive JLW-HWM SR-04-0669	JANOWSKI LEEDON WEBBING	86 TREMONT STREET CENTRAL FALLS, RI	0.80 NE	+ 36	253
87	SHWS Inactive MDON-HWM SR-04-0797	FAMILY DOLLAR #7972	839 BROAD ST CENTRAL FALLS, RI 02863	0.82 ENE	+ 61	254

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
S88	SHWS Inactive CENT-HWM SR-26-0228	CENTENIAL TOWERS	35 GOFF STREET PAWTUCKET, RI	0.83 ESE	+ 29	255
89	SHWS Inactive MACO-HWM SR-26-0768	MAACO AUTO PAINTING & BODY WOR	501 MAIN ST PAWTUCKET, RI 02860	0.83 SE	+ 41	256
90	SHWS Inactive PARY-HWM SR-26-1063	PARKIN YARN (FORMER)	21 COMMERCE STREET PAWTUCKET, RI	0.84 SE	+ 31	257
S91	SHWS Inactive NE355-HWM SR-26-0946	NATIONAL GRID - VAULT 355	GOFF & BROAD STREET PAWTUCKET, RI	0.86 ESE	+ 30	258
T92	SHWS Inactive SHSS-NJD NJD-04-0045	SHELL OIL PRODUCTS COMPANY	957 BROAD ST CENTRAL FALLS, RI 02863	0.87 NE	+ 33	259
93	SHWS Active LDN-SFA SR-18-0762	LONSDALE NARROWS	OFF LONSDALE AVENUE LINCOLN, RI 02865	0.88 North	+ 10	260
T94	SHWSInactiveTOYS-HWMSR-04-0593	HASBRO, INC.	1033 BROAD ST CENTRAL FALLS, RI	0.88 NE	+ 25	261
95	SHWSInactiveDENP-HWMSR-26-0369	DENNIS PRINTING COMPANY	69 MONTGOMERY STREET PAWTUCKET, RI	0.89 ESE	+ 29	262
96	SHWS Inactive OSAW-HWM SR-26-1044	ONE SAN ANTONIO WAY PROPERTY	1 SAN ANTONIO WAY PAWTUCKET, RI	0.89 South	- 6	263

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
97	SHWS Inactive CBC-HWM SR-04-0230	CASCADE BEVERAGE COMPANY	500 HIGH STREET CENTRAL FALLS, RI	0.91 East	+ 14	264
98	SHWS Inactive WCP2-HWM SR-26-1789 B	WEINBERG COMMERCIAL PROPERTY 2	26 SUMMER STREET PAWTUCKET, RI	0.92 ESE	+ 24	265
U99	SHWS Active PAWT-SFA SR-26-1078	BLACKSTONE VALLEY REGIONAL TRA	240 GROTTO AVE PAWTUCKET, RI 02860	0.95 SSW	+ 16	266
U100	SHWS Inactive AFRI-HWM SR-26-0028	FOOLPROOF BREWING COMPANY LLC	241 GROTTO AVE PAWTUCKET, RI 02860	0.96 SSW	+ 26	267
101	SHWS Active OFFH-HWM SR-26-1036A	OFFENHAUSER RI /CONTINENTAL BR	11 WEBB STREET PAWTUCKET, RI	0.98 SSE	+ 42	268
V102	SHWS Monitoring RAR-HWM SR-04-1850	TEKNICOTE INC	396 ROOSEVELT AVE CENTRAL FALLS, RI 02863	0.98 East	+ 19	269
V103	SHWS Active KILM-HWM SR-04-0704	KILMARTIN REALTY	413 ROOSEVELT AVENUE CENTRAL FALLS, RI	0.99 East	+ 17	270
104	SHWSInactiveNCUP-HWMSR-04-0133	NAVIGANT CREDIT UNION (BLACKST	501 ROOSEVELT AVENUE CENTRAL FALLS, RI	0.99 East	+ 5	271
105	SHWS Inactive HTB-HWM SR-04-0597	HEALTH TEX BUILDING	558 ROOSEVELT AVENUE CENTRAL FALLS, RI	1.00 East	+ 6	272

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
	SHWS Inactive NECF-HWM SR-04-0872	NATIONAL GRID - CENTRAL FALLS	BLACKSTONE STREET CENTRAL FALLS, RI	NON GC	N/A	N/A
	LUST 0413-LS UST-1941	WHITTET-HIGGINS COMPANY	33 HIGGINSON AVE CENTRAL FALLS, RI	NON GC	N/A	N/A
	SHWS Inactive NBCCF-HWM SR-04-0858	NBC CENTRAL FALLS CSO - PCBS	MOSHASSUCK VALLEY HIGHWAY CENTRAL FALLS, RI	NON GC	N/A	N/A
	LUST Soil Removal Only; 0828-ST UST-17057	BORGES FOUNDRY No Further Action Required	12 ANN & HOPE WAY CUMBERLAND, RI	NON GC	N/A	N/A
	SHWS Active DIAM2-DOT SR-08-1874	DOT - DIAMOND HILL IMPROVEMENT	BEAR HILL ROAD TO INDUSTR CUMBERLAND, RI	NON GC	N/A	N/A
	SHWSInactiveMNVL-HWMSR-08-0780	MANVILLE LANDING	MANVILLE HILL ROAD CUMBERLAND, RI	NON GC	N/A	N/A
	SHWS Active BVW-HWM SR-08-0138	BLACKSTONE VALLEY WILDERNESS A	MAPLE STREET CUMBERLAND, RI	NON GC	N/A	N/A
	SHWS Active MARS-HWM SR-08-1098 G	MARTIN STREET FIELD	MARTIN STREET CUMBERLAND, RI	NON GC	N/A	N/A
	SHWS Active PAC-HWM SR-08-1098 E	PACIFIC ANCHOR CORP (SEE PET/P	MARTIN STREET CUMBERLAND, RI	NON GC	N/A	N/A

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
	SHWS Active LUCH-SFA SR-08-0763	LONZA /UNIVERSAL CHEMICAL	MARTIN STREET CUMBERLAND, RI	NON GC	N/A	N/A
	SHWS Inactive THWT-HWM SR-08-1536	THOMPSON HILL WATER STORAGE TA	MASON DRIVE CUMBERLAND, RI	NON GC	N/A	N/A
	SHWSActiveBSR-DOTSR-08-1911	BROAD STREET REGENERATION	MENDON ROAD TO EXCHANGE S CUMBERLAND, RI	NON GC	N/A	N/A
	SHWS Active KOTR-HWM SR-18-1831	KAFIN OIL TRUCK ROLLOVER	INTERSTATE 295 NORTH - RO LINCOLN, RI	NON GC	N/A	N/A
	SHWS Active NBCMV-HWM SR-18-1836	NBC - MOSHASSUCK VALLEY INTERC	CROW POINT ROAD ROW LINCOLN, RI	NON GC	N/A	N/A
	SHWSInactiveCAR-HWMSR-18-0217	CARDOSA DISPOSAL	HIGGINSON AVE LINCOLN, RI	NON GC	N/A	N/A
	SHWSInactiveNCIP-SFASR-18-1006	NORTH CENTRAL INDUSTRIAL PARK	JENCKES & POWDER HILL, AL LINCOLN, RI	NON GC	N/A	N/A
	SHWSInactiveLDT-SFALDIM-HWMSR-18-0744	LINCOLN DIMENSIONAL TUBE	JENCKES HILL ROAD LINCOLN, RI	NON GC	N/A	N/A
	SHWS Active CFD-SFA SR-18-0232	CENTRAL FALLS DUMPSITE	LONSDALE AVE- ADJ TO VF P LINCOLN, RI	NON GC	N/A	N/A

P7037

Target Property: 10 HIGGINSON AVENUE JOB:

CENTRAL FALLS, RI 02863

--SR-26-0113

TOTAL: 223 GEOCODED: 128 NON GEOCODED: 95

DB Type Dist/Dir Address **ElevDiff** Map ID --ID/Status Site Name Page No. LUST **NEW ENGLAND CONTAINER** POWDER HILL RD NON GC N/A N/A --Soil Removal Only; No Further Action Required LINCOLN, RI --1806-LS --UST-158 SMITHFIELD ROAD SHWS D'AGOSTINO PROPERTY 2 (K&R AUT NON GC N/A N/A --Inactive NORTH PROVIDENCE, RI --DAGP2-HWM --SR-24-0341 B SHWS DEXTER STREET LOFTS, LLC 60 - 100 DEXTER STREET NON GC N/A N/A PAWTUCKET, RI --Inactive --DSLL-NJD --NJD-26-0013 SHWS WEINBERG COMMERCIAL PROPERTY 33 & 41 SUMMER STREET NON GC N/A N/A PAWTUCKET, RI --Inactive --WCP-HWM --SR-26-1789 A SHWS HORD CRYSTAL CORPORATION 33 & 45 YORK AVENUE NON GC N/A N/A PAWTUCKET, RI --Inactive --HORD-HWM --SR-26-0631 NON GC SHWS 602 & 650 MINERAL SPRING AVENU 602 (& 650) MINERAL SPRIN N/A N/A PAWTUCKET, RI --Active --602MS-HWM --SR-26-2000 SHWS PAWTUCKET REDEVELOPMENT AGENCY **BARTON STREET** NON GC N/A N/A PAWTUCKET, RI --Inactive --PRAB-SUBC --SR-26-1079 SHWS PAWTUCKET TRAIN STATION (FORM 309-349 BROAD STREET NON GC N/A N/A PAWTUCKET, RI --Inactive --PATS-HWM --SR-26-1082 SHWS PETULA ASSOCIATES (ALSO SEE BE **BROAD/MASON & GOFF STREET** NON GC N/A N/A PAWTUCKET, RI --Inactive --PETU-HWM

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
	SHWS Active C569-HWM SR-26-0284 B	CONANT STREET MILL SITE - LOT	CONANT STREET PAWTUCKET, RI	NON GC	N/A	N/A
	LUST 0403-LS UST-16419	CENTRAL FALLS COMMUNITY CENTER	361 COWDEN ST PAWTUCKET, RI	NON GC	N/A	N/A
	SHWS Active DSMPL-HWM SR-26-1936	DEXTER STREET MUNI PARKING LOT	DEXTER STREET PAWTUCKET, RI	NON GC	N/A	N/A
	SHWS Active ARL-HWM SR-26-1805	ARMANDO REALTY LLC - GOFF AVEN	GOFF AVENUE PROPERTY PAWTUCKET, RI	NON GC	N/A	N/A
	SHWS Active GRA-SUBC SR-26-1139 B	GROTTO AVENUE LOT 236 (ALSO PR	GROTTO AVENUE PAWTUCKET, RI	NON GC	N/A	N/A
	SHWS Active AFRI2-HWM SR-26-0027	AFRICO PROPERTY II (FORMER)	GROTTO AVENUE PAWTUCKET, RI	NON GC	N/A	N/A
	LUST Soil Removal Only; 0405-LS UST-959	BERARD OIL COMPANY No Further Action Required	1063 LONSDALE AVE PAWTUCKET, RI	NON GC	N/A	N/A
	SHWSInactiveLHIL-SUBCSR-26-0729	LAUREL HILL (PLAYGROUND)	LONSDALE AVENUE PAWTUCKET, RI	NON GC	N/A	N/A
	SHWS Inactive SAM-HWM SR-26-1397	SAMUEL AVE. DISPOSAL	SAMUEL AVE. PAWTUCKET, RI	NON GC	N/A	N/A

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
	SHWSInactiveFES-SUBCSR-26-0466	FESTIVAL PIER	SCHOOL STREET PAWTUCKET, RI	NON GC	N/A	N/A
	SHWS Active ESP-HWM SR-26-1806	EAST STREET PARK	EAST STREET (DEAD END) PAWTUCKET, RI	NON GC	N/A	N/A
	SHWSInactiveBVES-HWMSR-26-0136	BLACKSTONE VALLEY ELECT STOR (YORK AVENUE PAWTUCKET, RI	NON GC	N/A	N/A
	SHWSInactiveHERL-HWMSR-28-1835	HOSPITAL-ELM REALTY, LLC	92, 94 & 96-100 ELM STREE PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active C17-DOT SR-28-1775 B	ROUTE 195 DOT PROJECT CONTRACT	ROUTE 195 PARK PARCELS PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active NMWRT-HWM SR-28-1964	NMW REALTY TRUST	280 & 288 KINSLEY AVENUE PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active ORST-HWM SR-28-2025	PROVPORT - ORSTED	7 & 7R HARBORSIDE BOULEVA PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active OGTR-HWM SR-28-1915	OCTOBER 3 2018 GASOLINE TANKER	ALLENS AVENUE RAMP TO INT PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSActiveALGO-HWMSR-28-0039	ALGONQUIN LNG LINE	ALLENS AVENUE PROVIDENCE, RI	NON GC	N/A	N/A

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
	SHWSInactiveBUSW-HWMSR-28-0176	BROWN UNIVERSITY - SOUTH WALK	ANGELL STREET & WATERMAN PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Monitoring UNCM-HWM SR-28-1584 A	UNCAS MANUFACTURING (FORMER)	ATWELLS AVE/VALLEY & EAGL PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active MHSP-HWM SR-28-1606 A	MIRIAM HOSPITAL SEVENTH ST. PA	BOUNDED BY 7TH ST., 8TH S PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveKOFF-HWMSR-28-0715	KOFFLER REALTY / RIVERVIEW PLA	BUTLER AVE, PLAT 15/LOT 3 PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active PROC-HWM SR-28-1140	PROCAP HOUSING, INC.	CASE LANE (FORMERLY BULL PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveBUUU-HWMSR-28-0179	BROWN UNIVERSITY - UTILITY UPG	CUSHING, HOPE STS. & LLOY PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active B5901-DOT SR-28-1902	RIDOT - BRIDGE NO. 065901	I-95 ELMWOOD AVE PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveCAPC-HWMSR-28-0214	CAPITAL CENTER PROJECT (SEE PA	WEST EXCHANGE STREET PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Inactive CAP9-NJD	CAPITAL CTR PROJ PARCEL 9 (SEE	FRANCIS ST & MEMORIAL BLV PROVIDENCE, RI	NON GC	N/A	N/A

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
	SHWSInactiveUPLZ-HWMSR-28-1586	UNION PLAZA HOTEL	FRANCIS STREET PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active FSPL8-HWM SR-28-1744	STATE OF RI - DOA (FRANCIS ST	FRANCIS STREET AND PARK S PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Inactive DT87-DOT SR-28-1369	ROUTE 195 DOT PROJECT 87	1 FRANKLIN SQUARE & 10 AL PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active CABL-HWM SR-28-1880	NG - PROVIDENCE RIVER CABLE RE	FRANKLIN SQUARE TO MANHOL PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active BUMG-HWM SR-28-0175	BROWN UNIVERSITY MAIN GREEN	GEORGE STREET PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active H&TB-DOT SR-28-1305 B	HARRIS RAILROAD BRIDGE #510 &	HARRIS RAILROAD BRIDGE #5 PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveSTW-HWMSR-28-1477	STARWOOD WASSERMAN	HARRIS AVENUE PLAT 26 LOT PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveNEHI-HWMSR-28-0889	NATIONAL GRID - INDOOR SUBSTAT	HARRIS AVENUE PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active HAYP-HWM SR-28-1320	RI DOT - HAYWARD PARK	HAYWARD PARK PROVIDENCE, RI	NON GC	N/A	N/A

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property:

JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
	SHWS Active DT92-DOT SR-28-1374	ROUTE 195 DOT PROJECT 92	INDIA POINT PARK PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveBUTT-BRFBUTT-HWMSR-28-0197 B	BUTTON HOLE GOLF COURSE	KING PHILLIP ROAD PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Inactive STD-HWM SR-28-1477	STARWOOD WASSERMAN	KINSLEY & HARRIS AVENUE - PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveMETC-HWMNGM3-HWMSR-28-1257SR-28-0905	METCALF PARKING LOT	SOUTH MAIN STREET PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Inactive MWPP-HWM SR-28-0774	MAIN WATER POWER PLANT	SOUTH MAIN STREET & SOUTH PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active MASP-HWM SR-28-1895	MANTON AVENUE SKATE PARK	MANTON AVENUE PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active MANT-HWM SR-28-0778	MANTON AVENUE BRIDGE NO.78	MANTON AVENUE PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Inactive USPH-HWM SR-28-1587	UNION STATION PLAZA HOTEL	150 MEMORIAL BLVD. PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Inactive NE35-HWM SR-28-0944	NATIONAL GRID - VAULT # 35	MIDDLE STREET PROVIDENCE, RI	NON GC	N/A	N/A

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property:

JOB:

P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
	SHWS Inactive NE26-HWM SR-28-0943	NATIONAL GRID - VAULT #26	OFF WASHINGTON STREET - R PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active DT13-DOT SR-28-1342	ROUTE 195 DOT PROJECT 13 (SEE	PLAT 18 LOT 89- 614 SOUTH PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active DT8-DOT SR-28-1338	ROUTE 195 DOT PROJECT 8	PLAT 18 LOT 34 - 675 SOUT PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active DT59-DOT SR-28-1353	ROUTE 195 DOT PROJECT 59	PLAT 22 LOT 243 - 72 (100 PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active DT12-DOT SR-28-1341	ROUTE 195 DOT PROJECT 12	PLAT 18 LOT 87 - 628 SOUT PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active DT9-DOT SR-28-1339	ROUTE 195 DOT PROJECT 9	PLAT 18 LOT 36 - 670 SOUT PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active DT84-DOT SR-28-1366	ROUTE 195 DOT PROJECT 84	PLAT 46 LOT 612 -30 BLACK PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active DT83-DOT SR-28-1365	ROUTE 195 DOT PROJECT 83	PLAT 46 LOT 611 -20 BLACK PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active DT61-DOT SR-28-1354	ROUTE 195 DOT PROJECT 61	PLAT 22 LOT 267 -31 CRARY PROVIDENCE, RI	NON GC	N/A	N/A

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
	SHWS Active GRAY-HWM SR-28-0558	GRAY REALTY PROPERTY	450 POTTERS AVENUE & 45 H PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active WRG-HWM SR-28-1991	WOONASQUATUCKET RIVER GREENWAY	PROMENADE STREET & KINSLE PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active B327-DOT SR-28-1922	DOT BRIDGE 327 - PROVIDENCE	RESERVOIR AVENUE PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveDOTSA-HWMSR-28-1332	RIDOT ROW SMITHFIELD AVENUE (R	SMITHFIELD AVENUE (ROUTE PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactive80SS-HWMSR-28-1914	80 SOUTH STREET	66,70,80 SOUTH ST, 218 CH PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveRWHS-SFASR-28-0777	R. WILLIAMS HOME SITE (SEE MAN	THURBER AVENUE PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveMESS-HWMSR-28-0554 B	MEETING STREET SCHOOL - FREEWA	THURBERS AVENUE PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active ETBR-HWM SR-28-0412	EAST TRANSIT STREET BOAT RAMP	EAST TRANSIT STREET PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active BRB1A-DOT SR-28-1774	BLACKSTONE RIVER BIKEWAY - SEG	EAST TRANSIT STREET TO PI PROVIDENCE, RI	NON GC	N/A	N/A

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
	SHWSInactiveFOXP-HWMSR-28-0499	FOX PLACE (OMNI)	TWO FOX PLACE (1 CEDAR ST PROVIDENCE, RI	NON GC	N/A	N/A
	SHWS Active NE23-HWM SR-28-0942	NATIONAL GRID -UNION STREET VA	UNION STREET PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveNEUM-HWMSR-28-1584 B	NATIONAL GRID - UNCAS (ALSO SE	VALLEY STREET PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveNERU-HWMSR-28-0938	NATIONAL GRID - U.S. RUBBER NO	VALLEY STREET PROVIDENCE, RI	NON GC	N/A	N/A
	SHWSInactiveWASH-DOTSR-28-1386	WASHINGTON BRIDGE	WASHINGTON BRIDGE PROVIDENCE, RI	NON GC	N/A	N/A

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U002311746 **DIST/DIR:** 0.016 WSW **ELEVATION:** 52 **MAP ID:** A1

NAME: NEW ENGLAND TRACTOR TRAILER TRAINING SCHOOL

ADDRESS: 600 MOSHASSUCK VALLEY IND. HWY

PAWTUCKET, RI

ID/Status: UST-3763 ID/Status: Permanently Closed

Rev:

03/01/2021

SOURCE: RI Department of Environmental Management

UST:

Name: NEW ENGLAND TRACTOR TRAILER TRAINING SCHOOL

Address: 600 MOSHASSUCK VALLEY IND. HWY

City: PAWTUCKET Facility ID: UST-3763 Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 4000 Tank Substance: Other Date Installed: 04/01/1996

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U004298226 **DIST/DIR:** 0.022 NNE **ELEVATION:** 63 **MAP ID:** B2

NAME: INTERNATIONAL MEAT MARKET Rev: 03/01/2021

ADDRESS: 756 LONSDALE AVE ID/Status: UST-4830 ID/Status: Permanently Closed

SOURCE: RI Department of Environmental Management

UST:

Name: INTERNATIONAL MEAT MARKET

CENTRAL FALLS, RI

Address: 756 LONSDALE AVE City: CENTRAL FALLS Facility ID: UST-4830 Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 1000

Tank Substance: Heating Oil No.2 Date Installed: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U003207885 DIST/DIR: 0.040 WSW ELEVATION: 50 MAP ID: A3

NAME: FORTUNE METAL INC. OF RI

ADDRESS: 3 CROW POINT RD.

1D/Status: UST-1807

ADDRESS: 3 CROW POINT RD ID/Status: 051-1807 ID/Status: Permanently Closed

LINCOLN, RI ID/Status: In Use

SOURCE: RI Department of Environmental Management

UST:

Name: FORTUNE METAL INC. OF RI

Address: 3 CROW POINT RD

City: LINCOLN Facility ID: UST-1807 Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 3000 Tank Substance: Diesel Date Installed: 10/09/1984

Tank ID: 2

Tank Status: Permanently Closed

Tank Capacity: 1000

Tank Substance: Heating Oil No.2

Date Installed: 10/09/1984

Tank ID: 3

Tank Status: In Use Tank Capacity: 1000

Tank Substance: Heating Oil No.2 Date Installed: 10/09/1984

10 HIGGINSON AVENUE JOB: P7037 **Target Property:**

CENTRAL FALLS, RI 02863

UST

MAP ID: C4 EDR ID: U003207791 DIST/DIR: 0.041 West **ELEVATION:** 50

NAME: FORTUNE METAL INC. OF RI 03/01/2021 Rev:

ID/Status: UST-1647 ADDRESS: 2 CROW POINT RD ID/Status: Permanently Closed

LINCOLN, RI ID/Status: In Use

SOURCE: RI Department of Environmental Management

UST:

Name: FORTUNE METAL INC. OF RI

Address: 2 CROW POINT RD

City: LINCOLN Facility ID: UST-1647 Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 1100 Tank Substance: Gasoline Date Installed: 10/09/1984

Tank ID: 2

Tank Status: Permanently Closed

Tank Capacity: 4000 Tank Substance: Diesel Date Installed: 03/01/1981

Tank ID: 3

Tank Status: In Use Tank Capacity: 1000

Tank Substance: Heating Oil No.2 Date Installed: 01/01/1990

Tank ID: 4

Tank Status: Permanently Closed

Tank Capacity: 1000

Tank Substance: Heating Oil No.2

Date Installed: 10/09/1984

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West **ELEVATION:** MAP ID: C5 50

NAME: FORTUNE METALS Rev: 03/22/2021

ID/Status: RID987486164 ADDRESS: CROW POINT ROAD

LINCOLN, RI **PROVIDENCE**

SOURCE: US Environmental Protection Agency

RCRA-SQG:

Date Form Received by Agency: 2005-02-25 00:00:00.0

Handler Name: FORTUNE MÉTAL INC OF RI Handler Address: 2 CROW POINT RD Handler City, State, Zip: LINCOLN, RI 02865

EPA ID: RID987486164

Contact Name: RICHARD GATES Contact Address: CROW POINT RD Contact City, State, Zip: LINCOLN, RI 02865 Contact Telephone: 401-725-9100

Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01 Land Type: Private

Federal Waste Generator Description: Small Quantity Generator

Non-Notifier: Not reported

Biennial Report Cycle: Not reported

Accessibility: Not reported

Active Site Indicator: Handler Activities State District Owner: Not reported State District: Not reported Mailing Address: CROW POINT RD

Mailing City, State, Zip: LINCOLN, RI 02865 Owner Name: WATT DISTRIBUTION SERVICES

Owner Type: Private

Operator Name: FORTUNE METAL INC OF RI Operator Type: Private

Short-Term Generator Activity: No

Importer Activity: No Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No

Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West ELEVATION: 50 MAP ID: C5

NAME: FORTUNE METALS Rev: 03/22/2021

ADDRESS: CROW POINT ROAD ID/Status: RID987486164

LINCOLN, RI PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: ---Federal Facility Indicator: Not reported Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2015-04-14 00:00:00.0

Recognized Trader-Importer: No Recognized Trader-Exporter: No Importer of Spent Lead Acid Batteries: No Exporter of Spent Lead Acid Batteries: No Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Hazardous Waste Summary:

Waste Code: D001

Waste Description: IGNITABLE WASTE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West ELEVATION: 50 MAP ID: C5

NAME: FORTUNE METALS Rev: 03/22/2021

ADDRESS: CROW POINT ROAD ID/Status: RID987486164

LINCOLN, RI PROVIDENCE

SOURCE: US Environmental Protection Agency

Waste Code: D008 Waste Description: LEAD

Handler - Owner Operator:

Owner/Operator Indicator: Owner

Owner/Operator Name: WATT DISTRIBUTION SERVICES

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported Owner/Operator Address: PO BOX E

Owner/Operator City, State, Zip: LINCOLN, RI 02865 Owner/Operator Telephone: 401-725-6700

Owner/Operator Telephone: 401-725-6700
Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Owner

Owner/Operator Name: WATT DISTRIBUTION SERVICES

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported Owner/Operator Address: PO BOX E

Owner/Operator City, State, Zip: LINCOLN, RI 02865

Owner/Operator Telephone: 401-725-6700 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Owner Owner/Operator Name: RICHARD NG

Legal Status: Private

Date Became Current: 2003-04-30 00:00:00.

Date Ended Current: Not reported

Owner/Operator Address: 2 CROW POINTE RD Owner/Operator City, State, Zip: LINCOLN, RI 02865 Owner/Operator Telephone: 401-725-9100 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Operator

Owner/Operator Name: FORTUNE METAL INC OF RI

Legal Status: Private

Date Became Current: 2004-04-19 00:00:00.

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West ELEVATION: 50 MAP ID: C5

NAME: FORTUNE METALS Rev: 03/22/2021

ADDRESS: CROW POINT ROAD ID/Status: RID987486164

LINCOLN, RI PROVIDENCE

SOURCE: US Environmental Protection Agency

Date Ended Current: Not reported

Owner/Operator Address: 2 CROW POINTE RD Owner/Operator City, State, Zip: LINCOLN, RI 02865 Owner/Operator Telephone: 401-725-9100 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 1992-01-09 00:00:00.0

Handler Name: WATT DISTRIBUTION SERVICES

Federal Waste Generator Description: Small Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 2005-02-25 00:00:00.0 Handler Name: FORTUNE METAL INC OF RI

Federal Waste Generator Description: Small Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions:

NAICS Code: 42193

NAICS Description: RECYCLABLE MATERIAL WHOLESALERS

NAICS Code: 42393

NAICS Description: RECYCLABLE MATERIAL MERCHANT WHOLESALERS

Facility Has Received Notices of Violation:

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West ELEVATION: 50 MAP ID: C5

NAME: FORTUNE METALS Rev: 03/22/2021

ADDRESS: CROW POINT ROAD ID/Status: RID987486164

LINCOLN, RI PROVIDENCE

SOURCE: US Environmental Protection Agency

Found Violation: Yes

Agency Which Determined Violation: State Violation Short Description: Used Oil - Generators Date Violation was Determined: 2014-08-18 00:00:00.0 Actual Return to Compliance Date: 2015-02-10 00:00:00.0

Return to Compliance Qualifier: Documented

Violation Responsible Agency: State

Scheduled Compliance Date: 2015-02-09 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2015-01-09 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: HW-14-87 Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: RJNRI Enforcement Responsible Sub-Organization: HW

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported

SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State

Violation Short Description: TSD IS-Container Use and Management

Date Violation was Determined: 2014-08-18 00:00:00.0 Actual Return to Compliance Date: 2015-02-10 00:00:00.0

Return to Compliance Qualifier: Documented

Violation Responsible Agency: State

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West **ELEVATION:** MAP ID: C5 50

NAME: FORTUNE METALS Rev: 03/22/2021

ID/Status: RID987486164 ADDRESS: CROW POINT ROAD

LINCOLN, RI **PROVIDENCE**

SOURCE: US Environmental Protection Agency

Scheduled Compliance Date: 2015-02-09 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2015-01-09 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: HW-14-87 Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: RJNRI Enforcement Responsible Sub-Organization: HW

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State Violation Short Description: Generators - General Date Violation was Determined: 2014-08-18 00:00:00.0 Actual Return to Compliance Date: 2016-03-08 00:00:00.0

Return to Compliance Qualifier: Documented

Violation Responsible Agency: State Scheduled Compliance Date: 2015-02-09 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2015-01-09 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: HW-14-87 Enforcement Attorney: Not reported Corrective Action Component: No

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West ELEVATION: 50 MAP ID: C5

NAME: FORTUNE METALS Rev: 03/22/2021

ADDRESS: CROW POINT ROAD ID/Status: RID987486164

LINCOLN, RI PROVIDENCE

SOURCE: US Environmental Protection Agency

Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: RJNRI Enforcement Responsible Sub-Organization: HW

SEP Sequence Number: Not reported
SEP Expenditure Amount: Not reported
SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State

Violation Short Description: State Statute or Regulation Date Violation was Determined: 2014-08-18 00:00:00.0 Actual Return to Compliance Date: 2015-02-10 00:00:00.0

Return to Compliance Qualifier: Documented

Violation Responsible Agency: State

Scheduled Compliance Date: 2015-02-09 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2015-01-09 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: HW-14-87 Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West ELEVATION: 50 MAP ID: C5

NAME: FORTUNE METALS Rev: 03/22/2021

ADDRESS: CROW POINT ROAD ID/Status: RID987486164

LINCOLN, RI PROVIDENCE

SOURCE: US Environmental Protection Agency

Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: RJNRI Enforcement Responsible Sub-Organization: HW

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State

Violation Short Description: TSD IS-Container Use and Management

Date Violation was Determined: 2014-08-18 00:00:00.0 Actual Return to Compliance Date: 2015-02-10 00:00:00.0

Return to Compliance Qualifier: Documented

Violation Responsible Agency: State

Scheduled Compliance Date: 2015-02-09 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2015-01-09 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: HW-14-87 Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: RJNRI Enforcement Responsible Sub-Organization: HW

SEP Sequence Number: Not reported
SEP Expenditure Amount: Not reported
SEP Scheduled Completion Date: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West ELEVATION: 50 MAP ID: C5

NAME: FORTUNE METALS Rev: 03/22/2021

ADDRESS: CROW POINT ROAD ID/Status: RID987486164

LINCOLN, RI PROVIDENCE

SOURCE: US Environmental Protection Agency

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State

Violation Short Description: Generators - Pre-transport Date Violation was Determined: 2014-08-18 00:00:00.0 Actual Return to Compliance Date: 2015-02-10 00:00:00.0

Return to Compliance Qualifier: Documented

Violation Responsible Agency: State

Scheduled Compliance Date: 2015-02-09 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2015-01-09 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: HW-14-87 Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL

Enforcement Responsible Person: RJNRI Enforcement Responsible Sub-Organization: HW

SEP Sequence Number: Not reported
SEP Expenditure Amount: Not reported

SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West ELEVATION: 50 MAP ID: C5

NAME: FORTUNE METALS Rev: 03/22/2021

ADDRESS: CROW POINT ROAD ID/Status: RID987486164

LINCOLN, RI PROVIDENCE

SOURCE: US Environmental Protection Agency

Final Count: Not reported Final Amount: Not reported

Found Violation: No

Agency Which Determined Violation: Not reported

Violation Short Description: Not reported
Date Violation was Determined: Not reported
Actual Return to Compliance Date: Not reported
Return to Compliance Qualifier: Not reported
Violation Responsible Agency: Not reported
Scheduled Compliance Date: Not reported
Enforcement Identifier: Not reported
Date of Enforcement Action: Not reported
Enforcement Responsible Agency: Not reported
Enforcement Docket Number: Not reported
Enforcement Attorney: Not reported

Corrective Action Component: Not reported Appeal Initiated Date: Not reported

Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: Not reported

Enforcement Type: Not reported

Enforcement Responsible Person: Not reported

Enforcement Responsible Sub-Organization: Not reported

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State

Violation Short Description: TSD IS-General Facility Standards Date Violation was Determined: 2014-08-18 00:00:00.0

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West ELEVATION: 50 MAP ID: C5

NAME: FORTUNE METALS Rev: 03/22/2021

ADDRESS: CROW POINT ROAD ID/Status: RID987486164

LINCOLN, RI PROVIDENCE

SOURCE: US Environmental Protection Agency

Actual Return to Compliance Date: 2015-03-20 00:00:00.0

Return to Compliance Qualifier: Documented

Violation Responsible Agency: State

Scheduled Compliance Date: 2015-03-09 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2015-01-09 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: HW-14-87 Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: RJNRI Enforcement Responsible Sub-Organization: HW

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported

SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State

Violation Short Description: State Statute or Regulation Date Violation was Determined: 2014-08-18 00:00:00.0 Actual Return to Compliance Date: 2015-02-10 00:00:00.0

Return to Compliance Qualifier: Documented

Violation Responsible Agency: State

Scheduled Compliance Date: 2015-02-09 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2015-01-09 00:00:00.0

Enforcement Responsible Agency: State

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West **ELEVATION:** MAP ID: C5 50

NAME: FORTUNE METALS Rev: 03/22/2021

ID/Status: RID987486164 ADDRESS: CROW POINT ROAD

LINCOLN, RI **PROVIDENCE**

SOURCE: US Environmental Protection Agency

Enforcement Docket Number: HW-14-87 Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: RJNRI

Enforcement Responsible Sub-Organization: HW SEP Sequence Number: Not reported

SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State

Violation Short Description: State Statute or Regulation Date Violation was Determined: 2014-08-18 00:00:00.0 Actual Return to Compliance Date: 2015-09-11 00:00:00.0

Return to Compliance Qualifier: Observed Violation Responsible Agency: State

Scheduled Compliance Date: 2015-02-09 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2015-01-09 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: HW-14-87 Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West **ELEVATION:** MAP ID: C5 50

NAME: FORTUNE METALS Rev: 03/22/2021

ID/Status: RID987486164 ADDRESS: CROW POINT ROAD

LINCOLN, RI **PROVIDENCE**

SOURCE: US Environmental Protection Agency

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: RJNRI Enforcement Responsible Sub-Organization: HW

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Evaluation Action Summary:

Evaluation Date: 2014-08-18 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: RJNRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2015-02-10 00:00:00.0 Scheduled Compliance Date: 2015-02-09 00:00:00.0

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2014-08-18 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: RJNRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2015-02-10 00:00:00.0 Scheduled Compliance Date: 2015-02-09 00:00:00.0

Date of Request: Not reported

Date Response Received: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West **ELEVATION:** MAP ID: C5 50

NAME: FORTUNE METALS Rev: 03/22/2021

ID/Status: RID987486164 ADDRESS: CROW POINT ROAD

LINCOLN, RI **PROVIDENCE**

SOURCE: US Environmental Protection Agency

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2014-08-18 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: RJNRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2016-03-08 00:00:00.0 Scheduled Compliance Date: 2015-02-09 00:00:00.0

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2014-08-18 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes
Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: RJNRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2015-02-10 00:00:00.0 Scheduled Compliance Date: 2015-02-09 00:00:00.0

Date of Request: Not reported Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2014-08-18 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: RJNRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2015-02-10 00:00:00.0 Scheduled Compliance Date: 2015-02-09 00:00:00.0

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2014-08-18 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 DIST/DIR: 0.041 West ELEVATION: 50 MAP ID: C5

NAME: FORTUNE METALS Rev: 03/22/2021

ADDRESS: CROW POINT ROAD ID/Status: RID987486164

LINCOLN, RI PROVIDENCE

SOURCE: US Environmental Protection Agency

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: RJNRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2015-02-10 00:00:00.0 Scheduled Compliance Date: 2015-02-09 00:00:00.0

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2016-09-15 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: No

Evaluation Type Description: COMPLIANCE SCHEDULE EVALUATION

Evaluation Responsible Person Identifier: RJNRI Evaluation Responsible Sub-Organization: HW Actual Return to Compliance Date: Not reported Scheduled Compliance Date: Not reported

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2014-08-18 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: RJNRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2015-03-20 00:00:00.0 Scheduled Compliance Date: 2015-03-09 00:00:00.0

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2014-08-18 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: RJNRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2015-02-10 00:00:00.0 Scheduled Compliance Date: 2015-02-09 00:00:00.0

Date of Request: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1015736373 **DIST/DIR:** 0.041 West **ELEVATION:** 50 **MAP ID:** C5

NAME: FORTUNE METALS Rev: 03/22/2021

ADDRESS: CROW POINT ROAD ID/Status: RID987486164

LINCOLN, RI PROVIDENCE

SOURCE: US Environmental Protection Agency

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2014-08-18 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: RJNRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2015-09-11 00:00:00.0 Scheduled Compliance Date: 2015-02-09 00:00:00.0

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SEMS-ARCHIVE

EDR ID: 1015736373 DIST/DIR: 0.041 West ELEVATION: 50 MAP ID: C5

NAME: FORTUNE METALS Rev: 04/27/2021

ADDRESS: CROW POINT ROAD ID/Status: 0105941

CROW POINT ROAD

LINCOLN, RI

PROVIDENCE

SOURCE: US EPA

SEMS Archive: Site ID: 0105941 EPA ID: RID987486164 Name: FORTUNE METALS Address: CROW POINT ROAD Address 2: Not reported City,State,Zip: LINCOLN, RI

Cong District: 01 FIPS Code: 44007 FF: N

NPL: Not on the NPL

Non NPL Status: Removal Only Site (No Site Assessment Work Needed)

SEMS Archive Detail: Region: 01 Site ID: 0105941 EPA ID: RID987486164

Site Name: FORTUNE METALS

NPL: N FF: N OU: 00

Action Code: VS

Action Name: ARCH SITE

SEQ: 1

Start Date: Not reported

Finish Date: 2011-02-18 05:00:00

Qual: Not reported

Current Action Lead: EPA Perf In-Hse

Region: 01 Site ID: 0105941 EPA ID: RID987486164

Site Name: FORTUNE METALS

NPL: N FF: N OU: 00

Action Code: BB Action Name: PRP RV

SEQ: 1

Start Date: 2009-09-15 04:00:00 Finish Date: 2009-09-18 04:00:00

Qual: C

Current Action Lead: St Ovrsght

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

U001213549 0.047 NNE EDR ID: DIST/DIR: **ELEVATION:** 75 MAP ID: B6

NAME: J & J INVESTMENT 03/01/2021 Rev: ID/Status: UST-15090 ADDRESS: 781 LONSDALE AVE ID/Status: Permanently Closed

PAWTUCKET, RI

SOURCE: RI Department of Environmental Management

UST:

Name: J & J INVESTMENT Address: 781 LONSDALE AVE

City: PAWTUCKET Facility ID: UST-15090 Facility Class: Industrial

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 1000 Tank Substance: Gasoline Date Installed: 10/09/1984

Tank ID: 2

Tank Status: Permanently Closed

Tank Capacity: 2000 Tank Substance: Gasoline Date Installed: 10/09/1984

Tank ID: 3

Tank Status: Permanently Closed

Tank Capacity: 2000 Tank Substance: Gasoline Date Installed: 10/09/1984

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$104943038 **DIST/DIR:** 0.052 West **ELEVATION:** 47 **MAP ID:** C7

NAME: BROWNING FERRIS INDUSTRIES Rev: 04/07/2021

ADDRESS: 600 MOSHASSUCK VALLEY

DAWTHOKET DI

DID/Status: Inactive ID/Status: BROF-HWM

PAWTUCKET, RI ID/Status: SR-26-0184

SOURCE: RI Department of Environmental Management

SHWS:

Name: BROWNING FERRIS INDUSTRIES Address: 600 MOSHASSUCK VALLEY City,State,Zip: PAWTUCKET, RI

Project Code: BROF-HWM Siterem Site Number: SR-26-0184

Facility Status: Inactive

Project Code Desc: BROF-HWM

Project Date: 02/17/2001

Acres: 4.38

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

AST

EDR ID: A100299166 DIST/DIR: 0.076 SW ELEVATION: 46 MAP ID: D8

NAME: MCD AIR TRANSPORT Rev: 06/01/2020

ADDRESS: 25 NORTH CROW POINT RD ID/Status: 180008 ID/Status: E-In Use

LINCOLN, RI

SOURCE: RI Department of Environmental Management

AST:

Name: MCD AIR TRANSPORT

Address: 25 NORTH CROW POINT RD Facility Classification: Commercial

Mailing Address: same Contact Person: Mike Marcello Facility Telephone: 401-724-5300 Latitude\\Longitude: 41.88944/-71.4077

Tank id: 1

Tank Status: E-In Use Number of Gallons: 3000gal Product Stored: Diesel Date of Installation: 09/22/2006 Tank Construction: Double-Wall Steel Secondary Containment: Yes

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U003207907 DIST/DIR: 0.079 SW **ELEVATION:** 44 MAP ID: D9

NAME: J A R BAKER'S SUPPLY 03/01/2021 Rev: ID/Status: UST-18147 ADDRESS: 12 CROW POINT RD

ID/Status: Permanently Closed LINCOLN, RI

SOURCE: RI Department of Environmental Management

UST:

Name: JAR BAKER'S SUPPLY Address: 12 CROW POINT RD

City: LINCOLN Facility ID: UST-18147 Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 1000

Tank Substance: Heating Oil No.2 Date Installed: 10/09/1984

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U003207907 **DIST/DIR:** 0.079 SW **ELEVATION:** 44 **MAP ID:** D9

 NAME:
 J A R BAKER'S SUPPLY
 Rev:
 03/01/2021

 ADDRESS:
 12 CROW POINT RD
 ID/Status: 1823-ST
 ID/Status: UST-18147

LINCOLN, RI

SOURCE: RI Department of Environmental Management

LUST:

Name: J A R BAKER'S SUPPLY Address: 12 CROW POINT RD City,State,Zip: LINCOLN, RI Project Number: 1823-ST Project Date: 1997-01-09 Facility Id: UST-18147 Fstatus Decode: Not reported Facility Status: INACTIVE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1025888231 DIST/DIR: 0.079 SW ELEVATION: 44 MAP ID: D10

NAME: GOOD DEAL TRANSPORTATION Rev: 03/22/2021
ID/Status: RIR000517920

ADDRESS: 12 CROW POINT RD

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 2019-08-19 00:00:00.0 Handler Name: GOOD DEAL TRANSPORTATION

Handler Address: 12 CROW POINT RD Handler City, State, Zip: LINCOLN, RI 02865

EPA ID: RIR000517920
Contact Name: Not reported
Contact Address: Not reported
Contact City, State, Zip: Not reported
Contact Telephone: Not reported
Contact Fax: Not reported
Contact Email: Not reported
Contact Title: Not reported

EPA Region: 01 Land Type: Not reported

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported

Active Site Indicator: Not reported State District Owner: Not reported State District: Not reported Mailing Address: Not reported Mailing City,State,Zip: Not reported Owner Name: Not reported Owner Type: Not reported Operator Name: Not reported Operator Type: Not reported Operator Type: Not reported

Short-Term Generator Activity: No Importer Activity: No

Mixed Waste Generator: No
Transporter Activity: No
Transfer Facility Activity: No
Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1025888231 DIST/DIR: 0.079 SW ELEVATION: 44 MAP ID: D10

NAME: GOOD DEAL TRANSPORTATION Rev: 03/22/2021

ADDRESS: 12 CROW POINT RD ID/Status: RIR000517920

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: --Federal Facility Indicator: Not reported
Hazardous Secondary Material Indicator: N
Sub-Part K Indicator: Not reported
Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2019-09-20 14:46:04.0

Recognized Trader-Importer: No Recognized Trader-Exporter: No Importer of Spent Lead Acid Batteries: No Exporter of Spent Lead Acid Batteries: No Recycler Activity Without Storage: No

Manifest Broker: No Sub-Part P Indicator: No

Historic Generators:

Receive Date: 2019-08-19 00:00:00.0

Handler Name: GOOD DEAL TRANSPORTATION

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1025888231 DIST/DIR: 0.079 SW ELEVATION: 44 MAP ID: D10

NAME: GOOD DEAL TRANSPORTATION Rev: 03/22/2021

ADDRESS: 12 CROW POINT RD ID/Status: RIR000517920

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: No Electronic Manifest Broker: No

List of NAICS Codes and Descriptions: NAICS Codes: No NAICS Codes Found

Facility Has Received Notices of Violation:

Found Violation: No

Agency Which Determined Violation: Not reported

Violation Short Description: Not reported
Date Violation was Determined: Not reported
Actual Return to Compliance Date: Not reported
Return to Compliance Qualifier: Not reported
Violation Responsible Agency: Not reported
Scheduled Compliance Date: Not reported
Enforcement Identifier: Not reported
Date of Enforcement Action: Not reported
Enforcement Responsible Agency: Not reported
Enforcement Docket Number: Not reported
Enforcement Attorney: Not reported
Corrective Action Component: Not reported

Appeal Initiated Date: Not reported
Appeal Resolution Date: Not reported
Disposition Status Date: Not reported
Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported

Enforcement Type: Not reported

Enforcement Responsible Person: Not reported

Enforcement Responsible Sub-Organization: Not reported

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported

10 HIGGINSON AVENUE **Target Property:** JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

0.079 SW EDR ID: 1025888231 DIST/DIR: **ELEVATION:** MAP ID: D10 44

GOOD DEAL TRANSPORTATION NAME: Rev: 03/22/2021

ID/Status: RIR000517920 ADDRESS: 12 CROW POINT RD

LINCOLN, RI 02865 **PROVIDENCE**

SOURCE: US Environmental Protection Agency

SEP Defaulted Date: Not reported

SEP Type: Not reported SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Evaluation Action Summary:

Evaluation Date: 2019-08-07 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: No

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: JHRI Evaluation Responsible Sub-Organization: HW Actual Return to Compliance Date: Not reported

Scheduled Compliance Date: Not reported

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U001213545 DIST/DIR: 0.080 NNE ELEVATION: 63 MAP ID: E11

NAME: JANCO COMPANY Rev: 03/01/2021

ADDRESS: 800 LONSDALE AVE ID/Status: UST-15080

ID/Status: Permanently Closed

PAWTUCKET, RI

SOURCE: RI Department of Environmental Management

UST:

Name: JANCO COMPANY Address: 800 LONSDALE AVE

City: PAWTUCKET Facility ID: UST-15080 Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 3000 Tank Substance: Diesel Date Installed: 10/09/1984

Tank ID: 2

Tank Status: Permanently Closed

Tank Capacity: 3000 Tank Substance: Diesel Date Installed: 10/09/1984

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U001214088 **DIST/DIR**: 0.081 NNE **ELEVATION**: 63 **MAP ID**: E12

NAME:HOLIDAY AUTO ANNEXRev:03/01/2021ADDRESS:97 CROSSMAN STID/Status: UST-16211ID/Status: Permanently Closed

PAWTUCKET, RI

SOURCE: RI Department of Environmental Management

UST:

Name: HOLIDAY AUTO ANNEX Address: 97 CROSSMAN ST City: PAWTUCKET

Facility ID: UST-16211
Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 500

Tank Substance: Waste Oil Date Installed: 10/09/1984

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

AUL

EDR ID: \$103247109 **DIST/DIR:** 0.082 SW **ELEVATION:** 44 **MAP ID:** D13

NAME: ROBINSON PROPERTY Rev: 04/07/2021

ADDRESS: 16 NORTH CROW POINT ROAD ID/Status: SR-18-1506

LINCOLN, RI

SOURCE: RI Department of Environmental Management

AUL:

Name: ROBINSON PROPERTY

Address: 16 NORTH CROW POINT ROAD

City,State,Zip: LINCOLN, RI ELUR Date: 07/07/2000 Count Of Town: 1

Facility Size (Acres): 1.066 Project Code: TRP-HWM SA Date: Not reported Plat: 2

Lot: 69

Siterem Site Number: SR-18-1506

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$103247109 **DIST/DIR:** 0.082 SW **ELEVATION:** 44 **MAP ID:** D13

NAME: ROBINSON PROPERTY Rev: 04/07/2021

ADDRESS: 16 NORTH CROW POINT ROAD

ID/Status: Inactive

LINCOLN, RI

ID/Status: TRP-HWM
ID/Status: SR-18-1506

SOURCE: RI Department of Environmental Management

SHWS:

Name: ROBINSON PROPERTY

Address: 16 NORTH CROW POINT ROAD

City,State,Zip: LINCOLN, RI Project Code: TRP-HWM

Siterem Site Number: SR-18-1506

Facility Status: Inactive Project Code Desc: TRP-HWM Project Date: 04/17/1998

Acres: 1.067

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000110019 DIST/DIR: 0.082 SW **ELEVATION:** MAP ID: D14 44

NAME: M & D TRANSPORTATION INC Rev: 03/22/2021

ID/Status: RID987469467 ADDRESS: 26 N CROW POINT RD

LINCOLN, RI 02865 **PROVIDENCE**

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 2007-11-05 00:00:00.0 Handler Name: M & D TRANSPORTATION INC Handler Address: 26 N CROW POINT RD Handler City, State, Zip: LINCOLN, RI 02865

EPA ID: RID987469467

Contact Name: MICHAEL COLLINS Contact Address: PO BOX 481

Contact City, State, Zip: PROVIDENCE, RI 02901 Contact Telephone: 401-724-9950

Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01 Land Type: Not reported

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported Active Site Indicator: Not reported State District Owner: Not reported

State District: Not reported Mailing Address: PO BOX 481

Mailing City, State, Zip: PROVIDENCE, RI 02901

Owner Name: JOSEPH SOPANO

Owner Type: Private

Operator Name: Not reported Operator Type: Not reported Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

NAME: M & D TRANSPORTATION INC Rev: 03/22/2021

ADDRESS: 26 N CROW POINT RD ID/Status: RID987469467

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: ---Federal Facility Indicator: Not reported Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2015-04-14 00:00:00.0

Recognized Trader-Importer: No Recognized Trader-Exporter: No Importer of Spent Lead Acid Batteries: No Exporter of Spent Lead Acid Batteries: No Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Hazardous Waste Summary:

Waste Code: D001

Waste Description: IGNITABLE WASTE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

NAME: M & D TRANSPORTATION INC Rev: 03/22/2021

ADDRESS: 26 N CROW POINT RD ID/Status: RID987469467

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Handler - Owner Operator:

Owner/Operator Indicator: Owner

Owner/Operator Name: JOSEPH SOPANO

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: OWNERSTREET

Owner/Operator City, State, Zip: OWNERCITY, RI 99999

Owner/Operator Telephone: 401-555-1212 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Owner

Owner/Operator Name: JOSEPH SOPANO

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: OWNERSTREET

Owner/Operator City, State, Zip: OWNERCITY, RI 99999

Owner/Operator Telephone: 401-555-1212 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 2007-11-05 00:00:00.0

Handler Name: M & D TRANSPORTATION INC

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 1989-11-27 00:00:00.0

Handler Name: M & D TRANSPORTATION INC

Federal Waste Generator Description: Small Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

NAME: M & D TRANSPORTATION INC Rev: 03/22/2021

ADDRESS: 26 N CROW POINT RD ID/Status: RID987469467

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions:

NAICS Code: 4841

NAICS Description: GENERAL FREIGHT TRUCKING

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary:

Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U001214128 **DIST/DIR:** 0.089 East **ELEVATION:** 97 **MAP ID:** 15

NAME:ROSE CONNOLLYRev:03/01/2021ADDRESS:73 KENDALL STID/Status: UST-16296
ID/Status: Permanently Closed

PAWTUCKET, RI

SOURCE: RI Department of Environmental Management

UST:

Name: ROSE CONNOLLY Address: 73 KENDALL ST City: PAWTUCKET Facility ID: UST-16296 Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 2000 Tank Substance: Gasoline Date Installed: 10/09/1984

Tank ID: 2

Tank Status: Permanently Closed

Tank Capacity: 2000 Tank Substance: Gasoline Date Installed: 10/09/1984

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U001213752 DIST/DIR: 0.092 WSW ELEVATION: 43 MAP ID: D16

NAME: COLLINS TRANSPORTATION Rev: 03/01/2021

ADDRESS: CROW POINT RD ID/Status: UST-15518

ID/Status: Decrease with Class

LINCOLN, RI

ID/Status: Permanently Closed

SOURCE: RI Department of Environmental Management

UST:

Name: COLLINS TRANSPORTATION

Address: CROW POINT RD

City: LINCOLN Facility ID: UST-15518 Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 2000 Tank Substance: Diesel Date Installed: 10/09/1984

Tank ID: 2

Tank Status: Permanently Closed

Tank Capacity: 3000 Tank Substance: Diesel Date Installed: 10/09/1984

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1012212092 DIST/DIR: 0.093 NNE **ELEVATION:** 65 MAP ID: E17

NAME: **B & L AUTO SALES** Rev: 03/22/2021

ID/Status: RIR000508796 ADDRESS: 824 LONSDALE AVE

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

RCRA-SQG:

Date Form Received by Agency: 2009-12-28 00:00:00.0

Handler Name: B & L AUTO SALES Handler Address: 824 LONSDALE AVE

Handler City, State, Zip: CENTRAL FALLS, RI 02863

EPA ID: RIR000508796

Contact Name: JOSEPH A BORGES Contact Address: LONSDALE AVE

Contact City, State, Zip: CENTRAL FALLS, RI 02863

Contact Telephone: 401-722-3954 Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01 Land Type: Private

Federal Waste Generator Description: Small Quantity Generator

Non-Notifier: Not reported

Biennial Report Cycle: Not reported

Accessibility: Not reported

Active Site Indicator: Handler Activities State District Owner: Not reported State District: Not reported Mailing Address: LONSDALE AVE

Mailing City, State, Zip: CENTRAL FALLS, RI 02863

Owner Name: JOSEPH A BORGES

Owner Type: Private

Operator Name: JOSEPH A BORGES INC Operator Type: Private

Short-Term Generator Activity: No

Importer Activity: No Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No

Recycler Activity with Storage: No Small Quantity On-Site Burner Exemption: No

Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1012212092 DIST/DIR: 0.093 NNE ELEVATION: 65 MAP ID: E17

NAME: B & L AUTO SALES Rev: 03/22/2021

ADDRESS: 824 LONSDALE AVE ID/Status: RIR000508796

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

Active Site State-Reg Handler: ---Federal Facility Indicator: Not reported Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2015-04-14 00:00:00.0

Recognized Trader-Importer: No
Recognized Trader-Exporter: No
Importer of Spent Lead Acid Batteries: No
Exporter of Spent Lead Acid Batteries: No
Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Hazardous Waste Summary:

Waste Code: D001

Waste Description: IGNITABLE WASTE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1012212092 DIST/DIR: 0.093 NNE ELEVATION: 65 MAP ID: E17

NAME: B & L AUTO SALES Rev: 03/22/2021

ADDRESS: 824 LONSDALE AVE ID/Status: RIR000508796

CENTRAL FALLS, RI 02863 PROVIDENCE

SOURCE: US Environmental Protection Agency

Waste Code: F003

Waste Description: THE FOLLOWING SPENT NONHALOGENATED SOLVENTS: XYLENE, ACETONE, ETHYL

ACETATE, ETHYL BENZENE, ETHYL ETHER, METHYL ISOBUTYL KETONE, N-BUTYL

ALCOHOL, CYCLOHEXANONE, AND METHANOL; ALL SPENT SOLVENT
MIXTURES/BLENDS CONTAINING, BEFORE USE, ONLY THE ABOVE SPENT
NONHALOGENATED SOLVENTS; AND ALL SPENT SOLVENT MIXTURES/BLENDS
CONTAINING, BEFORE USE, ONE OR MORE OF THE ABOVE NONHALOGENATED
SOLVENTS, AND A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR
MORE OF THOSE SOLVENTS LISTED IN F001, F002, F004, AND F005; AND STILL
BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT
MIXTURES.

Handler - Owner Operator:
Owner/Operator Indicator: Owner

Owner/Operator Name: JOSEPH A BORGES

Legal Status: Private

Date Became Current: 2009-12-01 00:00:00.

Date Ended Current: Not reported Owner/Operator Address: Not reported Owner/Operator City,State,Zip: Not reported Owner/Operator Telephone: Not reported Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Operator

Owner/Operator Name: JOSEPH A BORGES INC

Legal Status: Private

Date Became Current: 2009-12-01 00:00:00.

Date Ended Current: Not reported
Owner/Operator Address: Not reported
Owner/Operator City,State,Zip: Not reported
Owner/Operator Telephone: Not reported
Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 2009-12-28 00:00:00.0 Handler Name: B & L AUTO SALES

Federal Waste Generator Description: Small Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1012212092 DIST/DIR: 0.093 NNE ELEVATION: 65 MAP ID: E17

NAME: B & L AUTO SALES Rev: 03/22/2021

ADDRESS: 824 LONSDALE AVE ID/Status: RIR000508796

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions:

NAICS Code: 44112

NAICS Description: USED CAR DEALERS

Facility Has Received Notices of Violation:

Found Violation: Yes

Agency Which Determined Violation: State

Violation Short Description: Generators - Pre-transport Date Violation was Determined: 2016-11-16 00:00:00.0 Actual Return to Compliance Date: 2017-05-11 00:00:00.0

Return to Compliance Qualifier: Observed Violation Responsible Agency: State

Scheduled Compliance Date: 2017-04-20 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2017-03-20 00:00:00.0

Enforcement Responsible Agency: State
Enforcement Docket Number: HW-16-108
Enforcement Attorney: Not reported
Corrective Action Component: No
Appeal Initiated Date: Not reported
Appeal Resolution Date: Not reported
Disposition Status Date: Not reported
Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: JHRI Enforcement Responsible Sub-Organization: HW

SEP Sequence Number: Not reported
SEP Expenditure Amount: Not reported

SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1012212092 DIST/DIR: 0.093 NNE ELEVATION: 65 MAP ID: E17

NAME: B & L AUTO SALES Rev: 03/22/2021

ADDRESS: 824 LONSDALE AVE ID/Status: RIR000508796

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: No

Agency Which Determined Violation: Not reported

Violation Short Description: Not reported
Date Violation was Determined: Not reported
Actual Return to Compliance Date: Not reported
Return to Compliance Qualifier: Not reported
Violation Responsible Agency: Not reported
Scheduled Compliance Date: Not reported
Enforcement Identifier: Not reported
Date of Enforcement Action: Not reported
Enforcement Responsible Agency: Not reported
Enforcement Docket Number: Not reported

Enforcement Attorney: Not reported Corrective Action Component: Not reported

Appeal Initiated Date: Not reported
Appeal Resolution Date: Not reported
Disposition Status Date: Not reported
Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported

Enforcement Type: Not reported

Enforcement Responsible Person: Not reported

Enforcement Responsible Sub-Organization: Not reported

SEP Sequence Number: Not reported
SEP Expenditure Amount: Not reported
SEP Scheduled Completion Date: Not reported

SED Actual Data: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1012212092 DIST/DIR: 0.093 NNE **ELEVATION:** 65 MAP ID: E17

NAME: **B & L AUTO SALES** Rev: 03/22/2021

ID/Status: RIR000508796 ADDRESS: 824 LONSDALE AVE

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

Agency Which Determined Violation: State

Violation Short Description: State Statute or Regulation Date Violation was Determined: 2016-11-16 00:00:00.0 Actual Return to Compliance Date: 2017-04-19 00:00:00.0

Return to Compliance Qualifier: Documented

Violation Responsible Agency: State

Scheduled Compliance Date: 2017-04-20 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2017-03-20 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: HW-16-108 Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: JHRI Enforcement Responsible Sub-Organization: HW SEP Sequence Number: Not reported

SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State

Violation Short Description: Generators - Pre-transport Date Violation was Determined: 2016-11-16 00:00:00.0 Actual Return to Compliance Date: 2017-05-11 00:00:00.0

Return to Compliance Qualifier: Observed Violation Responsible Agency: State

Scheduled Compliance Date: 2017-04-20 00:00:00.0

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1012212092 DIST/DIR: 0.093 NNE **ELEVATION:** 65 MAP ID: E17

NAME: **B & L AUTO SALES** Rev: 03/22/2021

ID/Status: RIR000508796 ADDRESS: 824 LONSDALE AVE

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

Enforcement Identifier: 001

Date of Enforcement Action: 2017-03-20 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: HW-16-108 Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: JHRI

Enforcement Responsible Sub-Organization: HW

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State

Violation Short Description: Generators - Pre-transport Date Violation was Determined: 2016-11-16 00:00:00.0 Actual Return to Compliance Date: 2017-05-11 00:00:00.0

Return to Compliance Qualifier: Observed

Violation Responsible Agency: State Scheduled Compliance Date: 2017-04-20 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2017-03-20 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: HW-16-108 Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1012212092 DIST/DIR: 0.093 NNE ELEVATION: 65 MAP ID: E17

NAME: B & L AUTO SALES Rev: 03/22/2021 ID/Status: RIR000508796

ADDRESS: 824 LONSDALE AVE ID/Status: RIR000508796

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: JHRI

Enforcement Responsible Sub-Organization: HW

SEP Sequence Number: Not reported
SEP Expenditure Amount: Not reported
SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State
Violation Short Description: Used Oil - Generators
Date Violation was Determined: 2016-11-16 00:00:00.0
Actual Return to Compliance Date: 2017-05-11 00:00:00.0

Return to Compliance Qualifier: Observed Violation Responsible Agency: State

Scheduled Compliance Date: 2017-04-20 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 2017-03-20 00:00:00.0

Enforcement Responsible Agency: State
Enforcement Docket Number: HW-16-108
Enforcement Attorney: Not reported
Corrective Action Component: No
Appeal Initiated Date: Not reported
Appeal Resolution Date: Not reported
Disposition Status Date: Not reported
Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1012212092 DIST/DIR: 0.093 NNE ELEVATION: 65 MAP ID: E17

NAME: B & L AUTO SALES Rev: 03/22/2021

ADDRESS: 824 LONSDALE AVE ID/Status: RIR000508796

CENTRAL FALLS, RI 02863 PROVIDENCE

SOURCE: US Environmental Protection Agency

Enforcement Type: WRITTEN INFORMAL
Enforcement Responsible Person: JHRI

Enforcement Responsible Sub-Organization: HW

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Evaluation Action Summary:

Evaluation Date: 2016-11-16 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: JHRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2017-05-11 00:00:00.0 Scheduled Compliance Date: 2017-04-20 00:00:00.0

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2017-05-11 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: No

Evaluation Type Description: COMPLIANCE SCHEDULE EVALUATION

Evaluation Responsible Person Identifier: JHRI Evaluation Responsible Sub-Organization: HW Actual Return to Compliance Date: Not reported Scheduled Compliance Date: Not reported

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2016-11-16 00:00:00.0

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1012212092 DIST/DIR: 0.093 NNE ELEVATION: 65 MAP ID: E17

NAME: B & L AUTO SALES Rev: 03/22/2021

ADDRESS: 824 LONSDALE AVE ID/Status: RIR000508796

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: JHRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2017-04-19 00:00:00.0 Scheduled Compliance Date: 2017-04-20 00:00:00.0

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2016-11-16 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: JHRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2017-05-11 00:00:00.0 Scheduled Compliance Date: 2017-04-20 00:00:00.0

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2016-11-16 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: JHRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2017-05-11 00:00:00.0 Scheduled Compliance Date: 2017-04-20 00:00:00.0

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2016-11-16 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: JHRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 2017-05-11 00:00:00.0

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1012212092 DIST/DIR: 0.093 NNE **ELEVATION:** 65 MAP ID: E17

NAME: **B & L AUTO SALES** 03/22/2021 Rev: ID/Status: RIR000508796

ADDRESS: 824 LONSDALE AVE

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

Scheduled Compliance Date: 2017-04-20 00:00:00.0 Date of Request: Not reported Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000445259 DIST/DIR: 0.095 SW **ELEVATION:** MAP ID: D18 51

NAME: ROBINSON WASTE DISPOSAL INC Rev: 03/22/2021

ID/Status: RID987472479 ADDRESS: CROW POINT RD

LINCOLN, RI 02865 **PROVIDENCE**

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 2000-03-08 00:00:00.0 Handler Name: ROBINSÖN WASTE DISPOSAL INC

Handler Address: CROW POINT RD Handler City, State, Zip: LINCOLN, RI 02865

EPA ID: RID987472479

Contact Name: THOMAS-M ROBINSON Contact Address: PO BOX 111

Contact City, State, Zip: LINCOLN, RI 02865 Contact Telephone: 401-724-2708

Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01 Land Type: Other

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported Active Site Indicator: Not reported State District Owner: Not reported

State District: Not reported Mailing Address: PO BOX 111

Mailing City, State, Zip: LINCOLN, RI 02865 Owner Name: THOMAS M ROBINSON

Owner Type: Private Operator Name: Not reported

Operator Type: Not reported Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000445259 DIST/DIR: 0.095 SW ELEVATION: 51 MAP ID: D18

NAME: ROBINSON WASTE DISPOSAL INC Rev: 03/22/2021

ADDRESS: CROW POINT RD ID/Status: RID987472479

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: ---Federal Facility Indicator: Not reported Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2001-05-22 14:06:02.0

Recognized Trader-Importer: No
Recognized Trader-Exporter: No
Importer of Spent Lead Acid Batteries: No
Exporter of Spent Lead Acid Batteries: No
Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Hazardous Waste Summary:

Waste Code: D001

Waste Description: IGNITABLE WASTE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000445259 DIST/DIR: 0.095 SW **ELEVATION:** MAP ID: D18 51

NAME: ROBINSON WASTE DISPOSAL INC Rev: 03/22/2021

ID/Status: RID987472479 ADDRESS: CROW POINT RD

LINCOLN, RI 02865

PROVIDENCE

SOURCE: US Environmental Protection Agency

Handler - Owner Operator:

Owner/Operator Indicator: Owner

Owner/Operator Name: THOMAS M ROBINSON

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: OWNERSTREET Owner/Operator City, State, Zip: OWNERCITY, RI Owner/Operator Telephone: 401-555-1212 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 1990-04-25 00:00:00.0

Handler Name: ROBINSON WASTE DISPOSAL INC

Federal Waste Generator Description: Small Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 2000-03-08 00:00:00.0 Handler Name: ROBINSON WASTE DISPOSAL INC

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions:

NAICS Code: 562

NAICS Description: WASTE MANAGEMENT AND REMEDIATION SERVICES

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000445259 DIST/DIR: 0.095 SW **ELEVATION:** 51 MAP ID: D18

ROBINSON WASTE DISPOSAL INC NAME: 03/22/2021 Rev:

ID/Status: RID987472479 ADDRESS: CROW POINT RD

LINCOLN, RI 02865

PROVIDENCE

SOURCE: US Environmental Protection Agency

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary: Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$103763687 **DIST/DIR:** 0.124 SW **ELEVATION:** 57 **MAP ID:** F19

NAME: MAJESTIC MOTORS Rev: 04/07/2021

ADDRESS: 1300 EDDIE DOWLING HIGHWAY

ID/Status: Active
ID/Status: MAMO-SFA

LINCOLN, RI

ID/Status: MAMO-HWM
ID/Status: SR-18-0776

SOURCE: RI Department of Environmental Management

SHWS:

Name: MAJESTIC MOTORS

Address: 1300 EDDIE DOWLING HIGHWAY

City,State,Zip: LINCOLN, RI Project Code: MAMO-SFA Siterem Site Number: SR-18-0776

Facility Status: Active

Project Code Desc: MAMO-SFA Project Date: Not reported Acres: Not reported

Name: MAJESTIC MOTORS

Address: 1300 EDDIE DOWLING HIGHWAY

City,State,Zip: LINCOLN, RI Project Code: MAMO-HWM Siterem Site Number: SR-18-0776

Facility Status: Active

Project Code Desc: MAMO-HWM

Project Date: Not reported

Acres: 2

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

U003208140 EDR ID: DIST/DIR: 0.124 SW **ELEVATION:** 57 MAP ID: F20

TAGGART SAND PRODUCTS CORPORATION NAME: 03/01/2021 Rev: ID/Status: UST-2320 ADDRESS: 520 MOSHASSUCK VALLEY INDUSTRIAL HWY

ID/Status: Permanently Closed

LINCOLN, RI

SOURCE: RI Department of Environmental Management

UST:

Name: TAGGART SAND PRODUCTS CORPORATION Address: 520 MOSHASSUCK VALLEY INDUSTRIAL HWY

City: LINCOLN Facility ID: UST-2320 Facility Class: Industrial

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 2000

Tank Substance: Heating Oil No.2

Date Installed: 05/01/1971

Tank ID: 2

Tank Status: Permanently Closed

Tank Capacity: 4000 Tank Substance: Diesel Date Installed: 07/01/1974

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U003208140 **DIST/DIR:** 0.124 SW **ELEVATION:** 57 **MAP ID:** F20

NAME: TAGGART SAND PRODUCTS CORPORATION Rev: 03/01/2021

ADDRESS: 520 MOSHASSUCK VALLEY INDUSTRIAL HWY
LINCOLN, RI

ID/Status: 1820-LS
ID/Status: 1815-LS
ID/Status: UST-2320

SOURCE: RI Department of Environmental Management

LUST:

Name: TAGGART SAND PRODUCTS CORPORATION Address: 520 MOSHASSUCK VALLEY INDUSTRIAL HWY

City,State,Zip: LINCOLN, RI Project Number: 1820-LS Project Date: 1995-01-05 Facility Id: UST-2320 Fstatus Decode: Not reported Facility Status: INACTIVE

Name: TAGGART SAND PRODUCTS CORPORATION Address: 520 MOSHASSUCK VALLEY INDUSTRIAL HWY

City, State, Zip: LINCOLN, RI Project Number: 1815-LS Project Date: 1994-01-01 Facility Id: UST-2320 Estatus Decode: Not reporte

Fstatus Decode: Not reported Facility Status: INACTIVE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000437221 DIST/DIR: 0.130 SE ELEVATION: 96 MAP ID: G21

NAME: GARCIAS AUTO SALES Rev: 03/22/2021

ADDRESS: 595 LONSDALE AVE ID/Status: RID981063712

CENTRAL FALLS, RI 02863 PROVIDENCE

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 1985-02-07 00:00:00.0 Handler Name: CROWN COLLISION CENTER INC

Handler Address: 595 LONSDALE AVE

Handler City, State, Zip: CENTRAL FALLS, RI 02863

EPA ID: RID981063712

Contact Name: RACHELLE COUTURE Contact Address: 595 LONSDALE AVE

Contact City, State, Zip: CENTRAL FALLS, RI 02863

Contact Telephone: 401-728-8800 Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01 Land Type: Private

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported Active Site Indicator: Not reported State District Owner: Not reported

State District: Not reported

Mailing Address: LONSDALE AVE

Mailing City, State, Zip: CENTRAL FALLS, RI 02863

Owner Name: OWNERNAME

Owner Type: Private

Operator Name: Not reported
Operator Type: Not reported
Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000437221 DIST/DIR: 0.130 SE ELEVATION: 96 MAP ID: G21

NAME: GARCIAS AUTO SALES Rev: 03/22/2021 ID/Status: RID981063712

ADDRESS: 595 LONSDALE AVE

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

Active Site State-Reg Handler: ---Federal Facility Indicator: Not reported Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2000-09-02 11:51:33.0

Recognized Trader-Importer: No
Recognized Trader-Exporter: No
Importer of Spent Lead Acid Batteries: No
Exporter of Spent Lead Acid Batteries: No
Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Hazardous Waste Summary: Waste Code: NONE Waste Description: NONE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000437221 DIST/DIR: 0.130 SE ELEVATION: 96 MAP ID: G21

NAME: GARCIAS AUTO SALES Rev: 03/22/2021 ID/Status: RID981063712

ADDRESS: 595 LONSDALE AVE

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

Handler - Owner Operator:

Owner/Operator Indicator: Owner Owner/Operator Name: OWNERNAME

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: OWNERSTREET

Owner/Operator City, State, Zip: OWNERCITY, RI 99999

Owner/Operator Telephone: 401-555-1212 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 1985-02-07 00:00:00.0

Handler Name: CROWN COLLISION CENTER INC

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions: NAICS Codes: No NAICS Codes Found

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary:

Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000891120 DIST/DIR: 0.130 SE **ELEVATION:** MAP ID: G22 96

NAME: **GARCIAS AUTO SALES** Rev: 03/22/2021

ID/Status: RI5000002097 ADDRESS: 595 LONSDALE AVE

CENTRAL FALLS, RI 02863 **PROVIDENCE**

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 2000-02-28 00:00:00.0

Handler Name: GARCIAS AUTO SALES Handler Address: 595 LONSDALE AVE

Handler City, State, Zip: CENTRAL FALLS, RI 02863

EPA ID: RI5000002097

Contact Name: FRANCES SOSA Contact Address: 595 LONSDALE AVE

Contact City, State, Zip: CENTRAL FALLS, RI 02863

Contact Telephone: 401-722-3529 Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01 Land Type: Private

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported

Active Site Indicator: Not reported State District Owner: Not reported State District: Not reported Mailing Address: LONSDALE AVE

Mailing City, State, Zip: CENTRAL FALLS, RI 02863

Owner Name: EDWARD BRAULT

Owner Type: Private

Operator Name: Not reported Operator Type: Not reported Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000891120 DIST/DIR: 0.130 SE ELEVATION: 96 MAP ID: G22

NAME: GARCIAS AUTO SALES Rev: 03/22/2021

ADDRESS: 595 LONSDALE AVE ID/Status: RI5000002097

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: ---Federal Facility Indicator: Not reported Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2001-05-18 11:59:30.0

Recognized Trader-Importer: No Recognized Trader-Exporter: No Importer of Spent Lead Acid Batteries: No Exporter of Spent Lead Acid Batteries: No Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Hazardous Waste Summary:

Waste Code: F003

Waste Description: THE FOLLOWING SPENT NONHALOGENATED SOLVENTS: XYLENE, ACETONE, ETHYL

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000891120 DIST/DIR: 0.130 SE ELEVATION: 96 MAP ID: G22

NAME: GARCIAS AUTO SALES Rev: 03/22/2021 ID/Status: RI5000002097

ADDRESS: 595 LONSDALE AVE

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

ACETATE, ETHYL BENZENE, ETHYL ETHER, METHYL ISOBUTYL KETONE, N-BUTYL ALCOHOL, CYCLOHEXANONE, AND METHANOL; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONLY THE ABOVE SPENT NONHALOGENATED SOLVENTS; AND ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONE OR MORE OF THE ABOVE NONHALOGENATED SOLVENTS, AND A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THOSE SOLVENTS LISTED IN F001, F002, F004, AND F005; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.

Handler - Owner Operator:

Owner/Operator Indicator: Owner

Owner/Operator Name: EDWARD BRAULT

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: 180 BROADWAY

Owner/Operator City, State, Zip: PAWTUCKET, RI 02862

Owner/Operator Telephone: 401-728-8800 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 1994-04-29 00:00:00.0 Handler Name: GARCIAS AUTO SALES

Federal Waste Generator Description: Small Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 2000-02-28 00:00:00.0 Handler Name: GARCIAS AUTO SALES

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000891120 DIST/DIR: 0.130 SE ELEVATION: 96 MAP ID: G22

 NAME:
 GARCIAS AUTO SALES
 Rev:
 03/22/2021

 ADDRESS:
 FOR LONG DATE AND
 ID/Status:
 RI5000002097

ADDRESS: 595 LONSDALE AVE

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions: NAICS Codes: No NAICS Codes Found

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary:

Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1001225576 DIST/DIR: 0.153 SE **ELEVATION:** MAP ID: G23 98

BUFFINTON F H CO NAME: Rev: 03/22/2021 ID/Status: RI5000011890

ADDRESS: 575 LONSDALE AVE CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 1997-09-05 00:00:00.0

Handler Name: BUFFINTON F H CO Handler Address: 575 LONSDALE AVE

Handler City, State, Zip: CENTRAL FALLS, RI 02863

EPA ID: RI5000011890

Contact Name: THOMAS CAVANAGH Contact Address: PO BOX 616

Contact City, State, Zip: PAWTUCKET, RI 02862 Contact Telephone: 401-725-3646

Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01 Land Type: Private

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported Active Site Indicator: Not reported State District Owner: Not reported

State District: Not reported Mailing Address: PO BOX 616

Mailing City, State, Zip: PAWTUCKET, RI 02862

Owner Name: FH BUFFINTON CO

Owner Type: Private

Operator Name: Not reported Operator Type: Not reported Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1001225576 DIST/DIR: 0.153 SE ELEVATION: 98 MAP ID: G23

NAME: BUFFINTON F H CO Rev: 03/22/2021 ID/Status: RI5000011890

ADDRESS: 575 LONSDALE AVE ID/Status: RI5000011890

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

Active Site State-Reg Handler: ---Federal Facility Indicator: Not reported Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2000-09-02 11:51:36.0

Recognized Trader-Importer: No Recognized Trader-Exporter: No Importer of Spent Lead Acid Batteries: No Exporter of Spent Lead Acid Batteries: No Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Handler - Owner Operator:

Owner/Operator Indicator: Owner

Owner/Operator Name: FH BUFFINTON CO

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1001225576 DIST/DIR: 0.153 SE ELEVATION: 98 MAP ID: G23

NAME: BUFFINTON F H CO Rev: 03/22/2021

ADDRESS: 575 LONSDALE AVE ID/Status: RI5000011890

PROVIDENCE

SOURCE: US Environmental Protection Agency

CENTRAL FALLS, RI 02863

Legal Status: Private

Date Became Current: Not reported
Date Ended Current: Not reported
Owner/Operator Address: PO BOX 616

Owner/Operator City, State, Zip: PAWTUCKET, RI 02862

Owner/Operator Telephone: 401-725-3646 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 1997-09-05 00:00:00.0 Handler Name: BUFFINTON F H CO

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions: NAICS Codes: No NAICS Codes Found

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary:

Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

NAME: MILLERS TRUCK REPAIR INC Rev: 03/22/2021

ADDRESS: 145 HIGGINSON AVE ID/Status: RID987467347

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

RCRA-SQG:

Date Form Received by Agency: 1988-10-04 00:00:00.0

Handler Name: MILLÉRS TRÚCK REPAIR INC Handler Address: 145 HIGGINSON AVE Handler City, State, Zip: LINCOLN, RI 02865

EPA ID: RID987467347

Contact Name: ROBERT MILLER
Contact Address: 145 HIGGINSON AVE
Contact City,State,Zip: LINCOLN, RI 02865
Contact Telephone: 401-723-9030

Contact Feepinole: 4017/20 Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01

Land Type: Not reported

Federal Waste Generator Description: Small Quantity Generator

Non-Notifier: Not reported

Biennial Report Cycle: Not reported

Accessibility: Not reported

Active Site Indicator: Handler Activities State District Owner: Not reported State District: Not reported Mailing Address: HIGGINSON AVE

Mailing City, State, Zip: LINCOLN, RI 02865

Owner Name: ROBERT MILLER

Owner Type: Private

Operator Name: Not reported Operator Type: Not reported Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

NAME: MILLERS TRUCK REPAIR INC Rev: 03/22/2021

ADDRESS: 145 HIGGINSON AVE ID/Status: RID987467347

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: ---Federal Facility Indicator: Not reported Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2014-08-20 00:00:00.0

Recognized Trader-Importer: No Recognized Trader-Exporter: No Importer of Spent Lead Acid Batteries: No Exporter of Spent Lead Acid Batteries: No Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Hazardous Waste Summary:

Waste Code: D001

Waste Description: IGNITABLE WASTE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

NAME: MILLERS TRUCK REPAIR INC Rev: 03/22/2021

ADDRESS: 145 HIGGINSON AVE ID/Status: RID987467347

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Handler - Owner Operator:

Owner/Operator Indicator: Owner

Owner/Operator Name: ROBERT MILLER

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: OWNERSTREET

Owner/Operator City, State, Zip: OWNERCITY, RI 99999

Owner/Operator Telephone: 401-555-1212 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 1988-10-04 00:00:00.0

Handler Name: MILLERS TRUCK REPAIR INC

Federal Waste Generator Description: Small Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions:

NAICS Code: 811111

NAICS Description: GENERAL AUTOMOTIVE REPAIR

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary:

Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U001213286 **DIST/DIR:** 0.167 WNW **ELEVATION:** 50 **MAP ID:** H25

NAME: DURASTONE CORPORATION Rev: 03/01/2021
ADDRESS: 150 HIGGINSON AVE ID/Status: UST-3315

LINCOLN, RI ID/Status: In Use ID/Status: Permanently Closed

SOURCE: RI Department of Environmental Management

UST:

Name: DURASTONE CORPORATION Address: 150 HIGGINSON AVE

City: LINCOLN Facility ID: UST-3315 Facility Class: Commercials

Tank ID: 1

Tank Status: In Use Tank Capacity: 5000

Tank Substance: Heating Oil No.2 Date Installed: 03/01/1976

Tank ID: 2

Tank Status: Permanently Closed

Tank Capacity: 4000 Tank Substance: Gasoline Date Installed: 10/09/1984

Tank ID: 3

Tank Status: Permanently Closed

Tank Capacity: 2000

Tank Substance: Heating Oil No.6 Date Installed: 10/09/1984

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U001213286 **DIST/DIR:** 0.167 WNW **ELEVATION:** 50 **MAP ID:** H25

NAME: DURASTONE CORPORATION Rev: 03/01/2021

ADDRESS: 150 HIGGINSON AVE

ID/Status: Soil Removal Only; No Further Action Require

ID/Status: 1836-ST ID/Status: UST-3315

SOURCE: RI Department of Environmental Management

LUST:

Name: DURASTONE CORPORATION Address: 150 HIGGINSON AVE City,State,Zip: LINCOLN, RI Project Number: 1836-ST Project Date: 2006-05-12 Facility Id: UST-3315

LINCOLN, RI

Fstatus Decode: Soil Removal Only; No Further Action Required Facility Status: Soil Removal Only; No Further Action Required

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

03/01/2021

EDR ID: U001473980 **DIST/DIR:** 0.179 West **ELEVATION:** 65 **MAP ID:** 26

NAME: PROVIDENCE & WORCESTER RAILROAD TRACK Rev:

ADDRESS: 135 HIGGINSON AVE ID/Status: UST-16466

LINCOLN, RI

SOURCE: RI Department of Environmental Management

UST:

Name: PROVIDENCE & WORCESTER RAILROAD TRACK

Address: 135 HIGGINSON AVE

City: LINCOLN

Facility ID: UST-16466 Facility Class: Other

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 2000

Tank Substance: Heating Oil No.2

Date Installed: 10/09/1984

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000380487 DIST/DIR: 0.186 ESE **ELEVATION: MAP ID:** 127 100

NAME: NURSERY ORIGINALS INC Rev: 03/22/2021 ID/Status: RID063889356

ADDRESS: 280 RAND ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 1980-07-15 00:00:00.0

Handler Name: NURSERY ORIGINALS INC

Handler Address: 280 RAND ST

Handler City, State, Zip: CENTRAL FALLS, RI 02863

EPA ID: RID063889356 Contact Name: JOE COSTA Contact Address: 280 RAND ST

Contact City, State, Zip: CENTRAL FALLS, RI 02863

Contact Telephone: 401-724-9320 Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01

Land Type: Not reported

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported Active Site Indicator: Not reported State District Owner: Not reported State District: Not reported

Mailing Address: RAND ST

Mailing City, State, Zip: CENTRAL FALLS, RI 02863

Owner Name: LONSDALE REALITY

Owner Type: Private

Operator Name: GERBER PRODUCTS
Operator Type: Private

Short-Term Generator Activity: No

Importer Activity: No Mixed Waste Generator: No

Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000380487 DIST/DIR: 0.186 ESE ELEVATION: 100 MAP ID: 127

NAME: NURSERY ORIGINALS INC Rev: 03/22/2021
ID/Status: RID063889356

ADDRESS: 280 RAND ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: --Federal Facility Indicator: Not reported
Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2000-09-02 11:51:33.0

Recognized Trader-Importer: No
Recognized Trader-Exporter: No
Importer of Spent Lead Acid Batteries: No
Exporter of Spent Lead Acid Batteries: No
Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Handler - Owner Operator:

Owner/Operator Indicator: Operator

Owner/Operator Name: GERBER PRODUCTS

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000380487 DIST/DIR: 0.186 ESE ELEVATION: 100 MAP ID: 127

NAME: NURSERY ORIGINALS INC Rev: 03/22/2021
ID/Status: RID063889356

ADDRESS: 280 RAND ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Legal Status: Private

Date Became Current: Not reported
Date Ended Current: Not reported
Owner/Operator Address: OPERSTREET

Owner/Operator City, State, Zip: OPERCITY, RI 99999

Owner/Operator Telephone: 401-555-1212 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Owner

Owner/Operator Name: LONSDALE REALITY

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: OWNERSTREET

Owner/Operator City, State, Zip: OWNERCITY, RI 99999

Owner/Operator Telephone: 401-555-1212 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 1980-07-15 00:00:00.0 Handler Name: NURSERY ORIGINALS INC

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions:

NAICS Code: 335129

NAICS Description: OTHER LIGHTING EQUIPMENT MANUFACTURING

NAICS Code: 339999

NAICS Description: ALL OTHER MISCELLANEOUS MANUFACTURING

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000380487 DIST/DIR: 0.186 ESE **ELEVATION:** 100 **MAP ID:** 127

NURSERY ORIGINALS INC NAME: 03/22/2021 Rev:

ID/Status: RID063889356 ADDRESS: 280 RAND ST

CENTRAL FALLS, RI 02863 **PROVIDENCE**

SOURCE: US Environmental Protection Agency

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary: Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$104305567 DIST/DIR: 0.186 ESE ELEVATION: 100 MAP ID: 128

NAME: RAND STREET COMPLEX Rev: 04/07/2021

ADDRESS: 280 RAND STREET

ID/Status: Active

Z80 RAND STREET ID/Status: RAND-HWM
CENTRAL FALLS, RI ID/Status: SR-04-1206

SOURCE: RI Department of Environmental Management

SHWS:

Name: RAND STREET COMPLEX Address: 280 RAND STREET City,State,Zip: CENTRAL FALLS, RI Project Code: RAND-HWM

Project Code: RAND-HWM Siterem Site Number: SR-04-1206

Facility Status: Active

Project Code Desc: RAND-HWM

Project Date: 12/01/2000

Acres: 15.8

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U003207938 DIST/DIR: 0.186 ESE ELEVATION: 100 MAP ID: 129

NAME: SCHOOL HOUSE CANDY

Rev: 03/01/2021
ID/Status: UST-18193

ADDRESS: 280 RAND ST

CENTRAL FALLS, RI

ID/Status: US1-18193

ID/Status: Permanently Closed

SOURCE: RI Department of Environmental Management

UST:

Name: SCHOOL HOUSE CANDY

Address: 280 RAND ST City: CENTRAL FALLS Facility ID: UST-18193 Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 25000

Tank Substance: Heating Oil No.6

Date Installed: 10/09/1984

Tank ID: 2

Tank Status: Permanently Closed

Tank Capacity: 25000

Tank Substance: Heating Oil No.6 Date Installed: 10/09/1984

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000339922 DIST/DIR: 0.186 ESE ELEVATION: 100 MAP ID: 130

NAME: SCHOOL HOUSE CANDY CO

Rev: 03/22/2021
ID/Status: RID980671010

ADDRESS: 280 RAND ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 1983-08-23 00:00:00.0

Handler Name: SCHÓOL HOUSE CANDY CO

Handler Address: 280 RAND ST

Handler City, State, Zip: CENTRAL FALLS, RI 02863

EPA ID: RID980671010

Contact Name: JOHN PACHELO Contact Address: 1005 MAIN ST

Contact City, State, Zip: PAWTUCKET, RI 02860

Contact Telephone: 401-726-4500 Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01

Land Type: Not reported

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported Active Site Indicator: Not reported State District Owner: Not reported

State District: Not reported Mailing Address: MAIN ST

Mailing City, State, Zip: PAWTUCKET, RI 02860

Owner Name: OWNERNAME

Owner Type: Private

Operator Name: Not reported
Operator Type: Not reported
Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000339922 DIST/DIR: 0.186 ESE ELEVATION: 100 MAP ID: 130

NAME: SCHOOL HOUSE CANDY CO

Rev: 03/22/2021
ID/Status: RID980671010

ADDRESS: 280 RAND ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: --Federal Facility Indicator: Not reported
Hazardous Secondary Material Indicator: NN
Sub-Part K Indicator: Not reported

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2000-09-02 11:51:33.0

Recognized Trader-Importer: No
Recognized Trader-Exporter: No
Importer of Spent Lead Acid Batteries: No
Exporter of Spent Lead Acid Batteries: No
Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Handler - Owner Operator: Owner/Operator Indicator: Owner Owner/Operator Name: OWNERNAME

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000339922 DIST/DIR: 0.186 ESE **ELEVATION:** 100 **MAP ID: 130**

SCHOOL HOUSE CANDY CO NAME: Rev: 03/22/2021 ID/Status: RID980671010

ADDRESS: 280 RAND ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: OWNERSTREET

Owner/Operator City, State, Zip: OWNERCITY, RI 99999

Owner/Operator Telephone: 401-555-1212 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 1983-08-23 00:00:00.0 Handler Name: SCHOOL HOUSE CANDY CO

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions: NAICS Codes: No NAICS Codes Found

Facility Has Received Notices of Violation:

Found Violation: Yes

Agency Which Determined Violation: State Violation Short Description: Generators - General Date Violation was Determined: 1987-03-30 00:00:00.0 Actual Return to Compliance Date: 1989-01-30 00:00:00.0

Return to Compliance Qualifier: Observed Violation Responsible Agency: State

Scheduled Compliance Date: 1987-05-02 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 1987-03-31 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: Not reported Enforcement Attorney: Not reported Corrective Action Component: No

Appeal Initiated Date: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000339922 DIST/DIR: 0.186 ESE **ELEVATION: MAP ID: 130** 100

NAME: SCHOOL HOUSE CANDY CO Rev: 03/22/2021 ID/Status: RID980671010

ADDRESS: 280 RAND ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: Not reported

Enforcement Responsible Sub-Organization: Not reported

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State Violation Short Description: Generators - General Date Violation was Determined: 1987-03-30 00:00:00.0 Actual Return to Compliance Date: 1989-01-30 00:00:00.0

Return to Compliance Qualifier: Observed Violation Responsible Agency: State

Scheduled Compliance Date: 1987-05-02 00:00:00.0

Enforcement Identifier: 001

Date of Enforcement Action: 1987-03-31 00:00:00.0

Enforcement Responsible Agency: State Enforcement Docket Number: Not reported Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000339922 DIST/DIR: 0.186 ESE **ELEVATION: MAP ID: 130** 100

NAME: SCHOOL HOUSE CANDY CO Rev: 03/22/2021 ID/Status: RID980671010

ADDRESS: 280 RAND ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Enforcement Type: WRITTEN INFORMAL Enforcement Responsible Person: Not reported

Enforcement Responsible Sub-Organization: Not reported

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State Violation Short Description: Generators - General Date Violation was Determined: 1987-03-30 00:00:00.0 Actual Return to Compliance Date: 1989-01-30 00:00:00.0

Return to Compliance Qualifier: Observed Violation Responsible Agency: State Scheduled Compliance Date: Not reported Enforcement Identifier: Not reported Date of Enforcement Action: Not reported Enforcement Responsible Agency: Not reported Enforcement Docket Number: Not reported Enforcement Attorney: Not reported Corrective Action Component: Not reported

Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: Not reported

Enforcement Responsible Person: Not reported

Enforcement Responsible Sub-Organization: Not reported

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000339922 DIST/DIR: 0.186 ESE **ELEVATION: MAP ID: 130** 100

SCHOOL HOUSE CANDY CO NAME: Rev: 03/22/2021 ID/Status: RID980671010

ADDRESS: 280 RAND ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

SEP Defaulted Date: Not reported

SEP Type: Not reported SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: Yes

Agency Which Determined Violation: State Violation Short Description: Generators - General Date Violation was Determined: 1987-03-30 00:00:00.0 Actual Return to Compliance Date: 1989-01-30 00:00:00.0

Return to Compliance Qualifier: Observed Violation Responsible Agency: State Scheduled Compliance Date: Not reported Enforcement Identifier: Not reported Date of Enforcement Action: Not reported Enforcement Responsible Agency: Not reported Enforcement Docket Number: Not reported Enforcement Attorney: Not reported

Corrective Action Component: Not reported Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported

Enforcement Type: Not reported

Enforcement Responsible Person: Not reported

Enforcement Responsible Sub-Organization: Not reported

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported

SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000339922 DIST/DIR: 0.186 ESE **ELEVATION: MAP ID: 130** 100

SCHOOL HOUSE CANDY CO NAME: Rev: 03/22/2021 ID/Status: RID980671010

ADDRESS: 280 RAND ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Final Amount: Not reported

Evaluation Action Summary:

Evaluation Date: 1987-03-30 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: FOCUSED COMPLIANCE INSPECTION

Evaluation Responsible Person Identifier: Not reported Evaluation Responsible Sub-Organization: Not reported Actual Return to Compliance Date: 1989-01-30 00:00:00.0 Scheduled Compliance Date: 1987-05-02 00:00:00.0

Date of Request: Not reported Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 1999-10-26 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: FOLLOW-UP INSPECTION Evaluation Responsible Person Identifier: TMRRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 1989-01-30 00:00:00.0 Scheduled Compliance Date: 1987-05-02 00:00:00.0

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 1987-03-30 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: Yes

Evaluation Type Description: FOCUSED COMPLIANCE INSPECTION

Evaluation Responsible Person Identifier: Not reported Evaluation Responsible Sub-Organization: Not reported Actual Return to Compliance Date: 1989-01-30 00:00:00.0

Scheduled Compliance Date: Not reported

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 1999-10-26 00:00:00.0 Evaluation Responsible Agency: State

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

1000339922 0.186 ESE EDR ID: DIST/DIR: **ELEVATION:** 100 **MAP ID: 130**

NAME: SCHOOL HOUSE CANDY CO 03/22/2021 Rev: ID/Status: RID980671010

ADDRESS: 280 RAND ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Found Violation: Yes Evaluation Type Description: FOLLOW-UP INSPECTION Evaluation Responsible Person Identifier: TMRRI Evaluation Responsible Sub-Organization: HW

Actual Return to Compliance Date: 1989-01-30 00:00:00.0 Scheduled Compliance Date: Not reported

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000236982 DIST/DIR: 0.211 NE **ELEVATION:** 64 MAP ID: J31

MOBIL STA/KINGS MOBIL SERVICE CENTER NAME: Rev: 03/22/2021 ID/Status: RID166426973

ADDRESS: 890 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 2016-06-24 00:00:00.0 Handler Name: MOBIL STA/KINGS MOBIL SERVICE CENTER

Handler Address: 890 DEXTER ST

Handler City, State, Zip: CENTRAL FALLS, RI 02863

EPA ID: RID166426973

Contact Name: THOMAS MELLEN Contact Address: 890 DEXTER ST

Contact City, State, Zip: CENTRAL FALLS, RI 02863

Contact Telephone: 401-722-6267 Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01 Land Type: Private

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported Active Site Indicator: Not reported State District Owner: Not reported State District: Not reported Mailing Address: DEXTER ST

Mailing City, State, Zip: CENTRAL FALLS, RI 02863

Owner Name: THOMAS MELLEN

Owner Type: Private

Operator Name: Not reported Operator Type: Not reported Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000236982 DIST/DIR: 0.211 NE **ELEVATION:** 64 MAP ID: J31

MOBIL STA/KINGS MOBIL SERVICE CENTER NAME: Rev: 03/22/2021 ID/Status: RID166426973

ADDRESS: 890 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: ---Federal Facility Indicator: Not reported Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported Permit Progress Universe: Not reported Post-Closure Workload Universe: Not reported Closure Workload Universe: Not reported 202 GPRA Corrective Action Baseline: No Corrective Action Workload Universe: No Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2016-06-24 12:06:59.0

Recognized Trader-Importer: No Recognized Trader-Exporter: No Importer of Spent Lead Acid Batteries: No Exporter of Spent Lead Acid Batteries: No Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Hazardous Waste Summary:

Waste Code: D001

Waste Description: IGNITABLE WASTE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000236982 DIST/DIR: 0.211 NE **ELEVATION:** 64 MAP ID: J31

MOBIL STA/KINGS MOBIL SERVICE CENTER NAME: Rev: 03/22/2021 ID/Status: RID166426973

ADDRESS: 890 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Handler - Owner Operator:

Owner/Operator Indicator: Owner

Owner/Operator Name: THOMAS MELLEN

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: OWNERSTREET

Owner/Operator City, State, Zip: OWNERCITY, RI 99999

Owner/Operator Telephone: 401-555-1212 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Owner

Owner/Operator Name: THOMAS MELLEN

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: OWNERSTREET

Owner/Operator City, State, Zip: OWNERCITY, RI 99999

Owner/Operator Telephone: 401-555-1212 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 2016-06-24 00:00:00.0

Handler Name: MOBIL STA/KINGS MOBIL SERVICE CENTER Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 1988-10-04 00:00:00.0

Handler Name: MOBIL STA/KINGS MOBIL SERVICE CENTER Federal Waste Generator Description: Small Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Continued on next page -

6602106.2s Site Details Page - 91

10 HIGGINSON AVENUE Target Property: JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000236982 DIST/DIR: 0.211 NE **ELEVATION:** MAP ID: J31 64

MOBIL STA/KINGS MOBIL SERVICE CENTER NAME: Rev: 03/22/2021 ID/Status: RID166426973

ADDRESS: 890 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 2002-03-08 00:00:00.0

Handler Name: MOBIL STA/KINGS MOBIL SERVICE CENTER Federal Waste Generator Description: Small Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions: NAICS Codes: No NAICS Codes Found

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary:

Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: 1000236982 DIST/DIR: 0.211 NE ELEVATION: 64 MAP ID: J31

NAME: MOBIL STA/KINGS MOBIL SERVICE CENTER Rev: 03/01/2021

ADDRESS: 200 DEVIED ST. UST-3197

ADDRESS: 890 DEXTER ST ID/Status: US1-3197 ID/Status: Permanently Closed

CENTRAL FALLS, RI 02863 ID/Status: In Use

PROVIDENCE

SOURCE: RI Department of Environmental Management

UST:

Name: KING'S SERVICE CENTER, INC.

Address: 890 DEXTER ST City: CENTRAL FALLS Facility ID: UST-3197

Facility Class: Gasoline Station

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 5000 Tank Substance: Gasoline Date Installed: 06/01/1977

Tank ID: 2

Tank Status: Permanently Closed

Tank Capacity: 5000
Tank Substance: Gasoline
Date Installed: 06/01/1975

Tank ID: 3

Tank Status: Permanently Closed

Tank Capacity: 1000 Tank Substance: Diesel Date Installed: 10/09/1984

Tank ID: 4

Tank Status: Permanently Closed

Tank Capacity: 8000 Tank Substance: Gasoline Date Installed: 10/09/1984

Tank ID: 5

Tank Status: Permanently Closed

Tank Capacity: 275
Tank Substance: Waste Oil
Date Installed: 10/09/1984

Tank ID: 6

Tank Status: In Use

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: 1000236982 **DIST/DIR:** 0.211 NE **ELEVATION:** 64 **MAP ID:** J31

NAME: MOBIL STA/KINGS MOBIL SERVICE CENTER

Rev: 03/01/2021
ID/Status: UST-3197

ADDRESS: 890 DEXTER ST ID/Status: 051-3197 ID/Status: Permanently Closed

CENTRAL FALLS, RI 02863 ID/Status: In Use

SOURCE: RI Department of Environmental Management

Tank Capacity: 7000 Tank Substance: Gasoline Date Installed: 03/12/1999

PROVIDENCE

Tank ID: 7

Tank Status: In Use Tank Capacity: 3000 Tank Substance: Diesel Date Installed: 03/12/1999

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U001211753 DIST/DIR: 0.218 West ELEVATION: 78 MAP ID: K32

NAME: HIGGINSON AVENUE ENTERPRISES Rev: 03/01/2021

ADDRESS: 125 HIGGINSON AVE

LINCOLN, RI

SOURCE: RI Department of Environmental Management

UST:

Name: HIGGINSON AVENUE ENTERPRISES

Address: 125 HIGGINSON AVE

City: LINCOLN Facility ID: UST-1322 Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 2000 Tank Substance: Gasoline Date Installed: 06/01/1970

Tank ID: 2

Tank Status: Permanently Closed

Tank Capacity: 3000
Tank Substance: Diesel
Date Installed: 06/01/1970

Tank ID: 3

Tank Status: Permanently Closed

Tank Capacity: 1000

Tank Substance: Heating Oil No.2 Date Installed: 06/01/1965

Tank ID: 4

Tank Status: Permanently Closed

Tank Capacity: 7000

Tank Substance: Heating Oil No.2

Date Installed: 06/01/1982

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U001211753 **DIST/DIR:** 0.218 West **ELEVATION:** 78 **MAP ID:** K32

NAME: HIGGINSON AVENUE ENTERPRISES Rev: 03/01/2021

ADDRESS: 125 HIGGINSON AVE LINCOLN, RI ID/Status: 1827-LS ID/Status: UST-1322

SOURCE: RI Department of Environmental Management

LUST:

Name: HIGGINSON AVENUE ENTERPRISES

Address: 125 HIGGINSON AVE City,State,Zip: LINCOLN, RI Project Number: 1827-LS Project Date: 1998-09-18 Facility Id: UST-1322 Fstatus Decode: Not reported Facility Status: INACTIVE

6602106.2s Site Details Page - 96

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000352913 DIST/DIR: 0.218 West ELEVATION: 78 MAP ID: K33

NAME: CORRADO ANTHONY INC Rev: 03/22/2021

ADDRESS: 125 HIGGENSON AVE ID/Status: RID001190578

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 1983-04-28 00:00:00.0

Handler Name: CORRADO ANTHONY INC Handler Address: 125 HIGGENSON AVE Handler City, State, Zip: LINCOLN, RI 02865

EPA ID: RID001190578

Contact Name: JOSEPH PONTIFICE Contact Address: 125 HIGGENSON AVE Contact City, State, Zip: LINCOLN, RI 02865

Contact Telephone: 401-723-7600 Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01 Land Type: Not reported

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported Active Site Indicator: Not reported State District Owner: Not reported State District: Not reported

Mailing Address: HIGGENSON AVE Mailing City, State, Zip: LINCOLN, RI 02865

Owner Name: OWNERNAME

Owner Type: Private

Operator Name: Not reported
Operator Type: Not reported
Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000352913 DIST/DIR: 0.218 West ELEVATION: 78 MAP ID: K33

NAME: CORRADO ANTHONY INC Rev: 03/22/2021

ADDRESS: 125 HIGGENSON AVE ID/Status: RID001190578

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: --Federal Facility Indicator: Not reported
Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2000-09-02 11:51:32.0

Recognized Trader-Importer: No
Recognized Trader-Exporter: No
Importer of Spent Lead Acid Batteries: No
Exporter of Spent Lead Acid Batteries: No
Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Handler - Owner Operator: Owner/Operator Indicator: Owner Owner/Operator Name: OWNERNAME

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000352913 DIST/DIR: 0.218 West ELEVATION: 78 MAP ID: K33

NAME: CORRADO ANTHONY INC Rev: 03/22/2021

ADDRESS: 125 HIGGENSON AVE ID/Status: RID001190578

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: OWNERSTREET

Owner/Operator City, State, Zip: OWNERCITY, RI 99999

Owner/Operator Telephone: 401-555-1212 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 1983-04-28 00:00:00.0 Handler Name: CORRADO ANTHONY INC

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions: NAICS Codes: No NAICS Codes Found

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary:

Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

AST

EDR ID: A100299165 DIST/DIR: 0.218 West ELEVATION: 78 MAP ID: K34

NAME: HIGGINSON ENTERPRISES- WOOD & WIRE FENCE CO., INC 100/01/2020

ADDRESS: 125 HIGGINSON AVE ID/Status: 180009 ID/Status: O-Other

LINCOLN, RI

SOURCE: RI Department of Environmental Management

AST:

Name: HIGGINSON ENTERPRISES- WOOD & WIRE FENCE CO., INC (DISMANTLED/REMOVED)

Address: 125 HIGGINSON AVE Facility Classification: Commercial Mailing Address: Not reported Contact Person: Not reported Facility Telephone: Not reported Latitude\\Longitude: Not reported

Tank id: 1

Tank Status: O-Other Number of Gallons: 2000gal Product Stored: Diesel Date of Installation: Not reported Tank Construction: Steel Secondary Containment: Yes

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U001213972 DIST/DIR: 0.218 NNE **ELEVATION:** 66 MAP ID: J35

NAME: **DEXTER CREDIT UNION** 03/01/2021 Rev: ID/Status: UST-15952 ADDRESS: 934 DEXTER ST

ID/Status: Permanently Closed PAWTUCKET, RI

SOURCE: RI Department of Environmental Management

UST:

Name: DEXTER CREDIT UNION Address: 934 DEXTER ST City: PAWTUCKET Facility ID: UST-15952 Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 1000

Tank Substance: Heating Oil No.2 Date Installed: 10/09/1984

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1000379731 DIST/DIR: 0.218 NE **ELEVATION:** 68 **MAP ID: 36**

NAME: NISSEN JOHN J BAKING CO INC Rev: 03/22/2021 ID/Status: RID982752834

ADDRESS: 817 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

RCRA-SQG:

Date Form Received by Agency: 1989-02-12 00:00:00.0 Handler Name: NISSÉN JOHN J BAKING CO INC

Handler Address: 817 DEXTER ST

Handler City, State, Zip: CENTRAL FALLS, RI 02863

EPA ID: RID982752834

Contact Name: WILLIAM H ERWIN Contact Address: 817 DEXTER ST

Contact City, State, Zip: CENTRAL FALLS, RI 02863

Contact Telephone: 401-722-5650 Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01

Land Type: Not reported

Federal Waste Generator Description: Small Quantity Generator

Non-Notifier: Not reported

Biennial Report Cycle: Not reported

Accessibility: Not reported

Active Site Indicator: Handler Activities State District Owner: Not reported State District: Not reported Mailing Address: DEXTER ST

Mailing City, State, Zip: CENTRAL FALLS, RI 02863 Owner Name: INTERSTATE BRANDS CORPORATION

Owner Type: Private

Operator Name: Not reported Operator Type: Not reported Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1000379731 DIST/DIR: 0.218 NE ELEVATION: 68 MAP ID: 36

 NAME:
 NISSEN JOHN J BAKING CO INC
 Rev:
 03/22/2021

 ID/Status:
 RID982752834

ADDRESS: 817 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: --Federal Facility Indicator: Not reported
Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2014-08-20 00:00:00.0

Recognized Trader-Importer: No
Recognized Trader-Exporter: No
Importer of Spent Lead Acid Batteries: No
Exporter of Spent Lead Acid Batteries: No
Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Hazardous Waste Summary:

Waste Code: D001

Waste Description: IGNITABLE WASTE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-SQG

EDR ID: 1000379731 DIST/DIR: 0.218 NE **ELEVATION: MAP ID: 36** 68

NISSEN JOHN J BAKING CO INC NAME: Rev: 03/22/2021 ID/Status: RID982752834

ADDRESS: 817 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Waste Code: D039

Waste Description: TETRACHLOROETHYLENE

Handler - Owner Operator:

Owner/Operator Indicator: Owner

Owner/Operator Name: INTERSTATE BRANDS CORPORATION

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: 12 EAST ARMOUR BOULEVARD Owner/Operator City, State, Zip: KANSAS CITY, MO 64111

Owner/Operator Telephone: 207-775-3460 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 1989-02-12 00:00:00.0 Handler Name: NISSEN JOHN J BAKING CO INC

Federal Waste Generator Description: Small Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions:

NAICS Code: 311812

NAICS Description: COMMERCIAL BAKERIES

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary:

Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U003378660 DIST/DIR: 0.224 NNE ELEVATION: 66 MAP ID: J37

NAME: CITY OF CENTRAL FALLS (FORMER SCHOOL)

Rev: 03/01/2021
ID/Status: UST-18391

ADDRESS: 925 DEXTER ST

CENTRAL FALLS, RI

ID/Status: OS1-18391

ID/Status: Permanently Closed

SOURCE: RI Department of Environmental Management

UST:

Name: CITY OF CENTRAL FALLS (FORMER SCHOOL)

Address: 925 DEXTER ST City: CENTRAL FALLS Facility ID: UST-18391

Facility Class: Education - Town

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 2000

Tank Substance: Heating Oil No.2

Date Installed: 10/09/1984

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000418468 DIST/DIR: 0.226 ENE ELEVATION: 74 MAP ID: 38

NAME: CHOICE CLEANERS & LAUNDRY Rev: 03/22/2021
ID/Status: RID982766032

ADDRESS: 744 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 2000-02-25 00:00:00.0 Handler Name: CHOICE CLEANERS & LAUNDRY

Handler Address: 744 DEXTER ST

Handler City, State, Zip: CENTRAL FALLS, RI 02863

EPA ID: RID982766032

Contact Name: RONALD MERCIER Contact Address: 744 DEXTER ST

Contact City, State, Zip: CENTRAL FALLS, RI 02863

Contact Telephone: 401-724-5609 Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01 Land Type: Private

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported Active Site Indicator: Not reported State District Owner: Not reported State District: Not reported

Mailing Address: DEXTER ST

Mailing City, State, Zip: CENTRAL FALLS, RI 02863

Owner Name: RLM ENTERPRISES INC

Owner Type: Private

Operator Name: Not reported Operator Type: Not reported Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000418468 DIST/DIR: 0.226 ENE ELEVATION: 74 MAP ID: 38

NAME: CHOICE CLEANERS & LAUNDRY Rev: 03/22/2021
ID/Status: RID982766032

ADDRESS: 744 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: --Federal Facility Indicator: Not reported
Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2001-05-17 14:54:06.0

Recognized Trader-Importer: No
Recognized Trader-Exporter: No
Importer of Spent Lead Acid Batteries: No
Exporter of Spent Lead Acid Batteries: No
Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Hazardous Waste Summary:

Waste Code: D040

Waste Description: TRICHLORETHYLENE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000418468 DIST/DIR: 0.226 ENE **ELEVATION: MAP ID: 38** 74

NAME: **CHOICE CLEANERS & LAUNDRY** Rev: 03/22/2021 ID/Status: RID982766032

ADDRESS: 744 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Handler - Owner Operator:

Owner/Operator Indicator: Owner

Owner/Operator Name: RLM ENTERPRISES INC

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: 744 DEXTER ST

Owner/Operator City, State, Zip: CENTRAL FALLS, RI 02863

Owner/Operator Telephone: 401-724-5609 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 1989-05-05 00:00:00.0

Handler Name: CHOICE CLEANERS & LAUNDRY

Federal Waste Generator Description: Small Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 2000-02-25 00:00:00.0 Handler Name: CHOICE CLEANERS & LAUNDRY

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions:

NAICS Code: 81232

NAICS Description: DRYCLEANING AND LAUNDRY SERVICES (EXCEPT COIN-OPERATED)

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1000418468 DIST/DIR: 0.226 ENE **ELEVATION:** 74 **MAP ID**: 38

NAME: **CHOICE CLEANERS & LAUNDRY** 03/22/2021 Rev: ID/Status: RID982766032

ADDRESS: 744 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary: Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: 1000418468 **DIST/DIR:** 0.226 ENE **ELEVATION:** 74 **MAP ID:** 38

NAME: CHOICE CLEANERS & LAUNDRY

Rev: 03/01/2021

ID/Status: UST-15716

ADDRESS: 744 DEXTER ST

CENTRAL FALLS, RI 02863

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: RI Department of Environmental Management

UST:

Name: CENTRAL CLEANERS Address: 744 DEXTER ST City: PAWTUCKET Facility ID: UST-15716 Facility Class: Commercials

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 500

Tank Substance: Kerosene Date Installed: 10/09/1984

6602106.2s Site Details Page - 110

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1026498957 DIST/DIR: 0.226 NNE ELEVATION: 67 MAP ID: J39

NAME: CENTRAL FALLS SCHOOL DISTRICT Rev: 03/22/2021

ADDRESS: 949 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 2020-05-29 00:00:00.0 Handler Name: CENTRAL FALLS SCHOOL DISTRICT

Handler Address: 949 DEXTER ST

Handler City, State, Zip: CENTRAL FALLS, RI 02863

EPA ID: RIP000038458
Contact Name: RORY MARTY
Contact Address: Not reported
Contact City,State,Zip: Not reported
Contact Telephone: 401-727-7700
Contact Fax: Not reported

Contact Fax. Not reported
Contact Email: Not reported
Contact Title: Not reported

EPA Region: 01 Land Type: Not reported

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported Active Site Indicator: Not reported State District: Not reported

State District: Not reported Mailing Address: DEXTER ST

Mailing City, State, Zip: CENTRAL FALLS, RI 02863

Owner Name: Not reported
Owner Type: Not reported
Operator Name: Not reported
Operator Type: Not reported
Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1026498957 DIST/DIR: 0.226 NNE ELEVATION: 67 MAP ID: J39

NAME: CENTRAL FALLS SCHOOL DISTRICT Rev: 03/22/2021

ADDRESS: 949 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: --Federal Facility Indicator: Not reported
Hazardous Secondary Material Indicator: N
Sub-Part K Indicator: Not reported
Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2020-06-16 07:56:00.0

Recognized Trader-Importer: No Recognized Trader-Exporter: No Importer of Spent Lead Acid Batteries: No Exporter of Spent Lead Acid Batteries: No Recycler Activity Without Storage: No

Manifest Broker: No Sub-Part P Indicator: No

Hazardous Waste Summary: Waste Code: D009

Waste Description: MERCURY

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA NonGen / NLR

EDR ID: 1026498957 **DIST/DIR:** 0.226 NNE **ELEVATION:** 67 **MAP ID:** J39

NAME: CENTRAL FALLS SCHOOL DISTRICT Rev: 03/22/2021

ADDRESS: 949 DEXTER ST

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: US Environmental Protection Agency

Historic Generators:

Receive Date: 2020-05-29 00:00:00.0

Handler Name: CENTRAL FALLS SCHOOL DISTRICT

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: No Electronic Manifest Broker: No

List of NAICS Codes and Descriptions: NAICS Codes: No NAICS Codes Found

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary:

Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

UST

EDR ID: U001212274 DIST/DIR: 0.237 NNE ELEVATION: 87 MAP ID: 40

NAME: ST. MATTHEW CHURCH Rev: 03/01/2021

ADDRESS: 1030 DEXTER ST ID/Status: UST-2077 ID/Status: Permanently Closed

SOURCE: RI Department of Environmental Management

UST:

Name: ST. MATTHEW CHURCH Address: 1030 DEXTER ST City: PAWTUCKET

City: PAWTUCKET Facility ID: UST-2077 Facility Class: Other

Tank ID: 1

Tank Status: Permanently Closed

Tank Capacity: 5000

Tank Substance: Heating Oil No.2

Date Installed: 08/28/1997

Tank ID: 2

Tank Status: Permanently Closed

Tank Capacity: 5000

Tank Substance: Heating Oil No.2

Date Installed: 08/01/1952

Tank ID: 3

Tank Status: Permanently Closed

Tank Capacity: 1500

Tank Substance: Heating Oil No.2

Date Installed: 08/01/1961

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-VSQG

EDR ID: 1025888224 DIST/DIR: 0.241 SSE **ELEVATION:** 101 MAP ID: L41

PRICE RITE OF PAWTUCKET NAME: Rev: 03/22/2021

ID/Status: RIR000517847 ADDRESS: 465 LONSDALE AVE

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

RCRA-VSQG:

Date Form Received by Agency: 2019-07-05 00:00:00.0

Handler Name: PRICÉ RÎTE OF PAWTUCKET Handler Address: 465 LONSDALE AVE Handler City, State, Zip: PAWTUCKET, RI 02860

EPA ID: RIR000517847

Contact Name: CHARLIE BARR Contact Address: LONSDALE AVE

Contact City, State, Zip: PAWTUCKET, RI 02860

Contact Telephone: 401-726-0073 Contact Fax: Not reported Contact Email: Not reported Contact Title: STORE MANAGER

EPA Region: 01 Land Type: Private

Federal Waste Generator Description: Conditionally Exempt Small Quantity Generator

Non-Notifier: Not reported

Biennial Report Cycle: Not reported

Accessibility: Not reported

Active Site Indicator: Handler Activities State District Owner: Not reported State District: Not reported Mailing Address: LONSDALE AVE

Mailing City, State, Zip: PAWTUCKET, RI 02860

Owner Name: 465 LONSDALE LLC

Owner Type: Private

Operator Name: WAKEFERN FOOD CORP.
Operator Type: Private

Short-Term Generator Activity: No

Importer Activity: No Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No

Recycler Activity with Storage: No Small Quantity On-Site Burner Exemption: No

Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-VSQG

EDR ID: 1025888224 DIST/DIR: 0.241 SSE ELEVATION: 101 MAP ID: L41

NAME: PRICE RITE OF PAWTUCKET Rev: 03/22/2021

ADDRESS: 465 LONSDALE AVE ID/Status: RIR000517847

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: ---Federal Facility Indicator: Not reported Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2019-07-26 11:16:09.0

Recognized Trader-Importer: No Recognized Trader-Exporter: No Importer of Spent Lead Acid Batteries: No Exporter of Spent Lead Acid Batteries: No Recycler Activity Without Storage: No

Manifest Broker: No Sub-Part P Indicator: No

Hazardous Waste Summary:

Waste Code: D001

Waste Description: IGNITABLE WASTE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-VSQG

EDR ID: 1025888224 DIST/DIR: 0.241 SSE ELEVATION: 101 MAP ID: L41

NAME: PRICE RITE OF PAWTUCKET Rev: 03/22/2021

ADDRESS: 465 LONSDALE AVE ID/Status: RIR000517847

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Waste Code: D002

Waste Description: CORROSIVE WASTE

Waste Code: D005

Waste Description: BARIUM

Waste Code: D006

Waste Description: CADMIUM

Waste Code: D007

Waste Description: CHROMIUM

Waste Code: D010

Waste Description: SELENIUM

Waste Code: D011

Waste Description: SILVER

Waste Code: D016

Waste Description: 2,4-D (2,4-DICHLOROPHENOXYACETIC ACID)

Waste Code: D024

Waste Description: M-CRESOL

Waste Code: D035

Waste Description: METHYL ETHYL KETONE

Waste Code: U035

Waste Description: BENZENEBUTANOIC ACID, 4-[BIS(2-CHLOROETHYL)AMINO]- (OR) CHLORAMBUCIL

Waste Code: U058

Waste Description: 2H-1,3,2-OXAZAPHOSPHORIN-2-AMINE, N,N-BIS(2-CHLOROETHYL)TETRAHYDRO-,

2-OXIDE (OR) CYCLOPHOSPHAMIDE

Waste Code: U059

Waste Description: 5,12-NAPHTHACENEDIONE,

8-ACETYL-10-[(3-AMINO-2,3,6-TRIDEOXY)-ALPHA-L-LYXO-HEXOPYRANOSYL)OXY]-

7,8,9,10-TETRAHYDRO-6,8,11-TRIHYDROXY-1-METHOXY-, (8S-CIS)- (OR)

DAUNOMYCIN

Waste Code: U089

Waste Description: DIETHYLSTILBESTEROL (OR) PHENOL, 4,4'-(1,2-DIETHYL-1,2-ETHENEDIYL)BIS,

(E)-

Waste Code: U129

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-VSQG

EDR ID: 1025888224 DIST/DIR: 0.241 SSE ELEVATION: 101 MAP ID: L41

NAME: PRICE RITE OF PAWTUCKET Rev: 03/22/2021

ADDRESS: 465 LONSDALE AVE ID/Status: RIR000517847

PAWTUCKET, RI 02860 PROVIDENCE

SOURCE: US Environmental Protection Agency

Waste Description: CYCLOHEXANE, 1,2,3,4,5,6-HEXACHLORO-, (1ALPHA, 2ALPHA, 3BETA, 4ALPHA,

5ALPHA, 6BETA)- (OR) LINDANE

Waste Code: U132

Waste Description: HEXACHLOROPHENE (OR) PHENOL, 2,2'-METHYLENEBIS[3,4,6-TRICHLORO-

Waste Code: U150

Waste Description: L-PHENYLALANINE, 4-[BIS(2-CHLOROETHYL)AMINO]- (OR) MELPHALAN

Waste Code: U200

Waste Description: RESERPINE (OR) YOHIMBAN-16-CARBOXYLIC ACID, 11,17-DIMETHOXY-18-[(3,4,5-TRIMETHOXYBENZOYL)OXY]-, METHYL ESTER,

(3BETA, 16BETA, 17ALPHA, 18BETA, 20ALPHA)-

Waste Code: U204

Waste Description: SELENIOUS ACID (OR) SELENIUM DIOXIDE

Waste Code: U205

Waste Description: SELENIUM SULFIDE (OR) SELENIUM SULFIDE SES2 (R,T)

Waste Code: U206

Waste Description: D-GLUCOSE, 2-DEOXY-2-[[(METHYLNITROSOAMINO)-CARBONYL]AMINO]- (OR)

GLUCOPYRANOSE, 2-DEOXY-2-(3-METHYL-3-NITROSOUREIDO)-,D- (OR)

STREPTOZOTOCIN

Handler - Owner Operator:

Owner/Operator Indicator: Owner

Owner/Operator Name: 465 LONSDALE LLC

Legal Status: Private

Date Became Current: 2005-01-01 00:00:00.

Date Ended Current: Not reported

Owner/Operator Address: 15 PADDOCK DR

Owner/Operator City, State, Zip: LINCOLN, RI 02865

Owner/Operator Telephone: Not reported Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Operator

Owner/Operator Name: WAKEFERN FOOD CORP.

Legal Status: Private

Date Became Current: 2007-02-25 00:00:00.

Date Ended Current: Not reported

Owner/Operator Address: 5000 RIVERSIDE DR

10 HIGGINSON AVENUE Target Property: JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-VSQG

EDR ID: 1025888224 DIST/DIR: 0.241 SSE **ELEVATION:** 101 MAP ID: L41

PRICE RITE OF PAWTUCKET NAME: Rev: 03/22/2021

ID/Status: RIR000517847 ADDRESS: 465 LONSDALE AVE

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Owner/Operator City, State, Zip: KEASBEY, NJ 08832

Owner/Operator Telephone: Not reported Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 2019-07-05 00:00:00.0 Handler Name: PRICE RITE OF PAWTUCKET

Federal Waste Generator Description: Conditionally Exempt Small Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: No Electronic Manifest Broker: No

List of NAICS Codes and Descriptions:

NAICS Code: 445110

NAICS Description: SUPERMARKETS AND OTHER GROCERY (EXCEPT CONVENIENCE) STORES

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary:

Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U003207942 DIST/DIR: 0.268 SSE ELEVATION: 98 MAP ID: L42

NAME: HAXTONS LIQUORS Rev: 03/01/2021

ADDRESS: 457 LONSDALE AVE

ID/Status: Soil Removal Only; No Further Action Require

ID/Status: 2658-LS ID/Status: UST-18197

SOURCE: RI Department of Environmental Management

LUST:

Name: HAXTONS LIQUORS Address: 457 LONSDALE AVE City,State,Zip: PAWTUCKET, RI Project Number: 2658-LS Project Date: 1997-04-09 Facility Id: UST-18197

PAWTUCKET, RI

Fstatus Decode: Soil Removal Only; No Further Action Required Facility Status: Soil Removal Only; No Further Action Required

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U003352119 **DIST/DIR:** 0.289 North **ELEVATION:** 101 **MAP ID:** 43

NAME: FRUITLAND (FORMERLY) Rev: 03/01/2021

ADDRESS: 969 LONSDALE AVE

ID/Status: Soil Removal Only; No Further Action Require

ID/Status: 0412-LS ID/Status: UST-18263

SOURCE: RI Department of Environmental Management

LUST:

Name: FRUITLAND (FORMERLY) Address: 969 LONSDALE AVE City,State,Zip: CENTRAL FALLS, RI

CENTRAL FALLS, RI

Project Number: 0412-LS Project Date: 1997-07-07 Facility Id: UST-18263

Fstatus Decode: Soil Removal Only; No Further Action Required Facility Status: Soil Removal Only; No Further Action Required

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

BROWNFIELDS

ID/Status: I

ID/Status: PRI-SUBC

EDR ID: 1000205080 **DIST/DIR:** 0.308 SSE **ELEVATION:** 92 **MAP ID:** 44

NAME: T&C WOODWORKING, INC. Rev: 04/07/2021

ADDRESS: 31 PRIVET ST

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: RI Department of Environmental Management

BROWNFIELDS: Project: PRI-SUBC

Status: I

Project Date: 07/06/2006 Acres: Not reported

6602106.2s Site Details Page - 122

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

AUL

EDR ID: 1000205080 **DIST/DIR:** 0.308 SSE **ELEVATION:** 92 **MAP ID:** 44

 NAME:
 T&C WOODWORKING, INC.
 Rev:
 04/07/2021

 ADDRESS:
 24 DRIVIT ST
 ID/Status: SR-26-1137 A

ADDRESS: 31 PRIVET ST

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: RI Department of Environmental Management

AUL:

Name: PRIVET STREET HOUSING Address: 31 PRIVET STREET City,State,Zip: PAWTUCKET, RI

ELUR Date: 11/13/2007 Count Of Town: 1

Facility Size (Acres): 1.580 Project Code: PRIV-HWM SA Date: Not reported

Plat: 46 B Lot: 747

Siterem Site Number: SR-26-1137 A

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: 1000205080 DIST/DIR: 0.308 SSE ELEVATION: 92 MAP ID: 44

NAME: T&C WOODWORKING, INC. Rev: 04/07/2021

ADDRESS: 31 PRIVET ST

SOURCE: RI Department of Environmental Management ID/Status: SR-26-1137 A

SHWS:

Name: PRIVET STREET HOUSING Address: 31 PRIVET STREET City,State,Zip: PAWTUCKET, RI Project Code: PRI-SUBC

Siterem Site Number: SR-26-1137 B

Facility Status: Inactive
Project Code Desc: PRI-SUBC
Project Date: 07/06/2006
Acres: Not reported

Name: PRIVET STREET HOUSING Address: 31 PRIVET STREET City,State,Zip: PAWTUCKET, RI Project Code: PRIV-HWM Siterem Site Number: SR-26-1137 A

Facility Status: Inactive

Project Code Desc: PRIV-HWM Project Date: 07/06/2006

Acres: 1.58

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

BROWNFIELDS

ID/Status: I

ID/Status: COLL-BRF

EDR ID: 1000573939 **DIST/DIR:** 0.351 West **ELEVATION:** 100 **MAP ID:** M45

NAME: COLLYER INSULATED WIRE Rev: 04/07/2021

ADDRESS: 100 HIGGINSON AVE

LINCOLN, RI 02865 PROVIDENCE

SOURCE: RI Department of Environmental Management

BROWNFIELDS: Project: COLL-BRF

Status: I

Project Date: 02/03/1997 Acres: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

AUL

EDR ID: 1000573939 **DIST/DIR:** 0.351 West **ELEVATION:** 100 **MAP ID:** M45

NAME: COLLYER INSULATED WIRE Rev: 04/07/2021

ADDRESS: 100 HIGGINSON AVE ID/Status: SR-18-1674

LINCOLN, RI 02865 PROVIDENCE

SOURCE: RI Department of Environmental Management

AUL:

Name: COLLYER WIRE

Address: 100 HIGGINSON AVENUE

City,State,Zip: LINCOLN, RI ELUR Date: 11/30/1998 Count Of Town: 1 Facility Size (Acres): 30 Project Code: COLL-HWM SA Date: 08/22/2000

Plat: 1, 2 Lot: 133, 65

Siterem Site Number: SR-18-1674

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

1000573939 DIST/DIR: 0.351 West EDR ID: **ELEVATION:** 100 MAP ID: M45

NAME: **COLLYER INSULATED WIRE** 03/01/2021 Rev:

ID/Status: Soil Removal Only; No Further Action Require ADDRESS: 100 HIGGINSON AVE

ID/Status: 1811-LS

LINCOLN, RI 02865 ID/Status: UST-1374 **PROVIDENCE**

SOURCE: RI Department of Environmental Management

LUST:

Name: COLLYER INSULATED WIRE Address: 100 HIGGINSON AVE City, State, Zip: LINCOLN, RI Project Number: 1811-LS Project Date: 1992-12-23 Facility Id: UST-1374

Fstatus Decode: Soil Removal Only; No Further Action Required Facility Status: Soil Removal Only; No Further Action Required

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: 1000573939 **DIST/DIR:** 0.351 West **ELEVATION:** 100 **MAP ID:** M45

NAME: COLLYER INSULATED WIRE

ADDRESS: 100 HIGGINSON AVE

Rev: 04/07/2021

ID/Status: Inactive
ID/Status: COLL-BRE

ID/Status: COLL-BRF LINCOLN, RI 02865 ID/Status: COLL-HWM PROVIDENCE ID/Status: SR-18-1674

SOURCE: RI Department of Environmental Management

SHWS:

Name: COLLYER WIRE

Address: 100 HIGGINSON AVENUE

City,State,Zip: LINCOLN, RI Project Code: COLL-BRF

Siterem Site Number: SR-18-1674

Facility Status: Inactive
Project Code Desc: COLL-BRF
Project Date: 02/03/1997
Acres: Not reported

Name: COLLYER WIRE

Address: 100 HIGGINSON AVENUE

City,State,Zip: LINCOLN, RI Project Code: COLL-HWM Siterem Site Number: SR-18-1674

Facility Status: Inactive Project Code Desc: COLL-HWM

Project Date: 08/29/1996

Acres: 30

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1023619405 DIST/DIR: 0.351 West ELEVATION: 100 MAP ID: M46

NAME: COLLYER WIRE Rev: 03/15/2021

ADDRESS: 100 HIGGINSON AVENUE ID/Status: 12956

LINCOLN, RI -

SOURCE: US Environmental Protection Agency

US BROWNFIELDS: Name: COLLYER WIRE

Address: 100 HIGGINSON AVENUE

City, State, Zip: LINCOLN, RI -

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment

Property Number: -Parcel size: 29.6 Latitude: 41.885437 Longitude: -71.411515

HCM Label: Address Matching-House Number

Map Scale: 100000

Point of Reference: Entrance Point of a Facility or Station

Highlights: -

Datum: North American Datum of 1983

Acres Property ID: 12956 IC Data Access: - Start Date: -

Redev Completition Date: -

Completed Date: Acres Cleaned Up: Cleanup Funding: Cleanup Funding Source: Assessment Funding Source: Redevelopment Funding: Redev. Funding Source: Redev. Funding Entity Name: -

Redevelopment Start Date: 12/31/2000

Assessment Funding Entity: -Cleanup Funding Entity: -Grant Type: -

Accomplishment Type: - Accomplishment Count: -

Cooperative Agreement Number: 99175401

Start Date: Ownership Entity: Completion Date: Current Owner: Did Owner Change: Cleanup Required: Y

Video Available: -

Photo Available: -

Institutional Controls Required: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1023619405 DIST/DIR: 0.351 West ELEVATION: 100 MAP ID: M46

NAME: COLLYER WIRE Rev: 03/15/2021

ADDRESS: 100 HIGGINSON AVENUE ID/Status: 12956

LINCOLN, RI -

SOURCE: US Environmental Protection Agency

IC Category Proprietary Controls: -

IC Cat. Info. Devices: - IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: -

IC in place date: - IC in place: U

State/tribal program date: -State/tribal program ID: -State/tribal NFA date: -

Air cleaned: -Asbestos found: -Asbestos cleaned: -

Controled substance found: Controled substance cleaned: Drinking water affected: Drinking water cleaned: Groundwater affected: Groundwater cleaned: Lead contaminant found: -

Lead cleaned up: -

No media affected: Not reported Unknown media affected: -

Other cleaned up: Other metals found: Other metals cleaned: Other contaminants found: Other contaminants found: -

PAHs found: PAHs cleaned up: PCBs found: PCBs cleaned up: Petro products found: Petro products cleaned: Sediments found: Sediments cleaned: Soil affected: Y
Soil cleaned up: Surface water cleaned: VOCs found: -

VOCs idulid. -

Cleanup other description: Num. of cleanup and re-dev. jobs: Past use greenspace acreage: Past use residential acreage: -

Surface Water: Y

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1023619405 DIST/DIR: 0.351 West **ELEVATION:** 100 MAP ID: M46

COLLYER WIRE 03/15/2021 NAME: Rev:

ID/Status: 12956 ADDRESS: 100 HIGGINSON AVENUE

ID/Status: -LINCOLN, RI -

SOURCE: US Environmental Protection Agency

Past use commercial acreage: -

Past use industrial acreage: -

Future use greenspace acreage: -

Future use residential acreage: -

Future use commercial acreage: -

Future use industrial acreage: -

Superfund Fed. landowner flag: -

Arsenic cleaned up: -

Cadmium cleaned up: -

Chromium cleaned up: -

Copper cleaned up: -Iron cleaned up: -

mercury cleaned up: -

Nickel Cleaned Up: -

No clean up: -

Pesticides cleaned up: -

Selenium cleaned up: -

SVOCs cleaned up: -

Unknown clean up: -

Arsenic contaminant found: -

Cadmium contaminant found: -

Chromium contaminant found: -

Copper contaminant found: -Iron contaminant found: -

Mercury contaminant found: -

Nickel contaminant found: -

No contaminant found: -

Pesticides contaminant found: -

Selenium contaminant found: -

SVOCs contaminant found: -

Unknown contaminant found: -

Future Use: Multistory -

Media affected Bluiding Material: -

Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: -Unknown media cleaned up: -

Past Use: Multistory Not reported Property Description: -

Below Poverty Number: 410

Below Poverty Percent: 11.58

Meidan Income: 4375 Meidan Income Number: 958

Meidan Income Percent: 27.06

Vacant Housing Number: 114

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1023619405 **DIST/DIR:** 0.351 West **ELEVATION:** 100 **MAP ID:** M46

NAME: COLLYER WIRE Rev: 03/15/2021

ADDRESS: 100 HIGGINSON AVENUE ID/Status: 12956 ID/Status: -

LINCOLN, RI -

SOURCE: US Environmental Protection Agency

Vacant Housing Percent: 8.49 Unemployed Number: 209 Unemployed Percent: 5.9

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

AUL

EDR ID: \$118071639 **DIST/DIR:** 0.352 East **ELEVATION:** 84 **MAP ID:** 47

NAME: EFRAIN PLEITEZ (BANCO POPULAR NORTH AMERICA)

Rev: 04/07/2021
ID/Status: SR-04-0425

ADDRESS: 502-510 DEXTER STREET

CENTRAL FALLS, RI

SOURCE: RI Department of Environmental Management

AUL:

Name: EFRAIN PLEITEZ (BANCO POPULAR NORTH AMERICA)

Address: 502-510 DEXTER STREET City, State, Zip: CENTRAL FALLS, RI

ELUR Date: 02/01/2018 Count Of Town: 1

Facility Size (Acres): 0.12 Project Code: EFRP-HWM SA Date: Not reported

Plat: MAP 6 Lot: 307

Siterem Site Number: SR-04-0425

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: S118071639 **DIST/DIR:** 0.352 East **ELEVATION:** 84 **MAP ID:** 47

NAME: EFRAIN PLEITEZ (BANCO POPULAR NORTH AMERICA) Rev: 04/07/2021

ADDRESS: 502-510 DEXTER STREET

ID/Status: Inactive ID/Status: EFRP-HWM

CENTRAL FALLS, RI ID/Status: SR-04-0425

SOURCE: RI Department of Environmental Management

SHWS:

Name: EFRAIN PLEITEZ (BANCO POPULAR NORTH AMERICA)

Address: 502-510 DEXTER STREET City, State, Zip: CENTRAL FALLS, RI

Project Code: EFRP-HWM Siterem Site Number: SR-04-0425

Facility Status: Inactive

Project Code Desc: EFRP-HWM

Project Date: 01/17/2013

Acres: 0.12

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

NAME: PCF 2016 PHASE I - 39 KNIGHT ST. Rev: 03/15/2021

ADDRESS: 39 KNIGHT STREET ID/Status: 219846

CENTRAL FALLS, RI 02863

SOURCE: US Environmental Protection Agency

US BROWNFIELDS:

Name: PCF 2016 PHASE I - 39 KNIGHT ST.

Address: 39 KNIGHT STREET

City, State, Zip: CENTRAL FALLS, RI 02863

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment

Property Number: Plat 6, Lot 461

Parcel size: .25 Latitude: 41.8833037 Longitude: -71.394637

HCM Label: Address Matching-House Number

Map Scale: -

Point of Reference: Entrance Point of a Facility or Station

Highlights: -

Datum: North American Datum of 1983

Acres Property ID: 219846

IC Data Access: -Start Date: -

Redev Completition Date: -

Completed Date: Acres Cleaned Up: Cleanup Funding: Cleanup Funding Source: Assessment Funding: 280
Assessment Funding Source: EPA
Redevelopment Funding: Redev. Funding Source: -

Redev. Funding Source: Redev. Funding Entity Name: Redevelopment Start Date: -

Assessment Funding Entity: US EPA - Brownfields Assessment Cooperative Agreement

Cleanup Funding Entity: - Grant Type: Hazardous

Accomplishment Type: Phase I Environmental Assessment

Accomplishment Count: N

Cooperative Agreement Number: 96166701

Start Date: 04/01/2016 Ownership Entity: -Completion Date: -Current Owner: -Did Owner Change: -Cleanup Required: U Video Available: -Photo Available: -

Institutional Controls Required: U

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

NAME: PCF 2016 PHASE I - 39 KNIGHT ST. Rev: 03/15/2021

ADDRESS: 39 KNIGHT STREET ID/Status: 219846

CENTRAL FALLS, RI 02863

SOURCE: US Environmental Protection Agency

IC Category Proprietary Controls: -

IC Cat. Info. Devices: - IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: -

IC in place date: - IC in place: -

State/tribal program date: -State/tribal program ID: -State/tribal NFA date: -

Air cleaned: -Asbestos found: -Asbestos cleaned: -

Controled substance found: Controled substance cleaned: Drinking water affected: Drinking water cleaned: Groundwater affected: Groundwater cleaned: Lead contaminant found: -

Lead cleaned up: -

No media affected: Not reported Unknown media affected: -

Other cleaned up: Other metals found: Other metals cleaned: Other contaminants found: Other contams found description: -

PAHs found: PAHs cleaned up: PCBs found: PCBs cleaned up: Petro products found: Petro products cleaned: Sediments found: Sediments cleaned: Soil affected: -

Soil cleaned up: -Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: Num. of cleanup and re-dev. jobs: Past use greenspace acreage: Past use residential acreage: -

Surface Water: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

NAME: PCF 2016 PHASE I - 39 KNIGHT ST. Rev: 03/15/2021

ADDRESS: 39 KNIGHT STREET ID/Status: 219846

CENTRAL FALLS, RI 02863

SOURCE: US Environmental Protection Agency

Past use commercial acreage: -

Past use industrial acreage: -

Future use greenspace acreage: -

Future use residential acreage: -

Future use commercial acreage: -

Future use industrial acreage: -

Superfund Fed. landowner flag: -

Arsenic cleaned up: -

Cadmium cleaned up: -

Chromium cleaned up: -

Copper cleaned up: -

Iron cleaned up: - mercury cleaned up: -

Nickel Cleaned Up: -

No clean up: -

Pesticides cleaned up: -

Selenium cleaned up: -

SVOCs cleaned up: -

Unknown clean up: -

Arsenic contaminant found: -

Cadmium contaminant found: -

Chromium contaminant found: -

Copper contaminant found: -

Iron contaminant found: -

Mercury contaminant found: -

Nickel contaminant found: -

No contaminant found: -

Pesticides contaminant found: -

Selenium contaminant found: -

SVOCs contaminant found: -

Unknown contaminant found: -

Future Use: Multistory -

Media affected Bluiding Material: -

Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: -

Unknown media cleaned up: -

Past Use: Multistory Not reported Property Description: -

Below Poverty Number: 4043

Below Poverty Percent: 35.33

Meidan Income: 2180

Meidan Income Number: 7466

Meidan Income Percent: 65.23

Vacant Housing Number: 915

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

NAME: PCF 2016 PHASE I - 39 KNIGHT ST. Rev: 03/15/2021

ADDRESS: 39 KNIGHT STREET ID/Status: 219846 ID/Status: -

CENTRAL FALLS, RI 02863

SOURCE: US Environmental Protection Agency

Vacant Housing Percent: 17.33 Unemployed Number: 574 Unemployed Percent: 5.02

Name: PCF 2016 PHASE I - 39 KNIGHT ST.

Address: 39 KNIGHT STREET

City, State, Zip: CENTRAL FALLS, RI 02863

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment Property Number: Plat 6, Lot 461

Parcel size: .25 Latitude: 41.8833037 Longitude: -71.394637

HCM Label: Address Matching-House Number

Map Scale: -

Point of Reference: Entrance Point of a Facility or Station

Highlights: -

Datum: North American Datum of 1983

Acres Property ID: 219846

IC Data Access: -Start Date: -

Redev Completition Date: -

Completed Date: Acres Cleaned Up: Cleanup Funding: Cleanup Funding Source: Assessment Funding: 280

Assessment Funding Source: EPA Redevelopment Funding: - Redev. Funding Source: - Redev. Funding Entity Name: - Redevelopment Start Date: -

Assessment Funding Entity: US EPA - Brownfields Assessment Cooperative Agreement

Cleanup Funding Entity: - Grant Type: Hazardous

Accomplishment Type: Phase I Environmental Assessment

Accomplishment Count: N

Cooperative Agreement Number: 96166701

Start Date: 04/01/2016 Ownership Entity: -Completion Date: -Current Owner: -Did Owner Change: -Cleanup Required: U Video Available: -

10 HIGGINSON AVENUE Target Property: JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1023620417 DIST/DIR: 0.383 ESE **ELEVATION:** 87 **MAP ID:** 48

PCF 2016 PHASE I - 39 KNIGHT ST. 03/15/2021 NAME: Rev:

ID/Status: 219846 ADDRESS: 39 KNIGHT STREET

ID/Status: -CENTRAL FALLS, RI 02863

SOURCE: US Environmental Protection Agency

Photo Available: -

Institutional Controls Required: U

IC Category Proprietary Controls: -

IC Cat. Info. Devices: -IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: -

IC in place date: -IC in place: -

State/tribal program date: -

State/tribal program ID: -

State/tribal NFA date: -

Air cleaned: Asbestos found: -

Asbestos cleaned: -

Controled substance found: -

Controled substance cleaned: -

Drinking water affected: -

Drinking water cleaned: -

Groundwater affected: -

Groundwater cleaned: -

Lead contaminant found: -

Lead cleaned up: -

No media affected: Not reported

Unknown media affected: -

Other cleaned up: -

Other metals found: -

Other metals cleaned: -

Other contaminants found: -

Other contams found description: -

PAHs found: -

PAHs cleaned up: -

PCBs found: -

PCBs cleaned up: -

Petro products found: -

Petro products cleaned: -

Sediments found: -Sediments cleaned: -

Soil affected: -

Soil cleaned up: -

Surface water cleaned: -

VOCs found: -

VOCs cleaned: -

Cleanup other description: -

Num. of cleanup and re-dev. jobs: -

Past use greenspace acreage: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

48 EDR ID: 1023620417 DIST/DIR: 0.383 ESE **ELEVATION:** 87 MAP ID:

PCF 2016 PHASE I - 39 KNIGHT ST. 03/15/2021 NAME: Rev:

ID/Status: 219846 ADDRESS: 39 KNIGHT STREET

ID/Status: -CENTRAL FALLS, RI 02863

SOURCE: US Environmental Protection Agency

Past use residential acreage: -

Surface Water: -

Past use commercial acreage: -

Past use industrial acreage: -

Future use greenspace acreage: -

Future use residential acreage: -

Future use commercial acreage: -

Future use industrial acreage: -

Superfund Fed. landowner flag: -

Arsenic cleaned up: -

Cadmium cleaned up: -

Chromium cleaned up: -Copper cleaned up: -

Iron cleaned up: -

mercury cleaned up: -

Nickel Cleaned Up: -

No clean up: -

Pesticides cleaned up: -

Selenium cleaned up: -

SVOCs cleaned up: -

Unknown clean up: -

Arsenic contaminant found: -

Cadmium contaminant found:

Chromium contaminant found: -

Copper contaminant found: -

Iron contaminant found: -

Mercury contaminant found: -

Nickel contaminant found: -

No contaminant found: -

Pesticides contaminant found: -

Selenium contaminant found: -

SVOCs contaminant found: -

Unknown contaminant found: -

Future Use: Multistory -

Media affected Bluiding Material: -

Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: -

Unknown media cleaned up: -

Past Use: Multistory Not reported

Property Description: -

Below Poverty Number: 4043

Below Poverty Percent: 35.33

Meidan Income: 2180 Meidan Income Number: 7466

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1023620417 **DIST/DIR:** 0.383 ESE **ELEVATION:** 87 **MAP ID:** 48

NAME: PCF 2016 PHASE I - 39 KNIGHT ST. Rev: 03/15/2021

ADDRESS: 39 KNIGHT STREET ID/Status: 219846

CENTRAL FALLS, RI 02863

SOURCE: US Environmental Protection Agency

Meidan Income Percent: 65.23 Vacant Housing Number: 915 Vacant Housing Percent: 17.33 Unemployed Number: 574 Unemployed Percent: 5.02

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

AUL

EDR ID: \$107732972 **DIST/DIR:** 0.404 SSE **ELEVATION:** 92 **MAP ID:** 49

NAME: NULCO LIGHTING CO.

Rev: 04/07/2021

ADDRESS: 30 BEECHER ST ID/Status: SR-26-1026

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: RI Department of Environmental Management

AUL:

Name: NULCO LIGHTING & MANUFACTURING

Address: 30 BEECHER STREET City, State, Zip: PAWTUCKET, RI

ELUR Date: 01/28/2008 Count Of Town: 1

Facility Size (Acres): 7.870 Project Code: NULC-HWM SA Date: Not reported

Plat: 45

Lot: 444 and 445

Siterem Site Number: SR-26-1026

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$107732972 DIST/DIR: 0.404 SSE ELEVATION: 92 MAP ID: 49

NAME:NULCO LIGHTING CO.Rev:04/07/2021ADDRESS:30 BEECHER STID/Status: Inactive ID/Status: NULC-HWM

PAWTUCKET, RI 02860 ID/Status: NULC-HWM
PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: NULCO LIGHTING & MANUFACTURING

Address: 30 BEECHER STREET City,State,Zip: PAWTUCKET, RI Project Code: NULC-HWM Siterem Site Number: SR-26-1026

Facility Status: Inactive

Project Code Desc: NULC-HWM

Project Date: 08/15/2005

Acres: 7.87

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

US BROWNFIELDS:

Name: LAUREL HILL PLAYGROUND Address: 370 LONSDALE AVENUE City,State,Zip: PAWTUCKET, RI 02860

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment

Property Number: Map 46 Lots 749 and 750

Parcel size: .44 Latitude: 41.8779195 Longitude: -71.3998246

HCM Label: -Map Scale: -Point of Reference: -

Highlights: Former Use: Laurel Hill Schoolhouse was constructed on the property

in the 1870s and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Datum: World Geodetic System of 1984

Acres Property ID: 95821 IC Data Access: -

Start Date: -

Redev Completition Date: -

Completed Date: Acres Cleaned Up: Cleanup Funding: Cleanup Funding Source: Assessment Funding: 1834
Assessment Funding Source: EPA
Redevelopment Funding: -

Redev. Funding Source: Redev. Funding Entity Name: Redevelopment Start Date: -

Assessment Funding Entity: US EPA - Brownfields Assessment Cooperative Agreement

Cleanup Funding Entity: Grant Type: Hazardous

Accomplishment Type: Phase I Environmental Assessment

Accomplishment Count: N

Cooperative Agreement Number: 97186401

Start Date: 09/07/2010

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Ownership Entity: Private Completion Date: 09/30/2010

Current Owner: Blackstone Valley Community Action Program

Did Owner Change: N Cleanup Required: Y Video Available: N Photo Available: Y

Institutional Controls Required: Y IC Category Proprietary Controls: -

IC Cat. Info. Devices: Y IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: - IC in place date: 07/18/2017

IC in place: Y

State/tribal program date: 07/15/2010 State/tribal program ID: SR-26-0729 State/tribal NFA date: 09/20/2017

Air cleaned: -Asbestos found: -Asbestos cleaned: -

Controled substance found: - Controled substance cleaned: -

Drinking water affected: Drinking water cleaned: Groundwater affected: Groundwater cleaned: Lead contaminant found: Y
Lead cleaned up: Y

No media affected: Not reported Unknown media affected: Other cleaned up: -

Other metals found: Y
Other metals cleaned: Y
Other contaminants found: Other contams found description: -

PAHs found: Y
PAHs cleaned up: Y
PCBs found: PCBs cleaned up: Petro products found: Y
Petro products cleaned: Y
Sediments found: Sediments cleaned: Soil affected: Y
Soil cleaned up: Y

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE **ELEVATION: MAP ID:** 50 94

LAUREL HILL PLAYGROUND 03/15/2021 NAME: Rev:

ID/Status: 95821 ADDRESS: 370 LONSDALE AVENUE ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: -Num. of cleanup and re-dev. jobs: -Past use greenspace acreage: .44

Past use residential acreage: -

Surface Water: -

Past use commercial acreage: -Past use industrial acreage: -Future use greenspace acreage: -Future use residential acreage: .44 Future use commercial acreage: -Future use industrial acreage: -

Superfund Fed. landowner flag: -

Arsenic cleaned up: -Cadmium cleaned up: -Chromium cleaned up: -Copper cleaned up: -Iron cleaned up: mercury cleaned up: -Nickel Cleaned Up: -

No clean up: -

Pesticides cleaned up: -Selenium cleaned up: -SVOCs cleaned up: -Unknown clean up: -

Arsenic contaminant found: -Cadmium contaminant found: -Chromium contaminant found: -Copper contaminant found: -

Iron contaminant found: -Mercury contaminant found: -Nickel contaminant found: -No contaminant found: -Pesticides contaminant found: -

Selenium contaminant found: -SVOCs contaminant found: -Unknown contaminant found: -

Future Use: Multistory -

Media affected Bluiding Material: -

Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: -Unknown media cleaned up: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Past Use: Multistory Not reported

Property Description: Laurel Hill Schoolhouse was constructed on the property in the 1870s

and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of

an unknown origin located on the property.

Below Poverty Number: 3179 Below Poverty Percent: 33.92 Meidan Income: 7051

Meidan Income Number: 5446
Meidan Income Percent: 58.11
Vacant Housing Number: 563
Vacant Housing Percent: 14.28
Unemployed Number: 559
Unemployed Percent: 5.96

Name: LAUREL HILL PLAYGROUND Address: 370 LONSDALE AVENUE City,State,Zip: PAWTUCKET, RI 02860

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment

Property Number: Map 46 Lots 749 and 750

Parcel size: .44 Latitude: 41.8779195 Longitude: -71.3998246

HCM Label: -Map Scale: -Point of Reference: -

Highlights: Former Use: Laurel Hill Schoolhouse was constructed on the property

in the 1870s and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Datum: World Geodetic System of 1984

Acres Property ID: 95821

IC Data Access: -Start Date: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Redev Completition Date: -

Completed Date: Acres Cleaned Up: Cleanup Funding: Cleanup Funding Source: Assessment Funding: 3230

Assessment Funding Source: EPA Redevelopment Funding: - Redev. Funding Source: - Redev. Funding Entity Name: - Redevelopment Start Date: -

Assessment Funding Entity: US EPA - Brownfields Assessment Cooperative Agreement

Cleanup Funding Entity: - Grant Type: Hazardous

Accomplishment Type: Phase I Environmental Assessment

Accomplishment Count: N

Cooperative Agreement Number: 97186401

Start Date: 05/03/2011 Ownership Entity: Private Completion Date: 07/12/2011

Current Owner: Blackstone Valley Community Action Program

Did Owner Change: N Cleanup Required: Y Video Available: N Photo Available: Y

Institutional Controls Required: Y
IC Category Proprietary Controls: -

IC Cat. Info. Devices: Y IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: - IC in place date: 07/18/2017

IC in place: Y

State/tribal program date: 07/15/2010 State/tribal program ID: SR-26-0729 State/tribal NFA date: 09/20/2017

Air cleaned: Asbestos found: Asbestos cleaned: Controled substance found: -

Controled substance cleaned: Drinking water affected: Drinking water cleaned: Groundwater affected: Groundwater cleaned: Lead contaminant found: Y

10 HIGGINSON AVENUE Target Property: JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE **ELEVATION: MAP ID:** 50 94

LAUREL HILL PLAYGROUND 03/15/2021 NAME: Rev:

ID/Status: 95821 ADDRESS: 370 LONSDALE AVENUE ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Lead cleaned up: Y

No media affected: Not reported

Unknown media affected: -

Other cleaned up: -Other metals found: Y

Other metals cleaned: Y

Other contaminants found: -Other contams found description: -

PAHs found: Y

PAHs cleaned up: Y

PCBs found: -

PCBs cleaned up: -Petro products found: Y

Petro products cleaned: Y

Sediments found: -Sediments cleaned: -

Soil affected: Y

Soil cleaned up: Y

Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: -

Num. of cleanup and re-dev. jobs: -Past use greenspace acreage: .44

Past use residential acreage: -

Surface Water: -

Past use commercial acreage: -

Past use industrial acreage: -

Future use greenspace acreage: -

Future use residential acreage: .44

Future use commercial acreage: -

Future use industrial acreage: -

Superfund Fed. landowner flag: -

Arsenic cleaned up: -

Cadmium cleaned up: -

Chromium cleaned up: -

Copper cleaned up: -Iron cleaned up: -

mercury cleaned up: -

Nickel Cleaned Up: -

No clean up: -

Pesticides cleaned up: -Selenium cleaned up: -

SVOCs cleaned up: -

Unknown clean up: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Arsenic contaminant found: -

Cadmium contaminant found: -

Chromium contaminant found: -

Copper contaminant found: -

Iron contaminant found: -

Mercury contaminant found: -

Nickel contaminant found: -

No contaminant found: -

Pesticides contaminant found: -

Selenium contaminant found: -

SVOCs contaminant found: -

Unknown contaminant found: -

Future Use: Multistory -

Media affected Bluiding Material: -

Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: - Unknown media cleaned up: -

Past Use: Multistory Not reported

Property Description: Laurel Hill Schoolhouse was constructed on the property in the 1870s

and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from

1870-2007. In 2008, the current owner advanced borings on the

property, one of which indicated that undocumented fill was present. A

sample from these borings indicated the presence of lead and TPH in

soil. Recognized environmental conditions consist of undocumented

fill, documented release of lead and TPH to soil, and bermed areas of

an unknown origin located on the property.

Below Poverty Number: 3179

Below Poverty Percent: 33.92

Meidan Income: 7051

Meidan Income Number: 5446 Meidan Income Percent: 58.11 Vacant Housing Number: 563

Vacant Housing Percent: 14.28

Unemployed Number: 559

Unemployed Percent: 5.96

Name: LAUREL HILL PLAYGROUND

Address: 370 LONSDALE AVENUE City, State, Zip: PAWTUCKET, RI 02860

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment

Property Number: Map 46 Lots 749 and 750

Parcel size: .44

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Latitude: 41.8779195 Longitude: -71.3998246

HCM Label: -Map Scale: -Point of Reference: -

Highlights: Former Use: Laurel Hill Schoolhouse was constructed on the property

in the 1870s and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Datum: World Geodetic System of 1984

Acres Property ID: 95821

IC Data Access: -Start Date: -

Redev Completition Date: -

Completed Date: Acres Cleaned Up: Cleanup Funding: Cleanup Funding Source: Assessment Funding: 33746
Assessment Funding Source: USEPA

Redevelopment Funding: -Redev. Funding Source: -Redev. Funding Entity Name: -

Redev. Funding Entity Name: - Redevelopment Start Date: -

Assessment Funding Entity: US EPA - Brownfields Assessment Cooperative Agreement

Cleanup Funding Entity: Grant Type: Hazardous

Accomplishment Type: Phase II Environmental Assessment

Accomplishment Count: N

Cooperative Agreement Number: 97186401

Start Date: 12/21/2009 Ownership Entity: Private Completion Date: 06/28/2010

Current Owner: Blackstone Valley Community Action Program

Did Owner Change: N Cleanup Required: Y Video Available: N Photo Available: Y

Institutional Controls Required: Y IC Category Proprietary Controls: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

IC Cat. Info. Devices: Y IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: - IC in place date: 07/18/2017

IC in place: Y

State/tribal program date: 07/15/2010 State/tribal program ID: SR-26-0729 State/tribal NFA date: 09/20/2017

Air cleaned: -Asbestos found: -Asbestos cleaned: -

Controled substance found: Controled substance cleaned: Drinking water affected: Drinking water cleaned: Groundwater affected: Groundwater cleaned: Lead contaminant found: Y

Lead cleaned up: Y

No media affected: Not reported Unknown media affected: Other cleaned up: Other metals found: Y
Other metals cleaned: Y
Other contaminants found: Other contams found description: -

PAHs found: Y
PAHs cleaned up: Y
PCBs found: PCBs cleaned up: Petro products found: Y
Petro products cleaned: Y
Sediments found: Sediments cleaned: Soil affected: Y
Soil cleaned up: Y
Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: -Num. of cleanup and re-dev. jobs: -Past use greenspace acreage: .44 Past use residential acreage: -

Surface Water: -

Past use commercial acreage: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE **ELEVATION: MAP ID:** 50 94

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ID/Status: 95821 ADDRESS: 370 LONSDALE AVENUE ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Past use industrial acreage: -Future use greenspace acreage: -

Future use residential acreage: .44 Future use commercial acreage: -Future use industrial acreage: -

Superfund Fed. landowner flag: -

Arsenic cleaned up: -Cadmium cleaned up: -

Chromium cleaned up: -Copper cleaned up: -

Iron cleaned up: mercury cleaned up: -Nickel Cleaned Up: -

No clean up: -

Pesticides cleaned up: -Selenium cleaned up: -SVOCs cleaned up: -Unknown clean up: -

Arsenic contaminant found: -Cadmium contaminant found: -Chromium contaminant found: -

Copper contaminant found: -

Iron contaminant found: -Mercury contaminant found: -Nickel contaminant found: -

No contaminant found: -Pesticides contaminant found: -Selenium contaminant found: -

SVOCs contaminant found: Unknown contaminant found: -

Future Use: Multistory

Media affected Bluiding Material: -

Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: -Unknown media cleaned up: -Past Use: Multistory Not reported

Property Description: Laurel Hill Schoolhouse was constructed on the property in the 1870s

and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented

fill, documented release of lead and TPH to soil, and bermed areas of

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE **ELEVATION:** 94 **MAP ID:** 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ID/Status: 95821 ADDRESS: 370 LONSDALE AVENUE ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

an unknown origin located on the property.

Below Poverty Number: 3179 Below Poverty Percent: 33.92 Meidan Income: 7051

Meidan Income Number: 5446 Meidan Income Percent: 58.11 Vacant Housing Number: 563 Vacant Housing Percent: 14.28 Unemployed Number: 559 Unemployed Percent: 5.96

Name: LAUREL HILL PLAYGROUND Address: 370 LONSDALE AVENUE City, State, Zip: PAWTUCKET, RI 02860

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment

Property Number: Map 46 Lots 749 and 750

Parcel size: .44 Latitude: 41.8779195 Longitude: -71.3998246

HCM Label: -Map Scale: -

Point of Reference: -

Highlights: Former Use: Laurel Hill Schoolhouse was constructed on the property

in the 1870s and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Datum: World Geodetic System of 1984

Acres Property ID: 95821

IC Data Access: -Start Date: -

Redev Completition Date: -

Completed Date: -Acres Cleaned Up: -Cleanup Funding: -Cleanup Funding Source: -Assessment Funding: 11898

Assessment Funding Source: EPA Redevelopment Funding: -

Redev. Funding Source: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Redev. Funding Entity Name: - Redevelopment Start Date: -

Assessment Funding Entity: US EPA - Brownfields Assessment Cooperative Agreement

Cleanup Funding Entity: - Grant Type: Hazardous

Accomplishment Type: Phase I Environmental Assessment

Accomplishment Count: Y

Cooperative Agreement Number: 97186401

Start Date: 02/11/2009 Ownership Entity: Private Completion Date: 11/16/2009

Current Owner: Blackstone Valley Community Action Program

Did Owner Change: N Cleanup Required: Y Video Available: N Photo Available: Y

Institutional Controls Required: Y IC Category Proprietary Controls: -

IC Cat. Info. Devices: Y IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: -

IC in place date: 07/18/2017

IC in place: Y

State/tribal program date: 07/15/2010 State/tribal program ID: SR-26-0729 State/tribal NFA date: 09/20/2017

Air cleaned: Asbestos found: Asbestos cleaned: Controled substance found: Controled substance cleaned: -

Drinking water affected: Drinking water cleaned: Groundwater affected: Groundwater cleaned: Lead contaminant found: Y

Lead cleaned up: Y
No media affected: Not reported

Unknown media affected: Other cleaned up: Other metals found: Y
Other metals cleaned: Y
Other contaminants found: Other contams found description: -

PAHs found: Y

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

PAHs cleaned up: Y
PCBs found: PCBs cleaned up: Petro products found: Y
Petro products cleaned: Y
Sediments found: Sediments cleaned: Soil affected: Y
Soil cleaned up: Y
Surface water cleaned: VOCs found: -

VOCs found: -VOCs cleaned: -

Cleanup other description: Num. of cleanup and re-dev. jobs: Past use greenspace acreage: .44
Past use residential acreage: -

Surface Water: -

Past use commercial acreage: Past use industrial acreage: Future use greenspace acreage: Future use residential acreage: .44
Future use commercial acreage: Future use industrial acreage: Superfund Fed. landowner flag: -

Arsenic cleaned up: Cadmium cleaned up: Chromium cleaned up: Iron cleaned up: Iron cleaned up: Mickel Cleaned Up: No clean up: Pesticides cleaned up: -

Pesticides cleaned up: Selenium cleaned up: SVOCs cleaned up: Unknown clean up: Arsenic contaminant found: Cadmium contaminant found: Chromium contaminant found: Copper contaminant found: Iron contaminant found: Mercury contaminant found: Nickel contaminant found: No contaminant found: Pesticides contaminant found: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Selenium contaminant found: -SVOCs contaminant found: -Unknown contaminant found: -Future Use: Multistory -Media affected Bluiding Material: -

Media affected Bluiding Material:

Media affected indoor air: -

Building material media cleaned up: Indoor air media cleaned up: Unknown media cleaned up: Past Use: Multistory Not reported

Property Description: Laurel Hill Schoolhouse was constructed on the property in the 1870s

and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of

an unknown origin located on the property.

Below Poverty Number: 3179
Below Poverty Percent: 33.92
Meidan Income: 7051
Meidan Income Number: 5446
Meidan Income Percent: 58.11
Vacant Housing Number: 563
Vacant Housing Percent: 14.28
Unemployed Number: 559
Unemployed Percent: 5.96

Name: LAUREL HILL PLAYGROUND Address: 370 LONSDALE AVENUE City,State,Zip: PAWTUCKET, RI 02860

Recipient Name: Blackstone Valley Community Action Program

Grant Type: Cleanup

Property Number: Map 46 Lots 749 and 750

Parcel size: .44 Latitude: 41.8779195 Longitude: -71.3998246

HCM Label: Map Scale: Point of Reference: -

Highlights: Former Use: Laurel Hill Schoolhouse was constructed on the property

in the 1870s and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Datum: World Geodetic System of 1984

Acres Property ID: 95821
IC Data Access: Start Date: 09/14/2016
Redev Completition Date: Completed Date: 09/20/2017
Acres Cleaned Up: .44
Cleanup Funding: 200000
Cleanup Funding Source: EPA
Assessment Funding: -

Assessment Funding: Assessment Funding Source: Redevelopment Funding: Redev. Funding Source: Redev. Funding Entity Name: Redevelopment Start Date: Assessment Funding Entity: -

Cleanup Funding Entity: US EPA - Brownfields Cleanup Cooperative Agreement

Grant Type: Hazardous Accomplishment Type: -Accomplishment Count: -

Cooperative Agreement Number: 96165301

Start Date: -

Ownership Entity: Private Completion Date: -

Current Owner: Blackstone Valley Community Action Program

Did Owner Change: N Cleanup Required: Y Video Available: N Photo Available: Y

Institutional Controls Required: Y IC Category Proprietary Controls: -

IC Cat. Info. Devices: Y IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: - IC in place date: 07/18/2017

IC in place: Y

State/tribal program date: 07/15/2010 State/tribal program ID: SR-26-0729 State/tribal NFA date: 09/20/2017

Air cleaned: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Asbestos found: -Asbestos cleaned: -

Controled substance found: Controled substance cleaned: Drinking water affected: Drinking water cleaned: Groundwater affected: Groundwater cleaned: -

Lead contaminant found: Y

Lead cleaned up: Y

No media affected: Not reported Unknown media affected: -

Other cleaned up: Other metals found: Y
Other metals cleaned: Y
Other contaminants found: Other contams found description: -

Other contams found description: PAHs found: Y

PAHs found: Y
PAHs cleaned up: Y
PCBs found: PCBs cleaned up: Petro products found: Y
Petro products cleaned: Y
Sediments found: -

Sediments cleaned: -Soil affected: Y Soil cleaned up: Y Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: -Num. of cleanup and re-dev. jobs: -Past use greenspace acreage: .44 Past use residential acreage: -

Surface Water: -

Past use commercial acreage: Past use industrial acreage: Future use greenspace acreage: Future use residential acreage: Future use commercial acreage: Future use industrial acreage: Superfund Fed. landowner flag: -

Arsenic cleaned up: -Cadmium cleaned up: -Chromium cleaned up: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Copper cleaned up: Iron cleaned up: mercury cleaned up: Nickel Cleaned Up: No clean up: -

No clean up: Pesticides cleaned up: Selenium cleaned up: SVOCs cleaned up: Unknown clean up: Arsenic contaminant found: Cadmium contaminant found: -

Chromium contaminant found: Copper contaminant found: Iron contaminant found: Mercury contaminant found: Nickel contaminant found: No contaminant found: Pesticides contaminant found: Selenium contaminant found: SVOCs contaminant found: Unknown contaminant found: -

Future Use: Multistory -

Media affected Bluiding Material: - Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: -Unknown media cleaned up: -Past Use: Multistory Not reported

Property Description: Laurel Hill Schoolhouse was constructed on the property in the 1870s

and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Below Poverty Number: 3179 Below Poverty Percent: 33.92

Meidan Income: 7051

Meidan Income Number: 5446 Meidan Income Percent: 58.11 Vacant Housing Number: 563 Vacant Housing Percent: 14.28 Unemployed Number: 559

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Unemployed Percent: 5.96

Name: LAUREL HILL PLAYGROUND Address: 370 LONSDALE AVENUE City,State,Zip: PAWTUCKET, RI 02860

Recipient Name: Blackstone Valley Community Action Program

Grant Type: Cleanup

Property Number: Map 46 Lots 749 and 750

Parcel size: .44 Latitude: 41.8779195 Longitude: -71.3998246

HCM Label: -Map Scale: -Point of Reference: -

Highlights: Former Use: Laurel Hill Schoolhouse was constructed on the property

in the 1870s and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Datum: World Geodetic System of 1984

Acres Property ID: 95821
IC Data Access: Start Date: 09/14/2016
Redev Completition Date: Completed Date: 09/20/2017
Acres Cleaned Up: .44
Cleanup Funding: 200000
Cleanup Funding Source: EPA
Assessment Funding: Assessment Funding Source: Redevelopment Funding: Redev. Funding Source: -

Redev. Funding Entity Name: Redevelopment Start Date: Assessment Funding Entity: -

Cleanup Funding Entity: US EPA - Brownfields Cleanup Cooperative Agreement

Grant Type: Hazardous
Accomplishment Type: Accomplishment Count: -

Cooperative Agreement Number: 96165301

Start Date: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Ownership Entity: Private

Completion Date: -

Current Owner: Blackstone Valley Community Action Program

Did Owner Change: N Cleanup Required: Y Video Available: N Photo Available: Y

Institutional Controls Required: Y IC Category Proprietary Controls: -

IC Cat. Info. Devices: Y IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: - IC in place date: 07/18/2017

IC in place: Y

State/tribal program date: 07/15/2010 State/tribal program ID: SR-26-0729 State/tribal NFA date: 09/20/2017

Air cleaned: -Asbestos found: -Asbestos cleaned: -

Controled substance found: - Controled substance cleaned: -

Drinking water affected: Drinking water cleaned: Groundwater affected: Groundwater cleaned: Lead contaminant found: Y
Lead cleaned up: Y

No media affected: Not reported Unknown media affected: - Other cleaned up: -

Other cleaned up: Other metals found: Y
Other metals cleaned: Y
Other contaminants found: Other contams found description: -

PAHs found: Y
PAHs cleaned up: Y
PCBs found: PCBs cleaned up: Petro products found: Y
Petro products cleaned: Y
Sediments found: Sediments cleaned: Soil affected: Y
Soil cleaned up: Y

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: -Num. of cleanup and re-dev. jobs: -Past use greenspace acreage: .44

Past use residential acreage: -

Surface Water: -

Past use commercial acreage: Past use industrial acreage: Future use greenspace acreage: Future use residential acreage: Future use commercial acreage: Future use industrial acreage: Superfund Fed. landowner flag: -

Arsenic cleaned up: Cadmium cleaned up: Chromium cleaned up: Copper cleaned up: Iron cleaned up: mercury cleaned up: Nickel Cleaned Up: No clean up: Pesticides cleaned up: Salenium cleaned up: -

Selenium cleaned up: -SVOCs cleaned up: -Unknown clean up: -Arsenic contaminant found: -

Cadmium contaminant found: Chromium contaminant found: Chromium contaminant found: Copper contaminant found: Iron contaminant found: Mercury contaminant found: Nickel contaminant found: No contaminant found: Pesticides contaminant found: Selenium contaminant found: SVOCs contaminant found: Unknown contaminant found: -

Future Use: Multistory -

Media affected Bluiding Material: -

Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: -

Unknown media cleaned up: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Past Use: Multistory Not reported

Property Description: Laurel Hill Schoolhouse was constructed on the property in the 1870s

and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of

an unknown origin located on the property.

Below Poverty Number: 3179
Below Poverty Percent: 33.92

Meidan Income: 7051

Meidan Income Number: 5446 Meidan Income Percent: 58.11 Vacant Housing Number: 563 Vacant Housing Percent: 14.28 Unemployed Number: 559 Unemployed Percent: 5.96

Name: LAUREL HILL PLAYGROUND Address: 370 LONSDALE AVENUE City,State,Zip: PAWTUCKET, RI 02860

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment

Property Number: Map 46 Lots 749 and 750

Parcel size: .44 Latitude: 41.8779195 Longitude: -71.3998246

HCM Label: -Map Scale: -Point of Reference: -

Highlights: Former Use: Laurel Hill Schoolhouse was constructed on the property

in the 1870s and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Datum: World Geodetic System of 1984

Acres Property ID: 95821

IC Data Access: -Start Date: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE **ELEVATION: MAP ID**: 50 94

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ID/Status: 95821 ADDRESS: 370 LONSDALE AVENUE ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Redev Completition Date: -

Completed Date: -Acres Cleaned Up: -Cleanup Funding: -Cleanup Funding Source: -

Assessment Funding: 33746

Assessment Funding Source: USEPA

Redevelopment Funding: -Redev. Funding Source: -Redev. Funding Entity Name: -Redevelopment Start Date:

Assessment Funding Entity: US EPA - Brownfields Assessment Cooperative Agreement

Cleanup Funding Entity: -Grant Type: Hazardous

Accomplishment Type: Phase II Environmental Assessment

Accomplishment Count: N

Cooperative Agreement Number: 97186401

Start Date: 12/21/2009 Ownership Entity: Private Completion Date: 06/28/2010

Current Owner: Blackstone Valley Community Action Program

Did Owner Change: N Cleanup Required: Y Video Available: N Photo Available: Y

Institutional Controls Required: Y IC Category Proprietary Controls: -

IC Cat. Info. Devices: Y IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: -IC in place date: 07/18/2017

IC in place: Y

State/tribal program date: 07/15/2010 State/tribal program ID: SR-26-0729 State/tribal NFA date: 09/20/2017

Air cleaned: -Asbestos found: -Asbestos cleaned: -Controled substance found: -

Controled substance cleaned: -Drinking water affected: -Drinking water cleaned: -Groundwater affected: -Groundwater cleaned: -Lead contaminant found: Y

10 HIGGINSON AVENUE Target Property: JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE **ELEVATION: MAP ID:** 50 94

LAUREL HILL PLAYGROUND 03/15/2021 NAME: Rev:

ID/Status: 95821 ADDRESS: 370 LONSDALE AVENUE ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Lead cleaned up: Y

No media affected: Not reported

Unknown media affected: -

Other cleaned up: -Other metals found: Y

Other metals cleaned: Y Other contaminants found: -

Other contams found description: -

PAHs found: Y

PAHs cleaned up: Y

PCBs found: -

PCBs cleaned up: -Petro products found: Y

Petro products cleaned: Y

Sediments found: -Sediments cleaned: -

Soil affected: Y

Soil cleaned up: Y Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: -

Num. of cleanup and re-dev. jobs: -Past use greenspace acreage: .44

Past use residential acreage: -

Surface Water: -

Past use commercial acreage: -

Past use industrial acreage: -

Future use greenspace acreage: -

Future use residential acreage: .44

Future use commercial acreage: -

Future use industrial acreage: -

Superfund Fed. landowner flag: -

Arsenic cleaned up: -

Cadmium cleaned up: -

Chromium cleaned up: -

Copper cleaned up: -Iron cleaned up: -

mercury cleaned up: -

Nickel Cleaned Up: -

No clean up: -

Pesticides cleaned up: -Selenium cleaned up: -

SVOCs cleaned up: -

Unknown clean up: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Arsenic contaminant found: -

Cadmium contaminant found: -

Chromium contaminant found: -

Copper contaminant found: -

Iron contaminant found: -

Mercury contaminant found: -

Nickel contaminant found: -

No contaminant found: -

Pesticides contaminant found: -

Selenium contaminant found: -

SVOCs contaminant found: -

Unknown contaminant found: -

Future Use: Multistory -

Media affected Bluiding Material: -

Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: - Unknown media cleaned up: -

Past Use: Multistory Not reported

Property Description: Laurel Hill Schoolhouse was constructed on the property in the 1870s

and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from

1870-2007. In 2008, the current owner advanced borings on the

property, one of which indicated that undocumented fill was present. A

sample from these borings indicated the presence of lead and TPH in

soil. Recognized environmental conditions consist of undocumented

fill, documented release of lead and TPH to soil, and bermed areas of

an unknown origin located on the property.

Below Poverty Number: 3179

Below Poverty Percent: 33.92

Meidan Income: 7051

Meidan Income Number: 5446 Meidan Income Percent: 58.11

Vacant Housing Number: 563

Vacant Housing Percent: 14.28

Unemployed Number: 559

Unemployed Percent: 5.96

Name: LAUREL HILL PLAYGROUND Address: 370 LONSDALE AVENUE City,State,Zip: PAWTUCKET, RI 02860

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment

Property Number: Map 46 Lots 749 and 750

Parcel size: .44

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Latitude: 41.8779195 Longitude: -71.3998246

HCM Label: -Map Scale: -Point of Reference: -

Highlights: Former Use: Laurel Hill Schoolhouse was constructed on the property

in the 1870s and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Datum: World Geodetic System of 1984

Acres Property ID: 95821

IC Data Access: -Start Date: -

Redev Completition Date: -

Completed Date: Acres Cleaned Up: Cleanup Funding: Cleanup Funding Source: Assessment Funding: 1834
Assessment Funding Source: EPA
Redevelopment Funding: -

Redev. Funding Source: -Redev. Funding Entity Name: -Redevelopment Start Date: -

Assessment Funding Entity: US EPA - Brownfields Assessment Cooperative Agreement

Cleanup Funding Entity: - Grant Type: Hazardous

Accomplishment Type: Phase I Environmental Assessment

Accomplishment Count: N

Cooperative Agreement Number: 97186401

Start Date: 09/07/2010 Ownership Entity: Private Completion Date: 09/30/2010

Current Owner: Blackstone Valley Community Action Program

Did Owner Change: N Cleanup Required: Y Video Available: N Photo Available: Y

Institutional Controls Required: Y IC Category Proprietary Controls: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

IC Cat. Info. Devices: Y IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: - IC in place date: 07/18/2017

IC in place: Y

State/tribal program date: 07/15/2010 State/tribal program ID: SR-26-0729 State/tribal NFA date: 09/20/2017

Air cleaned: -Asbestos found: -Asbestos cleaned: -

Controled substance found: Controled substance cleaned: Drinking water affected: Drinking water cleaned: Groundwater affected: Groundwater cleaned: Lead contaminant found: Y

Lead cleaned up: Y

No media affected: Not reported Unknown media affected: Other cleaned up: Other metals found: Y
Other metals cleaned: Y
Other contaminants found: Other contams found description: -

PAHs found: Y
PAHs cleaned up: Y
PCBs found: PCBs cleaned up: Petro products found: Y
Petro products cleaned: Y
Sediments found: Sediments cleaned: Soil affected: Y
Soil cleaned up: Y
Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: -Num. of cleanup and re-dev. jobs: -Past use greenspace acreage: .44 Past use residential acreage: -

Surface Water: -

Past use commercial acreage: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Past use industrial acreage: - Future use greenspace acreage: -

Future use residential acreage: .44
Future use commercial acreage: Future use industrial acreage: -

Superfund Fed. landowner flag: -

Cadmium cleaned up: Cadmium cleaned up: Chromium cleaned up: Copper cleaned up: Iron cleaned up: mercury cleaned up: Nickel Cleaned Up: -

No clean up: Pesticides cleaned up: Selenium cleaned up: SVOCs cleaned up: Unknown clean up: -

Arsenic contaminant found: Cadmium contaminant found: Chromium contaminant found: Copper contaminant found: Iron contaminant found: Mercury contaminant found: Nickel contaminant found: No contaminant found: -

Pesticides contaminant found: - Selenium contaminant found: - SVOCs contaminant found: - Unknown contaminant found: -

Future Use: Multistory -

Media affected Bluiding Material: -

Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: -Unknown media cleaned up: -Past Use: Multistory Not reported

Property Description: Laurel Hill Schoolhouse was constructed on the property in the 1870s

and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE **ELEVATION:** 94 **MAP ID:** 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ID/Status: 95821 ADDRESS: 370 LONSDALE AVENUE ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

an unknown origin located on the property.

Below Poverty Number: 3179 Below Poverty Percent: 33.92 Meidan Income: 7051

Meidan Income Number: 5446 Meidan Income Percent: 58.11 Vacant Housing Number: 563 Vacant Housing Percent: 14.28 Unemployed Number: 559 Unemployed Percent: 5.96

Name: LAUREL HILL PLAYGROUND Address: 370 LONSDALE AVENUE City, State, Zip: PAWTUCKET, RI 02860

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment

Property Number: Map 46 Lots 749 and 750

Parcel size: .44 Latitude: 41.8779195 Longitude: -71.3998246

HCM Label: -Map Scale: -

Point of Reference: -

Highlights: Former Use: Laurel Hill Schoolhouse was constructed on the property

in the 1870s and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Datum: World Geodetic System of 1984

Acres Property ID: 95821

IC Data Access: -Start Date: -

Redev Completition Date: -

Completed Date: -Acres Cleaned Up: -Cleanup Funding: -Cleanup Funding Source: -

Assessment Funding: 3711 Assessment Funding Source: EPA

Redevelopment Funding: -Redev. Funding Source: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE **ELEVATION: MAP ID:** 50 94

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ID/Status: 95821 ADDRESS: 370 LONSDALE AVENUE ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Redev. Funding Entity Name: -Redevelopment Start Date: -

Assessment Funding Entity: US EPA - Brownfields Assessment Cooperative Agreement

Cleanup Funding Entity: -Grant Type: Hazardous

Accomplishment Type: Cleanup Planning

Accomplishment Count: N

Cooperative Agreement Number: 96166701

Start Date: 12/26/2012 Ownership Entity: Private

Completion Date: -

Current Owner: Blackstone Valley Community Action Program

Did Owner Change: N Cleanup Required: Y Video Available: N Photo Available: Y

Institutional Controls Required: Y IC Category Proprietary Controls: -

IC Cat. Info. Devices: Y IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: -

IC in place date: 07/18/2017

IC in place: Y

State/tribal program date: 07/15/2010 State/tribal program ID: SR-26-0729 State/tribal NFA date: 09/20/2017

Air cleaned: -Asbestos found: -Asbestos cleaned: -Controled substance found: -

Controled substance cleaned: -Drinking water affected: -Drinking water cleaned: -Groundwater affected: -Groundwater cleaned: -Lead contaminant found: Y

Lead cleaned up: Y

No media affected: Not reported Unknown media affected: -

Other cleaned up: -Other metals found: Y Other metals cleaned: Y Other contaminants found: -Other contams found description: -

PAHs found: Y

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

PAHs cleaned up: Y
PCBs found: PCBs cleaned up: Petro products found: Y
Petro products cleaned: Y
Sediments found: Sediments cleaned: Soil affected: Y
Soil cleaned up: Y
Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: Num. of cleanup and re-dev. jobs: Past use greenspace acreage: .44
Past use residential acreage: -

Surface Water: -

Past use commercial acreage: Past use industrial acreage: Future use greenspace acreage: Future use residential acreage: -44
Future use commercial acreage: Future use industrial acreage: Superfund Fed. landowner flag: -

Arsenic cleaned up: Cadmium cleaned up: Chromium cleaned up: Copper cleaned up: Iron cleaned up: mercury cleaned up: Nickel Cleaned Up: No clean up: Pesticides cleaned up: -

Selenium cleaned up: SVOCs cleaned up: Unknown clean up: Arsenic contaminant found: Cadmium contaminant found: Chromium contaminant found: Copper contaminant found: Iron contaminant found: Mercury contaminant found: Nickel contaminant found: No contaminant found: Pesticides contaminant found: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE **ELEVATION:** 94 **MAP ID:** 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ID/Status: 95821 ADDRESS: 370 LONSDALE AVENUE ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Selenium contaminant found: -SVOCs contaminant found: -Unknown contaminant found: -Future Use: Multistory -Media affected Bluiding Material: -

Media affected indoor air: -

Building material media cleaned up: -Indoor air media cleaned up: -Unknown media cleaned up: -Past Use: Multistory Not reported

Property Description: Laurel Hill Schoolhouse was constructed on the property in the 1870s

and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of

an unknown origin located on the property.

Below Poverty Number: 3179 Below Poverty Percent: 33.92 Meidan Income: 7051 Meidan Income Number: 5446 Meidan Income Percent: 58.11 Vacant Housing Number: 563 Vacant Housing Percent: 14.28 Unemployed Number: 559 Unemployed Percent: 5.96

Name: LAUREL HILL PLAYGROUND Address: 370 LONSDALE AVENUE City, State, Zip: PAWTUCKET, RI 02860

Recipient Name: Blackstone Valley Community Action Program

Grant Type: Cleanup

Property Number: Map 46 Lots 749 and 750

Parcel size: .44 Latitude: 41.8779195 Longitude: -71.3998246

HCM Label: -Map Scale: -Point of Reference: -

Highlights: Former Use: Laurel Hill Schoolhouse was constructed on the property

in the 1870s and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE **ELEVATION: MAP ID**: 50 94

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ID/Status: 95821 ADDRESS: 370 LONSDALE AVENUE ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Datum: World Geodetic System of 1984

Acres Property ID: 95821 IC Data Access: -Start Date: 09/14/2016 Redev Completition Date: -Completed Date: 09/20/2017 Acres Cleaned Up: .44 Cleanup Funding: 40000

Cleanup Funding Source: HOME

Assessment Funding: -Assessment Funding Source: -Redevelopment Funding: -Redev. Funding Source: -Redev. Funding Entity Name: -Redevelopment Start Date: -Assessment Funding Entity: -

Cleanup Funding Entity: Other Federal Funding

Grant Type: Hazardous Accomplishment Type: -Accomplishment Count: -

Cooperative Agreement Number: 96165301

Start Date: -

Ownership Entity: Private Completion Date: -

Current Owner: Blackstone Valley Community Action Program

Did Owner Change: N Cleanup Required: Y Video Available: N Photo Available: Y

Institutional Controls Required: Y IC Category Proprietary Controls: -

IC Cat. Info. Devices: Y IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: -IC in place date: 07/18/2017

IC in place: Y

State/tribal program date: 07/15/2010 State/tribal program ID: SR-26-0729 State/tribal NFA date: 09/20/2017

Air cleaned: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Asbestos found: -Asbestos cleaned: -

Controled substance found: Controled substance cleaned: Drinking water affected: Drinking water cleaned: Groundwater affected: -

Groundwater cleaned: -Lead contaminant found: Y Lead cleaned up: Y

No media affected: Not reported

Unknown media affected: Other cleaned up: Other metals found: Y

Other metals cleaned: Y
Other contaminants found: Other contams found description: -

PAHs found: Y
PAHs cleaned up: Y
PCBs found: PCBs cleaned up: Petro products found: Y

Petro products cleaned: Y Sediments found: -Sediments cleaned: -Soil affected: Y Soil cleaned up: Y

Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: -Num. of cleanup and re-dev. jobs: -Past use greenspace acreage: .44 Past use residential acreage: -

Surface Water: -

Past use commercial acreage: Past use industrial acreage: Future use greenspace acreage: Future use residential acreage: -44
Future use commercial acreage: Future use industrial acreage: Superfund Fed. landowner flag: -

Arsenic cleaned up: -Cadmium cleaned up: -Chromium cleaned up: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE **ELEVATION: MAP ID:** 50 94

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ID/Status: 95821 ADDRESS: 370 LONSDALE AVENUE ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Copper cleaned up: -Iron cleaned up: mercury cleaned up: -Nickel Cleaned Up: -

No clean up: -Pesticides cleaned up: -Selenium cleaned up: -SVOCs cleaned up: -Unknown clean up: -

Arsenic contaminant found: -Cadmium contaminant found: -Chromium contaminant found: -Copper contaminant found: -Iron contaminant found: -Mercury contaminant found: -Nickel contaminant found: -No contaminant found: -Pesticides contaminant found: -Selenium contaminant found: -

SVOCs contaminant found: -Unknown contaminant found: -Future Use: Multistory -

Media affected Bluiding Material: -Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: -Unknown media cleaned up: -Past Use: Multistory Not reported

Property Description: Laurel Hill Schoolhouse was constructed on the property in the 1870s

and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Below Poverty Number: 3179 Below Poverty Percent: 33.92

Meidan Income: 7051

Meidan Income Number: 5446 Meidan Income Percent: 58.11 Vacant Housing Number: 563 Vacant Housing Percent: 14.28 Unemployed Number: 559

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Unemployed Percent: 5.96

Click this hyperlink while viewing on your computer to access 11 additional US BROWNFIELDS: record(s) in the EDR Site Report.

Name: LAUREL HILL PLAYGROUND Address: 370 LONSDALE AVENUE City, State, Zip: PAWTUCKET, RI 02860

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment

Property Number: Map 46 Lots 749 and 750

Parcel size: .44 Latitude: 41.8779195 Longitude: -71.3998246

HCM Label: Map Scale: Point of Reference: -

Highlights: Former Use: Laurel Hill Schoolhouse was constructed on the property

in the 1870s and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Datum: World Geodetic System of 1984

Acres Property ID: 95821 IC Data Access: -

Start Date: -

Redev Completition Date: -

Completed Date: Acres Cleaned Up: Cleanup Funding: Cleanup Funding Source: Assessment Funding: 5058
Assessment Funding Source: EPA

Redevelopment Funding: Redev. Funding Source: Redev. Funding Entity Name: Redevelopment Start Date: -

Assessment Funding Entity: US EPA - Brownfields Assessment Cooperative Agreement

Cleanup Funding Entity: - Grant Type: Hazardous

Accomplishment Type: Cleanup Planning

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Accomplishment Count: N

Cooperative Agreement Number: 96166701

Start Date: 12/26/2012 Ownership Entity: Private Completion Date: -

Current Owner: Blackstone Valley Community Action Program

Did Owner Change: N Cleanup Required: Y Video Available: N Photo Available: Y

Institutional Controls Required: Y IC Category Proprietary Controls: -

IC Cat. Info. Devices: Y IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: - IC in place date: 07/18/2017

IC in place: Y

State/tribal program date: 07/15/2010 State/tribal program ID: SR-26-0729 State/tribal NFA date: 09/20/2017

Air cleaned: Asbestos found: Asbestos cleaned: Controled substance found: Controled substance cleaned: Drinking water affected: -

Drinking water cleaned:
Groundwater affected:
Groundwater cleaned:
Lead contaminant found: Y

Lead cleaned up: Y

No media affected: Not reported

Unknown media affected: Other cleaned up: Other metals found: Y
Other metals cleaned: Y
Other contaminants found: Other contams found description: -

PAHs found: Y
PAHs cleaned up: Y
PCBs found: PCBs cleaned up: Petro products found: Y
Petro products cleaned: Y
Sediments found: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Sediments cleaned: -

Soil affected: Y Soil cleaned up: Y

Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: -

Num. of cleanup and re-dev. jobs: - Past use greenspace acreage: .44

Past use residential acreage: -

Surface Water: -

Past use commercial acreage: -

Past use industrial acreage: -

Future use greenspace acreage: -

Future use residential acreage: .44 Future use commercial acreage: -

Future use industrial acreage: -

Superfund Fed. landowner flag: -

Arsenic cleaned up: -

Cadmium cleaned up: -

Chromium cleaned up: -

Copper cleaned up: -

Iron cleaned up: -

mercury cleaned up: -

Nickel Cleaned Up: -

No clean up: -

Pesticides cleaned up: -

Selenium cleaned up: -

SVOCs cleaned up: -

Unknown clean up: -

Arsenic contaminant found: -

Cadmium contaminant found: -

Chromium contaminant found: -

Copper contaminant found: - Iron contaminant found: -

Management and a set force

Mercury contaminant found: -

Nickel contaminant found: - No contaminant found: -

Pesticides contaminant found: -

Selenium contaminant found: -

SVOCs contaminant found: -

Unknown contaminant found: -

Future Use: Multistory -

Media affected Bluiding Material: -

Media affected indoor air: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1016353030 DIST/DIR: 0.412 SSE ELEVATION: 94 MAP ID: 50

NAME: LAUREL HILL PLAYGROUND Rev: 03/15/2021

ADDRESS: 370 LONSDALE AVENUE ID/Status: 95821 ID/Status: -

PAWTUCKET, RI 02860 ID/Status: 09/20/2017

SOURCE: US Environmental Protection Agency

Building material media cleaned up: -Indoor air media cleaned up: -Unknown media cleaned up: -Past Use: Multistory Not reported

Property Description: Laurel Hill Schoolhouse was constructed on the property in the 1870s

and demolished by the City of Pawtucket in the 1970s, at which time the City constructed a playground. The city owned the property from 1870-2007. In 2008, the current owner advanced borings on the property, one of which indicated that undocumented fill was present. A sample from these borings indicated the presence of lead and TPH in soil. Recognized environmental conditions consist of undocumented fill, documented release of lead and TPH to soil, and bermed areas of an unknown origin located on the property.

Below Poverty Number: 3179

Below Poverty Percent: 33.92

Meidan Income: 7051

Meidan Income Number: 5446 Meidan Income Percent: 58.11 Vacant Housing Number: 563 Vacant Housing Percent: 14.28 Unemployed Number: 559 Unemployed Percent: 5.96

Click this hyperlink while viewing on your computer to access 11 additional US BROWNFIELDS: record(s) in the EDR Site Report.

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U001714025 **DIST/DIR:** 0.414 ESE **ELEVATION:** 86 **MAP ID:** N51

NAME: PARAMOUNT CARDS, INC. Rev: 03/01/2021

ADDRESS: 400 PINE ST

ID/Status: Soil Removal Only; No Further Action Require

ID/Status: 2620-LS ID/Status: 2656-ST ID/Status: UST-3469

SOURCE: RI Department of Environmental Management

LUST:

Name: PARAMOUNT CARDS, INC.

PAWTUCKET, RI

Address: 400 PINE ST

City,State,Zip: PAWTUCKET, RI Project Number: 2620-LS Project Date: 1994-01-24 Facility Id: UST-3469

Fstatus Decode: Soil Removal Only; No Further Action Required Facility Status: Soil Removal Only; No Further Action Required

Name: PARAMOUNT CARDS, INC.

Address: 400 PINE ST City,State,Zip: PAWTUCKET, RI Project Number: 2656-ST Project Date: 1997-06-04 Facility Id: UST-3469

Fstatus Decode: Soil Removal Only; No Further Action Required Facility Status: Soil Removal Only; No Further Action Required

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: S119104894 **DIST/DIR:** 0.414 ESE **ELEVATION:** 86 **MAP ID:** N52

NAME: PARAMOUNT CARDS

ADDRESS: 400 PINE STREET

DAMETICAL STREET

Rev: 04/07/2021

ID/Status: Inactive
ID/Status: PCAR-HWM

PAWTUCKET, RI ID/Status: PCAR-HWM ID/Status: SR-26-1059

SOURCE: RI Department of Environmental Management

SHWS:

Name: PARAMOUNT CARDS Address: 400 PINE STREET City,State,Zip: PAWTUCKET, RI Project Code: PCAR-HWM Siterem Site Number: SR-26-1059

Facility Status: Inactive

Project Code Desc: PCAR-HWM

Project Date: 01/16/1996

Acres: 20

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

AUL

EDR ID: \$106664226 DIST/DIR: 0.425 SSW ELEVATION: 48 MAP ID: 53

NAME: C & E TRUCKING (FORMER) Rev: 04/07/2021

ADDRESS: 500 MOSHASSUCK VALLEY INDUSTRIAL HIGHWAY ID/Status: SR-26-0203

PAWTUCKET, RI

SOURCE: RI Department of Environmental Management

AUL:

Name: C & E TRUCKING (FORMER)

Address: 500 MOSHASSUCK VALLÉY INDUSTRIAL HIGHWAY

City, State, Zip: PAWTUCKET, RI

ELUR Date: 08/30/2006 Count Of Town: 1

Facility Size (Acres): 1.360 Project Code: C&ET-HWM SA Date: Not reported

Plat: 46

Lot: 703 & 704

Siterem Site Number: SR-26-0203

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$106664226 DIST/DIR: 0.425 SSW ELEVATION: 48 MAP ID: 53

NAME: C & E TRUCKING (FORMER) Rev: 04/07/2021

ADDRESS: 500 MOSHASSUCK VALLEY INDUSTRIAL HIGHWAY

ID/Status: Inactive ID/Status: C&ET-HWM

PAWTUCKET, RI ID/Status: SR-26-0203

SOURCE: RI Department of Environmental Management

SHWS:

Name: C & E TRUCKING (FORMER)

Address: 500 MOSHASSUCK VALLÉY INDUSTRIAL HIGHWAY

City,State,Zip: PAWTUCKET, RI Project Code: C&ET-HWM Siterem Site Number: SR-26-0203

Facility Status: Inactive

Project Code Desc: C&ET-HWM

Project Date: 09/13/2004

Acres: 1.36

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U001213470 **DIST/DIR:** 0.429 South **ELEVATION:** 66 **MAP ID:** 54

 NAME:
 GALEGO COURT
 Rev:
 03/01/2021

 ADDRESS:
 483 WEEDEN ST
 ID/Status: 2654-ST

 ID/Status: UST-3543

PAWTUCKET, RI

SOURCE: RI Department of Environmental Management

LUST:

Name: GALEGO COURT Address: 483 WEEDEN ST City,State,Zip: PAWTUCKET, RI Project Number: 2654-ST Project Date: 1996-12-04 Facility Id: UST-3543 Fstatus Decode: Not reported Facility Status: INACTIVE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: 1001225585 **DIST/DIR:** 0.432 ESE **ELEVATION:** 86 **MAP ID:** N55

NAME: STRETCH PRODUCTS CORP Rev: 04/07/2021

ADDRESS: 392 PINE ST ID/Status: ACTIVE

PAWTUCKET, RI 02860 ID/Status: SR-26-0073 A PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: ART LOFTS - TALLMAN ENTERPRISES (PARCEL A)

Address: 392 PINE STREET City,State,Zip: PAWTUCKET, RI Project Code: ART-HWM

Siterem Site Number: SR-26-0073 A

Facility Status: Active

Project Code Desc: ART-HWM Project Date: 08/17/2006

Acres: 4.15

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1025815410 DIST/DIR: 0.437 ESE ELEVATION: 86 MAP ID: N56

NAME: THE PINE **Rev**: 03/15/2021

ADDRESS: 390 PINE STREET ID/Status: 238352

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

US BROWNFIELDS: Name: THE PINE

Address: 390 PINE STREET

City, State, Zip: PAWTUCKET, RI 02860

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment Property Number: 440496

Parcel size: .6

Latitude: 41.8808947

Longitude: -71.39391369999998

HCM Label: -Map Scale: -Point of Reference: -Highlights: -

Highlights: Datum: -

Acres Property ID: 238352

IC Data Access: -Start Date: -

Redev Completition Date: -

Completed Date: Acres Cleaned Up: Cleanup Funding: Cleanup Funding Source: Assessment Funding: 2505
Assessment Funding Source: EPA
Redevelopment Funding: -

Redevelopment Funding: Redev. Funding Source: Redev. Funding Entity Name: Redevelopment Start Date: -

Assessment Funding Entity: US EPA - Brownfields Assessment Cooperative Agreement

Cleanup Funding Entity: - Grant Type: Hazardous

Accomplishment Type: Phase I Environmental Assessment

Accomplishment Count: Y

Cooperative Agreement Number: 96197401

Start Date: 11/16/2018 Ownership Entity: Private Completion Date: 12/31/2018

Current Owner: Did Owner Change: Cleanup Required: U
Video Available: Photo Available: -

Institutional Controls Required: U

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1025815410 DIST/DIR: 0.437 ESE ELEVATION: 86 MAP ID: N56

NAME: THE PINE **Rev**: 03/15/2021

ADDRESS: 390 PINE STREET ID/Status: 238352

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

IC Category Proprietary Controls: -

IC Cat. Info. Devices: - IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: -

IC in place date: - IC in place: -

State/tribal program date: -State/tribal program ID: -State/tribal NFA date: -

Air cleaned: -Asbestos found: -Asbestos cleaned: -

Controled substance found: Controled substance cleaned: Drinking water affected: Drinking water cleaned: Groundwater affected: Groundwater cleaned: Lead contaminant found: -

Lead cleaned up: -

No media affected: Not reported Unknown media affected: -

Other cleaned up: Other metals found: Other metals cleaned: Other contaminants found: Other contaminants found: -

PAHs found: PAHs cleaned up: PCBs found: PCBs cleaned up: Petro products found: Petro products cleaned: Sediments found: Sediments cleaned: Soil affected: Soil cleaned up: Surface water cleaned: VOCs found: -

VOCs idulid. -

Cleanup other description: Num. of cleanup and re-dev. jobs: Past use greenspace acreage: Past use residential acreage: -

Surface Water: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1025815410 DIST/DIR: 0.437 ESE **ELEVATION:** 86 MAP ID: N56

THE PINE 03/15/2021 NAME: Rev:

ID/Status: 238352 ADDRESS: 390 PINE STREET ID/Status: -

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Past use commercial acreage: -

Past use industrial acreage: -

Future use greenspace acreage: -

Future use residential acreage: -

Future use commercial acreage: -

Future use industrial acreage: -

Superfund Fed. landowner flag: -

Arsenic cleaned up: -

Cadmium cleaned up: -

Chromium cleaned up: -

Copper cleaned up: -

Iron cleaned up: -

mercury cleaned up: -

Nickel Cleaned Up: -

No clean up: -

Pesticides cleaned up: -Selenium cleaned up: -

SVOCs cleaned up: -

Unknown clean up: -

Arsenic contaminant found: -

Cadmium contaminant found: -

Chromium contaminant found: -

Copper contaminant found: -Iron contaminant found: -

Mercury contaminant found: -

Nickel contaminant found: -

No contaminant found: -

Pesticides contaminant found: -

Selenium contaminant found: -

SVOCs contaminant found: -

Unknown contaminant found: -

Future Use: Multistory

Media affected Bluiding Material: -

Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: -Unknown media cleaned up: -

Past Use: Multistory Not reported Property Description: -

Below Poverty Number: 4218 Below Poverty Percent: 37.91

Meidan Income: 4197

Meidan Income Number: 7267 Meidan Income Percent: 65.31 Vacant Housing Number: 894

10 HIGGINSON AVENUE Target Property: JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1025815410 DIST/DIR: 0.437 ESE **ELEVATION:** MAP ID: N56 86

THE PINE 03/15/2021 NAME: Rev:

ID/Status: 238352 ADDRESS: 390 PINE STREET

ID/Status: -PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Vacant Housing Percent: 16.6 Unemployed Number: 602 Unemployed Percent: 5.41

Name: THE PINE

Address: 390 PINE STREET

City, State, Zip: PAWTUCKET, RI 02860

Recipient Name: Rhode Island Department of Environmental Management

Grant Type: Assessment Property Number: 440496

Parcel size: .6 Latitude: 41.8808947

Longitude: -71.39391369999998

HCM Label: -Map Scale: -Point of Reference: -

Highlights: -Datum: -

Acres Property ID: 238352

IC Data Access: -Start Date: -

Redev Completition Date: -

Completed Date: -Acres Cleaned Up: -Cleanup Funding: -Cleanup Funding Source: -

Assessment Funding: -Assessment Funding Source: -Redevelopment Funding: -Redev. Funding Source: -Redev. Funding Entity Name: -Redevelopment Start Date: -Assessment Funding Entity: -Cleanup Funding Entity: -Grant Type: Hazardous Accomplishment Type: -

Cooperative Agreement Number: 96197401

Start Date: -

Ownership Entity: Private Completion Date: -Current Owner: -Did Owner Change: -Cleanup Required: U Video Available: -

Accomplishment Count: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1025815410 DIST/DIR: 0.437 ESE ELEVATION: 86 MAP ID: N56

NAME: THE PINE **Rev**: 03/15/2021

ADDRESS: 390 PINE STREET ID/Status: 238352

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Photo Available: -

Institutional Controls Required: U

IC Category Proprietary Controls: -

IC Cat. Info. Devices: - IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: -

IC in place date: - IC in place: -

State/tribal program date: - State/tribal program ID: -

State/tribal NFA date: -

Air cleaned: -Asbestos found: -

Asbestos cleaned: -Controled substance found: -

Controled substance cleaned: Drinking water affected: -

Drinking water affected: Drinking water cleaned: Groundwater affected: Groundwater cleaned: Lead contaminant found: -

Lead cleaned up: -

No media affected: Not reported

Unknown media affected: -

Other cleaned up: Other metals found: Other metals cleaned: Other contaminants found: -

Other contams found description: -

PAHs found: -PAHs cleaned up: -PCBs found: -PCBs cleaned up: -

Petro products found: Petro products cleaned: -

Sediments found: Sediments cleaned: Soil affected: Soil cleaned up: -

Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: Num. of cleanup and re-dev. iol

Num. of cleanup and re-dev. jobs: -Past use greenspace acreage: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1025815410 DIST/DIR: 0.437 ESE ELEVATION: 86 MAP ID: N56

NAME: THE PINE **Rev**: 03/15/2021

ADDRESS: 390 PINE STREET ID/Status: 238352

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Past use residential acreage: -

Surface Water: -

Past use commercial acreage: Past use industrial acreage: Future use greenspace acreage: Future use residential acreage: Future use commercial acreage: -

Future use industrial acreage: - Superfund Fed. landowner flag: -

Arsenic cleaned up: Cadmium cleaned up: Chromium cleaned up: Copper cleaned up: Iron cleaned up: mercury cleaned up: Nickel Cleaned Up: -

No clean up: -

Pesticides cleaned up: Selenium cleaned up: SVOCs cleaned up: Unknown clean up: Arsenic contaminant found: Cadmium contaminant found:

Cadmium contaminant found: Chromium contaminant found: Copper contaminant found: Iron contaminant found: Mercury contaminant found: Nickel contaminant found: No contaminant found: -

Pesticides contaminant found: -Selenium contaminant found: -SVOCs contaminant found: -Unknown contaminant found: -Future Use: Multistory -

Media affected Bluiding Material: -

Media affected indoor air: -

Building material media cleaned up: -

Indoor air media cleaned up: -Unknown media cleaned up: -Past Use: Multistory Not reported

Property Description: -Below Poverty Number: 4218 Below Poverty Percent: 37.91

Meidan Income: 4197

Meidan Income Number: 7267

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1025815410 DIST/DIR: 0.437 ESE ELEVATION: 86 MAP ID: N56

NAME: THE PINE **Rev**: 03/15/2021

ADDRESS: 390 PINE STREET ID/Status: 238352

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Meidan Income Percent: 65.31 Vacant Housing Number: 894 Vacant Housing Percent: 16.6 Unemployed Number: 602 Unemployed Percent: 5.41

Name: THE PINE

Address: 390 PINE STREET

City,State,Zip: PAWTUCKET, RI 02860 Recipient Name: City of Pawtucket

Grant Type: BCRLF Property Number: 440496

Parcel size: .6 Latitude: 41.8808947

Longitude: -71.39391369999998

HCM Label: -Map Scale: -Point of Reference: -

Highlights: -Datum: -

Acres Property ID: 238352

IC Data Access: -

Start Date: -

Redev Completition Date: -

Completed Date: Acres Cleaned Up: Cleanup Funding: -

Cleanup Funding Source: Assessment Funding: Assessment Funding Source: Redevelopment Funding: Redev. Funding Source: Redev. Funding Entity Name: Redevelopment Start Date: Assessment Funding Entity: Cleanup Funding Entity: Grant Type: Hazardous
Accomplishment Type: -

Cooperative Agreement Number: 96186401

Start Date: -

Ownership Entity: Private Completion Date: -Current Owner: -Did Owner Change: -

Accomplishment Count: -

10 HIGGINSON AVENUE Target Property: JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1025815410 DIST/DIR: 0.437 ESE **ELEVATION:** 86 MAP ID: N56

THE PINE 03/15/2021 NAME: Rev:

ID/Status: 238352 ADDRESS: 390 PINE STREET

ID/Status: -PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Cleanup Required: U Video Available: -Photo Available: -

Institutional Controls Required: U IC Category Proprietary Controls: -

IC Cat. Info. Devices: -IC Cat. Gov. Controls: -

IC Cat. Enforcement Permit Tools: -

IC in place date: -IC in place: -

State/tribal program date: -State/tribal program ID: -State/tribal NFA date: -

Air cleaned: -Asbestos found: -Asbestos cleaned: -

Controled substance found: -Controled substance cleaned: -Drinking water affected: -Drinking water cleaned: -Groundwater affected: -

Groundwater cleaned: -Lead contaminant found: -Lead cleaned up: -

No media affected: Not reported

Unknown media affected: -Other cleaned up: -

Other metals found: -Other metals cleaned: -Other contaminants found: -

Other contams found description: -PAHs found: -PAHs cleaned up: -

PCBs found: -PCBs cleaned up: -Petro products found: -Petro products cleaned: -

Sediments found: -Sediments cleaned: -Soil affected: -Soil cleaned up: -Surface water cleaned: -

VOCs found: -VOCs cleaned: -

Cleanup other description: -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1025815410 DIST/DIR: 0.437 ESE ELEVATION: 86 MAP ID: N56

NAME: THE PINE **Rev**: 03/15/2021

ADDRESS: 390 PINE STREET ID/Status: 238352 ID/Status: -

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Num. of cleanup and re-dev. jobs: - Past use greenspace acreage: -

Past use residential acreage: -

Surface Water: -

Past use commercial acreage: Past use industrial acreage: Future use greenspace acreage: Future use residential acreage: -

Future use residential acreage: Future use commercial acreage: Future use industrial acreage: Superfund Fed. landowner flag: -

Arsenic cleaned up: Cadmium cleaned up: Chromium cleaned up: Copper cleaned up: Iron cleaned up: mercury cleaned up: -

Nickel Cleaned Up: -No clean up: -

Pesticides cleaned up: -Selenium cleaned up: -SVOCs cleaned up: -Unknown clean up: -

Arsenic contaminant found: - Cadmium contaminant found: - Chromium contaminant found: -

Copper contaminant found: Iron contaminant found: Mercury contaminant found: Nickel contaminant found: No contaminant found: -

Pesticides contaminant found: Selenium contaminant found: SVOCs contaminant found: Unknown contaminant found: -

Future Use: Multistory -

Media affected Bluiding Material: - Media affected indoor air: -

Building material media cleaned up: -Indoor air media cleaned up: -Unknown media cleaned up: -

Past Use: Multistory Not reported Property Description: -

Below Poverty Number: 4218 Below Poverty Percent: 37.91

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

US BROWNFIELDS

EDR ID: 1025815410 **DIST/DIR:** 0.437 ESE **ELEVATION:** 86 **MAP ID:** N56

NAME: THE PINE **Rev**: 03/15/2021

ADDRESS: 390 PINE STREET ID/Status: 238352

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Meidan Income: 4197

Meidan Income Number: 7267 Meidan Income Percent: 65.31 Vacant Housing Number: 894 Vacant Housing Percent: 16.6 Unemployed Number: 602 Unemployed Percent: 5.41

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

AUL

EDR ID: \$125741508 **DIST/DIR:** 0.437 ESE **ELEVATION:** 86 **MAP ID:** N57

NAME: VACANT MILL BUILDING

Rev: 04/07/2021

ID/Status: SR-26-0073 B

ADDRESS: 390 PINE ST

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: RI Department of Environmental Management

AUL:

Name: ART LOFTS - TALLMAN ENTERPRISES (PARCEL B)

Address: 390 PINE STREET City,State,Zip: PAWTUCKET, RI ELUR Date: 12/02/2019

Count Of Town: 1

Facility Size (Acres): 4.150 Project Code: ARTB-HWM SA Date: Not reported

Plat: 44A Lot: 496

Siterem Site Number: SR-26-0073 B

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$125741508 **DIST/DIR:** 0.437 ESE **ELEVATION:** 86 **MAP ID:** N57

NAME: VACANT MILL BUILDING Rev: 04/07/2021

ADDRESS: 390 PINE ST ID/Status: Active

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: ART LOFTS - TALLMAN ENTERPRISES (PARCEL B)

Address: 390 PINE STREET City,State,Zip: PAWTUCKET, RI Project Code: ARTB-HWM

Siterem Site Number: SR-26-0073 B

Facility Status: Active

Project Code Desc: ARTB-HWM

Project Date: 08/17/2006

Acres: 4.15

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$106664152 DIST/DIR: 0.438 NW ELEVATION: 62 MAP ID: O58

NAME: SAYLESVILLE BLEACHERY (FORMER) Rev: 04/07/2021

ADDRESS: 55 INDUSTRIAL CIRCLE & 80 MOSHASSUCK ROAD ID/Status: Inactive ID/Status: SAYB-HWM

LINCOLN, RI ID/Status: SR-18-1404

SOURCE: RI Department of Environmental Management

SHWS:

Name: SAYLESVILLE BLEACHERY (FORMER)

Address: 55 INDUSTRIAL CIRCLE & 80 MOSHASSUCK ROAD

City,State,Zip: LINCOLN, RI Project Code: SAYB-HWM Siterem Site Number: SR-18-1404

Facility Status: Inactive

Project Code Desc: SAYB-HWM

Project Date: 09/27/2001

Acres: 4.25

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U004108850 DIST/DIR: 0.439 NW **ELEVATION: MAP ID:** O59 56

NAME: CAPITAL RECORD MANAGEMENT 03/01/2021 Rev: ID/Status: 1835-ST

ADDRESS: 65 INDUSTRIAL CIR ID/Status: UST-4207 LINCOLN, RI

SOURCE: RI Department of Environmental Management

LUST:

Name: CAPITAL RECORD MANAGEMENT

Address: 65 INDUSTRIAL CIR City, State, Zip: LINCOLN, RI Project Number: 1835-ST Project Date: 2007-08-28 Facility Id: UST-4207

Fstatus Decode: Not reported Facility Status: INACTIVE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SWF/LF

ID/Status: Active

EDR ID: S108963049 DIST/DIR: 0.439 NW **MAP ID:** 060 **ELEVATION:** 56

FUTURE HEALTHCARE SYSTEM, INC (FUTURE) NAME: 04/07/2021 Rev:

ADDRESS: 65 INDUSTRIAL CIRCLE

LINCOLN, RI

SOURCE: RI Department of Environmental Management

SWF/LF:

Name: FUTURE HEALTHCARE SYSTEMS NE INC.

Address: 65 INDUSTRIAL CIRCLE City, State, Zip: LINCOLN, RI

Facility ID: 364 Facility Status: Active Owner Name: Not reported

License Type: Medical Waste Transfer Station Authorization File Number: WF-816

Alternate File Number: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: S108963049 DIST/DIR: 0.439 NW **ELEVATION:** 56 **MAP ID:** 060

FUTURE HEALTHCARE SYSTEM, INC (FUTURE) NAME: 04/07/2021 Rev:

ID/Status: Inactive ADDRESS: 65 INDUSTRIAL CIRCLE ID/Status: FHSI-NJD LINCOLN, RI

ID/Status: NJD-17-0017

SOURCE: RI Department of Environmental Management

SHWS:

Name: FUTURE HEALTHCARE SYSTEM, INC (FUTURE)

Address: 65 INDUSTRIAL CIRCLE City, State, Zip: LINCOLN, RI Project Code: FHSI-NJD Siterem Site Number: NJD-17-0017

Facility Status: Inactive Project Code Desc: FHSI-NJD Project Date: 02/18/2015 Acres: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U003207973 **DIST/DIR:** 0.447 NW **ELEVATION:** 57 **MAP ID:** O61

 NAME:
 50 INDUSTRIAL CIRCLE
 Rev:
 03/01/2021

 ADDRESS:
 50 INDUSTRIAL CIR
 ID/Status:
 1824-LS

 ID/Status:
 UST-18229

LINCOLN, RI

SOURCE: RI Department of Environmental Management

LUST:

Name: 50 INDUSTRIAL CIRCLE Address: 50 INDUSTRIAL CIR City, State, Zip: LINCOLN, RI Project Number: 1824-LS Project Date: 1997-06-19 Facility Id: UST-18229 Fstatus Decode: Not reported Facility Status: INACTIVE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

AUL

EDR ID: S103247087 DIST/DIR: 0.461 NW **ELEVATION:** 60 **MAP ID**: 62

NAME: LINCOLN LOFTS 04/07/2021 Rev:

ID/Status: SR-18-0202 ADDRESS: 90 INDUSTRIAL CIR

> LINCOLN, RI 02865 **PROVIDENCE**

SOURCE: RI Department of Environmental Management

AUL:

Name: C & E FREIGHT TRANSPORTATION

Address: 90 INDUSTRIAL CIRCLE City, State, Zip: LINCOLN, RI ELUR Date: 08/31/1998 Count Of Town: 1

Facility Size (Acres): 2.149 Project Code: CFT-HWM SA Date: Not reported

Plat: 2 Lot: 82

Siterem Site Number: SR-18-0202

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$103247087 DIST/DIR: 0.461 NW ELEVATION: 60 MAP ID: 62

NAME: LINCOLN LOFTS Rev: 04/07/2021

ADDRESS: 90 INDUSTRIAL CIR ID/Status: Active ID/Status: CFT-HWM

LINCOLN, RI 02865 ID/Status: SR-18-0202 PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: C & E FREIGHT TRANSPORTATION

Address: 90 INDUSTRIAL CIRCLE City,State,Zip: LINCOLN, RI Project Code: CFT-HWM

Siterem Site Number: SR-18-0202

Facility Status: Active

Project Code Desc: CFT-HWM Project Date: 04/27/1998

Acres: 2.15

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: 1000305224 DIST/DIR: 0.470 NNW **ELEVATION:** 63 **MAP ID**: 63

NAME: ARCH SPECIALTY CHEMICALS INC. 04/07/2021 Rev:

ID/Status: Active ADDRESS: 40 MOSHASSUCK RD. ID/Status: APCI-HWM LINCOLN, RI 02865 ID/Status: SR-18-0068

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: ARCH SPECIALTY CHEMICALS INC.

Address: 40 MOSHASSUCK ROAD City, State, Zip: LINCOLN, RI Project Code: APCI-HWM Siterem Site Number: SR-18-0068

Facility Status: Active

Project Code Desc: APCI-HWM Project Date: 09/28/2001

Acres: 2.4

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1000305224 DIST/DIR: 0.470 NNW **ELEVATION:** 63 **MAP ID:** 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ID/Status: RID001202589 ADDRESS: 40 MOSHASSUCK RD.

LINCOLN, RI 02865 **PROVIDENCE**

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 2020-08-26 00:00:00.0 Handler Name: ARCH SPECIALTY CHEMICALS INC.

Handler Address: 40 MOSHASSUCK RD. Handler City, State, Zip: LINCOLN, RI 02865-0000

EPA ID: RID001202589

Contact Name: MIKE M BAUER Contact Address: Not reported Contact City, State, Zip: Not reported Contact Telephone: 401-431-2461 x2461

Contact Fax: Not reported Contact Email: Not reported Contact Title: Not reported

EPA Region: 01 Land Type: Not reported

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported

Accessibility: Not reported

Active Site Indicator: Corrective Action Activities
State District Owner: Not reported

State District: Not reported

Mailing Address: MOSHASSUCK RD.

Mailing City, State, Zip: LINCOLN, RI 02865-0000

Owner Name: Not reported Owner Type: Not reported Operator Name: Not reported Operator Type: Not reported Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1000305224 DIST/DIR: 0.470 NNW ELEVATION: 63 MAP ID: 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ADDRESS: 40 MOSHASSUCK RD. ID/Status: RID001202589

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Active Site State-Reg Handler: --Federal Facility Indicator: Not reported
Hazardous Secondary Material Indicator: N
Sub-Part K Indicator: Not reported
Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: Yes
Corrective Action Workload Universe: Yes
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: Medium Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: Yes Groundwater Controls Indicator: Yes Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2020-09-01 08:48:39.0

Recognized Trader-Importer: No Recognized Trader-Exporter: No Importer of Spent Lead Acid Batteries: No Exporter of Spent Lead Acid Batteries: No Recycler Activity Without Storage: No

Manifest Broker: No Sub-Part P Indicator: No

Biennial: List of Years

Year: 2001

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

1000305224 0.470 NNW EDR ID: DIST/DIR: **ELEVATION:** 63 **MAP ID:** 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ID/Status: RID001202589 ADDRESS: 40 MOSHASSUCK RD.

LINCOLN, RI 02865 **PROVIDENCE**

SOURCE: US Environmental Protection Agency

Click Here for Biennial Reporting System Data:

Hazardous Waste Summary: Waste Code: D000

Waste Description: Not Defined

Waste Code: D001

Waste Description: IGNITABLE WASTE

Waste Code: D002

Waste Description: CORROSIVE WASTE

Waste Code: D003

Waste Description: REACTIVE WASTE

Waste Code: D024

Waste Description: M-CRESOL

Waste Code: D025

Waste Description: P-CRESOL

Waste Code: D026

Waste Description: CRESOL

Waste Code: F001

Waste Description: THE FOLLOWING SPENT HALOGENATED SOLVENTS USED IN DEGREASING: TETRACHLOROETHYLENE, TRICHLORETHYLENE, METHYLENE CHLORIDE,

1,1,1-TRICHLOROETHANE, CARBON TETRACHLORIDE AND CHLORINATED

FLUOROCARBONS; ALL SPENT SOLVENT MIXTURES/BLENDS USED IN DEGREASING CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE HALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED

IN F002, F004, AND F005; AND STILL BOTTOMS FROM THE RECOVERY OF THESE

SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.

Waste Code: F002

Waste Description: THE FOLLOWING SPENT HALOGENATED SOLVENTS: TETRACHLOROETHYLENE,

METHYLENE CHLORIDE, TRICHLOROETHYLENE, 1,1,1-TRICHLOROETHANE, CHLOROBENZENE, 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE,

ORTHO-DICHLOROBENZENE, TRICHLOROFLUOROMETHANE, AND 1,1,2

TRICHLOROETHANE; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE HALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F001. F004. AND F005; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1000305224 DIST/DIR: 0.470 NNW ELEVATION: 63 MAP ID: 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ADDRESS: 40 MOSHASSUCK RD.

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

SPENT SOLVENT MIXTURES.

Waste Code: F003

Waste Description: THE FOLLOWING SPENT NONHALOGENATED SOLVENTS: XYLENE, ACETONE, ETHYL

ACETATE, ETHYL BENZENE, ETHYL ETHER, METHYL ISOBUTYL KETONE, N-BUTYL

ALCOHOL, CYCLOHEXANONE, AND METHANOL; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONLY THE ABOVE SPENT NONHALOGENATED SOLVENTS; AND ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONE OR MORE OF THE ABOVE NONHALOGENATED SOLVENTS, AND A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THOSE SOLVENTS LISTED IN F001, F002, F004, AND F005; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT

MIXTURES.

Waste Code: F004

Waste Description: THE FOLLOWING SPENT NONHALOGENATED SOLVENTS: CRESOLS, CRESYLIC ACID, AND NITROBENZENE; AND THE STILL BOTTOMS FROM THE RECOVERY OF THESE SOLVENTS; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE NONHALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F001, F002, AND F005; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND

SPENT SOLVENT MIXTURES.

Waste Code: F005

Waste Description: THE FOLLOWING SPENT NONHALOGENATED SOLVENTS: TOLUENE, METHYL ETHYL

KETONE, CARBON DISULFIDE, ISOBUTANOL, PYRIDINE, BENZENE,

2-ETHOXYETHANOL, AND 2-NITROPROPANE; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE NONHALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F001, F002, OR F004; AND STILL BOTTOMS FROM THE RECOVERY OF

THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.

Waste Code: U239

Waste Description: BENZENE, DIMETHYL- (I,T) (OR) XYLENE (I)

Handler - Owner Operator:

Owner/Operator Indicator: Owner

Owner/Operator Name: ARCH CHEMICALS SPECIALTY PRODUCTS, INC

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: 120 LONG RIDGE RD Owner/Operator City, State, Zip: STAMFORD, CT 06904

Owner/Operator Telephone: 203-356-2000

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1000305224 DIST/DIR: 0.470 NNW **ELEVATION:** 63 **MAP ID:** 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ID/Status: RID001202589 ADDRESS: 40 MOSHASSUCK RD.

LINCOLN, RI 02865 **PROVIDENCE**

SOURCE: US Environmental Protection Agency

Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Operator

Owner/Operator Name: PHILIP A HUNT CHEMICAL CORPORATION

Legal Status: Private

Date Became Current: Not reported Date Ended Current: Not reported

Owner/Operator Address: ONE WELLINGTON ROAD Owner/Operator City, State, Zip: OPERCITY, RI 99999

Owner/Operator Telephone: 401-333-6114 Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 2020-08-26 00:00:00.0
Handler Name: ARCH SPECIALTY CHEMICALS INC.

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: No Electronic Manifest Broker: No

Receive Date: 1999-04-06 00:00:00.0

Handler Name: ARCH SPECIALTY CHEMICALS INC

Federal Waste Generator Description: Large Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 2001-05-05 00:00:00.0

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1000305224 DIST/DIR: 0.470 NNW ELEVATION: 63 MAP ID: 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ADDRESS: 40 MOSHASSUCK RD. ID/Status: RID001202589

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Handler Name: ARCH SPECIALTY CHEMICALS INC

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 2001-09-20 00:00:00.0

Handler Name: ARCH SPECIALTY CHEMICALS INC

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 1990-03-01 00:00:00.0

Handler Name: OLIN HUNT SPECIALTY PROD INC

Federal Waste Generator Description: Large Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 1996-02-21 00:00:00.0

Handler Name: OLIN HUNT SPECIALTY PRODUCTS INC Federal Waste Generator Description: Large Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1000305224 DIST/DIR: 0.470 NNW ELEVATION: 63 MAP ID: 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ADDRESS: 40 MOSHASSUCK RD. ID/Status: RID001202589

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 1998-02-26 00:00:00.0

Handler Name: OLIN HUNT SPECIALTY PRODUCTS

Federal Waste Generator Description: Large Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 2000-02-28 00:00:00.0

Handler Name: ARCH SPECIALTY CHEMICALS INC.

Federal Waste Generator Description: Large Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 2002-02-14 00:00:00.0

Handler Name: ARCH SPECIALTY CHEMICALS INC.

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1000305224 DIST/DIR: 0.470 NNW ELEVATION: 63 MAP ID: 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ADDRESS: 40 MOSHASSUCK RD. ID/Status: RID001202589

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

List of NAICS Codes and Descriptions:

NAICS Code: 32511

NAICS Description: PETROCHEMICAL MANUFACTURING

NAICS Code: 325998

NAICS Description: ALL OTHER MISCELLANEOUS CHEMICAL PRODUCT AND PREPARATION MANUFACTURING

NAICS Code: 49311

NAICS Description: GENERAL WAREHOUSING AND STORAGE

NAICS Code: 92811

NAICS Description: NATIONAL SECURITY

Facility Has Received Notices of Violation:

Found Violation: No

Agency Which Determined Violation: Not reported

Violation Short Description: Not reported
Date Violation was Determined: Not reported
Actual Return to Compliance Date: Not reported
Return to Compliance Qualifier: Not reported
Violation Responsible Agency: Not reported
Scheduled Compliance Date: Not reported
Enforcement Identifier: Not reported
Date of Enforcement Action: Not reported
Enforcement Responsible Agency: Not reported
Enforcement Docket Number: Not reported
Enforcement Attorney: Not reported
Corrective Action Component: Not reported
Appeal Initiated Date: Not reported
Appeal Resolution Date: Not reported

Disposition Status: Not reported Disposition Status Description: Not reported

Disposition Status Date: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported

Enforcement Type: Not reported

Enforcement Responsible Person: Not reported

Enforcement Responsible Sub-Organization: Not reported

SEP Sequence Number: Not reported
SEP Expenditure Amount: Not reported
SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1000305224 DIST/DIR: 0.470 NNW **ELEVATION: MAP ID:** 63 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ID/Status: RID001202589 ADDRESS: 40 MOSHASSUCK RD.

LINCOLN, RI 02865 **PROVIDENCE**

SOURCE: US Environmental Protection Agency

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: No

Agency Which Determined Violation: Not reported Violation Short Description: Not reported

Date Violation was Determined: Not reported Actual Return to Compliance Date: Not reported Return to Compliance Qualifier: Not reported Violation Responsible Agency: Not reported Scheduled Compliance Date: Not reported Enforcement Identifier: Not reported Date of Enforcement Action: Not reported Enforcement Responsible Agency: Not reported Enforcement Docket Number: Not reported

Enforcement Attorney: Not reported

Corrective Action Component: Not reported

Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported

Enforcement Type: Not reported

Enforcement Responsible Person: Not reported

Enforcement Responsible Sub-Organization: Not reported

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1000305224 DIST/DIR: 0.470 NNW ELEVATION: 63 MAP ID: 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ADDRESS: 40 MOSHASSUCK RD. ID/Status: RID001202589

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Found Violation: No

Agency Which Determined Violation: Not reported

Violation Short Description: Not reported
Date Violation was Determined: Not reported
Actual Return to Compliance Date: Not reported
Return to Compliance Qualifier: Not reported
Violation Responsible Agency: Not reported
Scheduled Compliance Date: Not reported
Enforcement Identifier: Not reported
Date of Enforcement Action: Not reported
Enforcement Responsible Agency: Not reported
Enforcement Docket Number: Not reported

Enforcement Attorney: Not reported
Corrective Action Component: Not reported
Appeal Initiated Date: Not reported
Appeal Resolution Date: Not reported
Disposition Status Date: Not reported

Disposition Status: Not reported

Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: Not reported

Enforcement Responsible Person: Not reported

Enforcement Responsible Sub-Organization: Not reported

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported

SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: No

Agency Which Determined Violation: Not reported

Violation Short Description: Not reported
Date Violation was Determined: Not reported
Actual Return to Compliance Date: Not reported
Return to Compliance Qualifier: Not reported
Violation Responsible Agency: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1000305224 DIST/DIR: 0.470 NNW **ELEVATION: MAP ID:** 63 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ID/Status: RID001202589 ADDRESS: 40 MOSHASSUCK RD.

LINCOLN, RI 02865 **PROVIDENCE**

SOURCE: US Environmental Protection Agency

Scheduled Compliance Date: Not reported Enforcement Identifier: Not reported Date of Enforcement Action: Not reported Enforcement Responsible Agency: Not reported Enforcement Docket Number: Not reported

Enforcement Attorney: Not reported Corrective Action Component: Not reported Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported

Enforcement Type: Not reported

Enforcement Responsible Person: Not reported

Enforcement Responsible Sub-Organization: Not reported

SEP Sequence Number: Not reported SEP Expenditure Amount: Not reported SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Found Violation: No

Agency Which Determined Violation: Not reported

Violation Short Description: Not reported Date Violation was Determined: Not reported Actual Return to Compliance Date: Not reported Return to Compliance Qualifier: Not reported Violation Responsible Agency: Not reported Scheduled Compliance Date: Not reported Enforcement Identifier: Not reported Date of Enforcement Action: Not reported Enforcement Responsible Agency: Not reported Enforcement Docket Number: Not reported

Enforcement Attorney: Not reported

Corrective Action Component: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1000305224 DIST/DIR: 0.470 NNW ELEVATION: 63 MAP ID: 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ADDRESS: 40 MOSHASSUCK RD. ID/Status: RID001202589

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Appeal Initiated Date: Not reported Appeal Resolution Date: Not reported Disposition Status Date: Not reported Disposition Status: Not reported

Disposition Status Description: Not reported

Consent/Final Order Sequence Number: Not reported Consent/Final Order Respondent Name: Not reported Consent/Final Order Lead Agency: Not reported

Enforcement Type: Not reported

Enforcement Responsible Person: Not reported

Enforcement Responsible Sub-Organization: Not reported

SEP Sequence Number: Not reported
SEP Expenditure Amount: Not reported
SEP Scheduled Completion Date: Not reported

SEP Actual Date: Not reported
SEP Defaulted Date: Not reported

SEP Type: Not reported

SEP Type Description: Not reported Proposed Amount: Not reported Final Monetary Amount: Not reported

Paid Amount: Not reported Final Count: Not reported Final Amount: Not reported

Evaluation Action Summary:

Evaluation Date: 1988-01-27 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: No

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: Not reported Evaluation Responsible Sub-Organization: Not reported Actual Return to Compliance Date: Not reported

Scheduled Compliance Date: Not reported

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 1985-04-15 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: No

Evaluation Type Description: COMPLIANCE SCHEDULE EVALUATION

Evaluation Responsible Person Identifier: Not reported Evaluation Responsible Sub-Organization: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1000305224 DIST/DIR: 0.470 NNW ELEVATION: 63 MAP ID: 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ADDRESS: 40 MOSHASSUCK RD. ID/Status: RID001202589

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US Environmental Protection Agency

Actual Return to Compliance Date: Not reported

Scheduled Compliance Date: Not reported

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 1985-08-30 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: No

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: Not reported Evaluation Responsible Sub-Organization: Not reported Actual Peturn to Compliance Date: Not reported

Actual Return to Compliance Date: Not reported Scheduled Compliance Date: Not reported

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 1991-05-24 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: No

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: R1JMC Evaluation Responsible Sub-Organization: Not reported Actual Return to Compliance Date: Not reported

Scheduled Compliance Date: Not reported

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Evaluation Date: 2000-08-02 00:00:00.0 Evaluation Responsible Agency: State

Found Violation: No

Evaluation Type Description: COMPLIANCE EVALUATION INSPECTION ON-SITE

Evaluation Responsible Person Identifier: JHRI
Evaluation Responsible Sub-Organization: Not reported
Actual Return to Compliance Date: Not reported
Scheduled Compliance Date: Not reported

Date of Request: Not reported

Date Response Received: Not reported

Request Agency: Not reported Former Citation: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

CORRACTS

EDR ID: 1000305224 DIST/DIR: 0.470 NNW ELEVATION: 63 MAP ID: 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ADDRESS: 40 MOSHASSUCK RD. ID/Status: RID001202589

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US EPA

CORRACTS:

Name: ARCH SPECIALTY CHEMICALS INC.

Address: 40 MOSHASSUCK RD.

Address 2: Not reported EPA ID: RID001202589 Area Name: ENTIRE FACILITY

Corrective Action: CA PRIORITIZATION-MEDIUM CA PRIORITY

Actual Date: 00:00.0

Air Release Indicator: Not reported

Groundwater Release Indicator: Not reported

Soil Release Indicator: Not reported

Surface Water Release Indicator: Not reported

Name: ARCH SPECIALTY CHEMICALS INC.

Address: 40 MOSHASSUCK RD.

Address 2: Not reported EPA ID: RID001202589 Area Name: ENTIRE FACILITY Corrective Action: REMEDY DECISION

Actual Date: 00:00.0

Air Release Indicator: Not reported

Groundwater Release Indicator: Not reported

Soil Release Indicator: Not reported

Surface Water Release Indicator: Not reported

Name: ARCH SPECIALTY CHEMICALS INC.

Address: 40 MOSHASSUCK RD.

Address 2: Not reported EPA ID: RID001202589 Area Name: ENTIRE FACILITY

Corrective Action: REMEDY CONSTRUCTION-REMEDY CONSTRUCTED

Actual Date: 00:00.0

Air Release Indicator: Not reported

Groundwater Release Indicator: Not reported

Soil Release Indicator: Not reported

Surface Water Release Indicator: Not reported

Name: ARCH SPECIALTY CHEMICALS INC.

Address: 40 MOSHASSUCK RD.

Address 2: Not reported EPA ID: RID001202589 Area Name: ENTIRE FACILITY

Corrective Action: HUMAN EXPOSURES CONTROLLED DETERMINATION-YES, APPLICABLE AS OF THIS

DATE

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

CORRACTS

EDR ID: 1000305224 DIST/DIR: 0.470 NNW ELEVATION: 63 MAP ID: 63

NAME: ARCH SPECIALTY CHEMICALS INC. Rev: 03/22/2021

ADDRESS: 40 MOSHASSUCK RD. ID/Status: RID001202589

LINCOLN, RI 02865 PROVIDENCE

SOURCE: US EPA

Actual Date: 00:00.0

Air Release Indicator: Not reported

Groundwater Release Indicator: Not reported

Soil Release Indicator: Not reported

Surface Water Release Indicator: Not reported

Name: ARCH SPECIALTY CHEMICALS INC.

Address: 40 MOSHASSUCK RD.

Address 2: Not reported EPA ID: RID001202589 Area Name: ENTIRE FACILITY

Corrective Action: RELEASE TO GW CONTROLLED DETERMINATION-YES, APPLICABLE AS OF THIS DATE

Actual Date: 00:00.0

Air Release Indicator: Not reported

Groundwater Release Indicator: Not reported

Soil Release Indicator: Not reported

Surface Water Release Indicator: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U003207787 DIST/DIR: 0.474 West ELEVATION: 102 MAP ID: 64

NAME: FAIRLAWN OIL SERVICE Rev: 03/01/2021

ADDRESS: 935 SMITHFIELD AVE

ID/Status: Soil Removal Only; No Further Action Require

ID/Status: 1830-LS ID/Status: 1830A-LS ID/Status: UST-1635

SOURCE: RI Department of Environmental Management

LUST:

Name: FAIRLAWN OIL SERVICE Address: 935 SMITHFIELD AVE City,State,Zip: LINCOLN, RI Project Number: 1830-LS Project Date: 1998-11-12 Facility Id: UST-1635 Fstatus Decode: Not reported Facility Status: INACTIVE

LINCOLN, RI

Name: FAIRLAWN OIL SERVICE Address: 935 SMITHFIELD AVE City,State,Zip: LINCOLN, RI Project Number: 1830A-LS Project Date: 2015-12-09 Facility Id: UST-1635

Fstatus Decode: Soil Removal Only; No Further Action Required Facility Status: Soil Removal Only; No Further Action Required

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U001713863 **DIST/DIR:** 0.476 ESE **ELEVATION:** 98 **MAP ID:** 65

NAME: FORMER VERIZON BUILDING Rev: 03/01/2021

ADDRESS: 20 CONGRESS ST

ID/Status: Soil Removal Only; No Further Action Require

ID/Status: 2626-LS ID/Status: UST-1227

SOURCE: RI Department of Environmental Management

LUST:

Name: FORMER VERIZON BUILDING

PAWTUCKET, RI

Address: 20 CONGRESS ST City,State,Zip: PAWTUCKET, RI Project Number: 2626-LS Project Date: 1994-05-24 Facility Id: UST-1227

Fstatus Decode: Soil Removal Only; No Further Action Required Facility Status: Soil Removal Only; No Further Action Required

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

LUST

EDR ID: U001212130 **DIST/DIR:** 0.486 ENE **ELEVATION:** 92 **MAP ID:** 66

NAME: PUBLIC SAFETY CTR. - FIRE DEPT/POLICE DEPT. Rev: 03/01/2021

ADDRESS: 150 ILLINOIS ST

ID/Status: Soil Removal Only; No Further Action Require

ID/Status: 0414-LS ID/Status: UST-1864

SOURCE: RI Department of Environmental Management

CENTRAL FALLS, RI

LUST:

Name: PUBLIC SAFETY CTR. - FIRE DEPT/POLICE DEPT.

Address: 150 ILLINOIS ST

City, State, Zip: CENTRAL FALLS, RI

Project Number: 0414-LS Project Date: 1999-01-26 Facility Id: UST-1864

Fstatus Decode: Soil Removal Only; No Further Action Required Facility Status: Soil Removal Only; No Further Action Required

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$114562441 DIST/DIR: 0.490 ESE ELEVATION: 86 MAP ID: P67

NAME: MONARCH BRASS & COPPER Rev: 04/07/2021

ADDRESS: 371 PINE STREET

DAWTHCKET PI

PAWTUCKET, RI ID/Status: NJD-26-0027

SOURCE: RI Department of Environmental Management

SHWS:

Name: MONARCH BRASS & COPPER

Address: 371 PINE STREET City,State,Zip: PAWTUCKET, RI Project Code: MOBC-NJD

Siterem Site Number: NJD-26-0027

Facility Status: Inactive

Project Code Desc: MOBC-NJD Project Date: 06/25/2001

Acres: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1016144984 DIST/DIR: 0.497 SE **ELEVATION:** MAP ID: Q68 82

NAME: TANURY G PLATING CO Rev: 03/22/2021

ID/Status: RIR000511642 ADDRESS: 200 CONANT ST - BLDG 2

> PAWTUCKET, RI 02860 **PROVIDENCE**

SOURCE: US Environmental Protection Agency

RCRA NonGen / NLR:

Date Form Received by Agency: 1981-10-05 00:00:00.0

Handler Name: TANÚRY G PLATING CO Handler Address: 200 CONANT ST - BLDG 2 Handler City, State, Zip: PAWTUCKET, RI 02860

EPA ID: RIR000511642

Contact Name: GEORGE TANURY Contact Address: Not reported Contact City, State, Zip: Not reported Contact Telephone: Not reported Contact Fax: Not reported Contact Email: Not reported Contact Title: VICE PRESIDENT

EPA Region: 01 Land Type: Private

Federal Waste Generator Description: Not a generator, verified

Non-Notifier: Not reported

Biennial Report Cycle: Not reported Accessibility: Not reported Active Site Indicator: Not reported State District Owner: Not reported State District: Not reported

Mailing Address: CONANT ST

Mailing City, State, Zip: PAWTUCKET, RI 02860

Owner Name: GEORGE TANURY

Owner Type: Private

Operator Name: GEORGE TANURY
Operator Type: Private

Short-Term Generator Activity: No

Importer Activity: No

Mixed Waste Generator: No Transporter Activity: No Transfer Facility Activity: No Recycler Activity with Storage: No

Small Quantity On-Site Burner Exemption: No Smelting Melting and Refining Furnace Exemption: No

Underground Injection Control: No Off-Site Waste Receipt: No Universal Waste Indicator: No

Universal Waste Destination Facility: No

Federal Universal Waste: No

Active Site Fed-Reg Treatment Storage and Disposal Facility: Not reported Active Site Converter Treatment storage and Disposal Facility: Not reported Active Site State-Reg Treatment Storage and Disposal Facility: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1016144984 DIST/DIR: 0.497 SE ELEVATION: 82 MAP ID: Q68

NAME: TANURY G PLATING CO

Rev: 03/22/2021

ADDRESS: 200 CONANT ST - BLDG 2 ID/Status: RIR000511642

PROVIDENCE

SOURCE: US Environmental Protection Agency

PAWTUCKET, RI 02860

Active Site State-Reg Handler: ---Federal Facility Indicator: Not reported Hazardous Secondary Material Indicator: NN

Sub-Part K Indicator: Not reported Commercial TSD Indicator: No

Treatment Storage and Disposal Type: Not reported 2018 GPRA Permit Baseline: Not on the Baseline 2018 GPRA Renewals Baseline: Not on the Baseline Permit Renewals Workload Universe: Not reported

Permit Workload Universe: Not reported
Permit Progress Universe: Not reported
Post-Closure Workload Universe: Not reported
Closure Workload Universe: Not reported
202 GPRA Corrective Action Baseline: No
Corrective Action Workload Universe: No
Subject to Corrective Action Universe: No

Non-TSDFs Where RCRA CA has Been Imposed Universe: No TSDFs Potentially Subject to CA Under 3004 (u)/(v) Universe: No TSDFs Only Subject to CA under Discretionary Auth Universe: No

Corrective Action Priority Ranking: No NCAPS ranking

Environmental Control Indicator: No Institutional Control Indicator: No Human Exposure Controls Indicator: N/A Groundwater Controls Indicator: N/A Operating TSDF Universe: Not reported Full Enforcement Universe: Not reported Significant Non-Complier Universe: No

Unaddressed Significant Non-Complier Universe: No Addressed Significant Non-Complier Universe: No

Significant Non-Complier With a Compliance Schedule Universe: No

Financial Assurance Required: Not reported

Handler Date of Last Change: 2014-08-20 00:00:00.0

Recognized Trader-Importer: No Recognized Trader-Exporter: No Importer of Spent Lead Acid Batteries: No Exporter of Spent Lead Acid Batteries: No Recycler Activity Without Storage: Not reported

Manifest Broker: Not reported Sub-Part P Indicator: No

Hazardous Waste Summary:

Waste Code: F002

Waste Description: THE FOLLOWING SPENT HALOGENATED SOLVENTS: TETRACHLOROETHYLENE,

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1016144984 DIST/DIR: 0.497 SE ELEVATION: 82 MAP ID: Q68

NAME: TANURY G PLATING CO

Rev: 03/22/2021

ADDRESS: 200 CONANT ST - BLDG 2
PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

METHYLENE CHLORIDE, TRICHLOROETHYLENE, 1,1,1-TRICHLOROETHANE,

CHLOROBENZENE, 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE,

ORTHO-DICHLOROBENZENE, TRICHLOROFLUOROMETHANE, AND 1,1,2,

TRICHLOROETHANE; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THE ABOVE HALOGENATED SOLVENTS OR THOSE SOLVENTS LISTED IN F001, F004, AND F005; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES.

Waste Code: F006

Waste Description: WASTEWATER TREATMENT SLUDGES FROM ELECTROPLATING OPERATIONS, EXCEPT

FROM THE FOLLOWING PROCESSES: (1) SULFURIC ACID ANODIZING OF ALUMINUM; (2) TIN PLATING ON CARBON STEEL; (3) ZINC PLATING (SEGREGATED BASIS) ON CARBON STEEL; (4) ALUMINUM OR ZINC-ALUMINUM PLATING ON CARBON STEEL; (5) CLEANING/STRIPPING ASSOCIATED WITH TIN, ZINC, AND ALUMINUM PLATING ON CARBON STEEL; AND (6) CHEMICAL ETCHING AND MILLING OF

ALUMINUM.

Waste Code: F007

Waste Description: SPENT CYANIDE PLATING BATH SOLUTIONS FROM ELECTROPLATING OPERATIONS.

Waste Code: F008

Waste Description: PLATING BATH RESIDUES FROM THE BOTTOM OF PLATING BATHS FROM

ELECTROPLATING OPERATIONS IN WHICH CYANIDES ARE USED IN THE PROCESS.

Waste Code: F009

Waste Description: SPENT STRIPPING AND CLEANING BATH SOLUTIONS FROM ELECTROPLATING

OPERATIONS IN WHICH CYANIDES ARE USED IN THE PROCESS.

Handler - Owner Operator:

Owner/Operator Indicator: Operator

Owner/Operator Name: GEORGE TANURY

Legal Status: Private

Date Became Current: 1980-11-04 00:00:00.

Date Ended Current: Not reported Owner/Operator Address: Not reported Owner/Operator City,State,Zip: Not reported Owner/Operator Telephone: Not reported Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Operator

Owner/Operator Name: GEORGE TANURY

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1016144984 DIST/DIR: 0.497 SE ELEVATION: 82 MAP ID: Q68

NAME: TANURY G PLATING CO

Rev: 03/22/2021

ADDRESS: 200 CONANT ST - BLDG 2 ID/Status: RIR000511642 PAWTUCKET. RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Legal Status: Private

Date Became Current: 1980-11-04 00:00:00.

Date Ended Current: Not reported Owner/Operator Address: Not reported Owner/Operator City,State,Zip: Not reported Owner/Operator Telephone: Not reported Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Owner

Owner/Operator Name: GEORGE TANURY

Legal Status: Private

Date Became Current: 1980-11-04 00:00:00.

Date Ended Current: Not reported Owner/Operator Address: Not reported Owner/Operator City,State,Zip: Not reported Owner/Operator Telephone: Not reported Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Owner

Owner/Operator Name: GEORGE TANURY

Legal Status: Private

Date Became Current: 1980-11-04 00:00:00.

Date Ended Current: Not reported Owner/Operator Address: Not reported Owner/Operator City,State,Zip: Not reported Owner/Operator Telephone: Not reported Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Owner/Operator Indicator: Operator

Owner/Operator Name: GEORGE TANURY

Legal Status: Private

Date Became Current: 1980-11-04 00:00:00.

Date Ended Current: Not reported Owner/Operator Address: Not reported Owner/Operator City,State,Zip: Not reported Owner/Operator Telephone: Not reported Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1016144984 DIST/DIR: 0.497 SE ELEVATION: 82 MAP ID: Q68

NAME: TANURY G PLATING CO

Rev: 03/22/2021

ADDRESS: 200 CONANT ST - BLDG 2 ID/Status: RIR000511642

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Owner/Operator Indicator: Owner

Owner/Operator Name: GEORGE TANURY

Legal Status: Private

Date Became Current: 1980-11-04 00:00:00.

Date Ended Current: Not reported
Owner/Operator Address: Not reported
Owner/Operator City, State, Zip: Not reported
Owner/Operator Telephone: Not reported
Owner/Operator Telephone Ext: Not reported

Owner/Operator Fax: Not reported Owner/Operator Email: Not reported

Historic Generators:

Receive Date: 1980-11-17 00:00:00.0 Handler Name: TANURY G PLATING CO

Federal Waste Generator Description: Large Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 1981-10-05 00:00:00.0 Handler Name: TANURY G PLATING CO

Federal Waste Generator Description: Not a generator, verified

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: Yes

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

Receive Date: 1980-11-04 00:00:00.0 Handler Name: TANURY G PLATING CO

Federal Waste Generator Description: Large Quantity Generator

State District Owner: Not reported

Large Quantity Handler of Universal Waste: No

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

RCRA-TSDF

EDR ID: 1016144984 DIST/DIR: 0.497 SE ELEVATION: 82 MAP ID: Q68

NAME: TANURY G PLATING CO

Rev: 03/22/2021

ID/Status: RIR000511642

ADDRESS: 200 CONANT ST - BLDG 2
PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: US Environmental Protection Agency

Recognized Trader Importer: No Recognized Trader Exporter: No Spent Lead Acid Battery Importer: No Spent Lead Acid Battery Exporter: No

Current Record: No

Non Storage Recycler Activity: Not reported Electronic Manifest Broker: Not reported

List of NAICS Codes and Descriptions:

NAICS Code: 332813

NAICS Description: ELECTROPLATING, PLATING, POLISHING, ANODIZING, AND COLORING

Facility Has Received Notices of Violations:

Violations: No Violations Found

Evaluation Action Summary:

Evaluations: No Evaluations Found

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

AUL

EDR ID: \$106495673 DIST/DIR: 0.497 SE ELEVATION: 82 MAP ID: Q69

NAME: CONANT STREET MILL Rev: 04/07/2021

ADDRESS: 200 CONANT STREET
PAWTUCKET, RI

SOURCE: RI Department of Environmental Management

AUL:

Name: CONANT STREET MILL Address: 200 CONANT STREET City,State,Zip: PAWTUCKET, RI

ELUR Date: 11/22/2006 Count Of Town: 1

Facility Size (Acres): 1.52 Project Code: COSM-HWM SA Date: Not reported

Plat: 44 Lot: 578

Siterem Site Number: SR-26-0284 A

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$106495673 DIST/DIR: 0.497 SE ELEVATION: 82 MAP ID: Q69

NAME: CONANT STREET MILL

ADDRESS: 200 CONANT STREET

DAWTHOKET BY

Rev: 04/07/2021

ID/Status: Inactive
ID/Status: COSM-HWM

PAWTUCKET, RI ID/Status: SR-26-0284 A

SOURCE: RI Department of Environmental Management

SHWS:

Name: CONANT STREET MILL Address: 200 CONANT STREET City, State, Zip: PAWTUCKET, RI Project Code: COSM-HWM

Siterem Site Number: SR-26-0284 A

Facility Status: Inactive

Project Code Desc: COSM-HWM

Project Date: 04/15/2004

Acres: 1.52

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: 1000310274 **DIST/DIR:** 0.502 ESE **ELEVATION:** 86 **MAP ID:** P70

NAME: STANDARD UNIFORM Rev: 04/07/2021

ADDRESS: 354 PINE ST ID/Status: Active

PAWTUCKET, RI 02860 ID/Status: STAN-HWM ID/Status: STAN-SUBC PROVIDENCE ID/Status: SR-26-1472

PROVIDENCE II

SOURCE: RI Department of Environmental Management

SHWS:

Name: STANDARD MANAGEMENT CORPORATION

Address: 354 PINE STREET City,State,Zip: PAWTUCKET, RI Project Code: STAN-HWM Siterem Site Number: SR-26-1472

Facility Status: Active

Project Code Desc: STAN-HWM Project Date: 01/18/2005

Acres: 1.3

Name: STANDARD MANAGEMENT CORPORATION

Address: 354 PINE STREET City,State,Zip: PAWTUCKET, RI Project Code: STAN-SUBC Siterem Site Number: SR-26-1472

Facility Status: Active

Project Code Desc: STAN-SUBC

Project Date: 05/12/2009

Acres: 1.4

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: 1001493832 DIST/DIR: 0.503 SW **ELEVATION:** 92 **MAP ID:** 71

NAME: JP COLLISION INC 04/07/2021 Rev:

ID/Status: Active ADDRESS: 616 WEEDEN ST ID/Status: CAS-HWM

PAWTUCKET, RI 02860 ID/Status: SR-26-1709

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: CALDAS AUTO SALES Address: 616 WEEDEN STREET City, State, Zip: PAWTUCKET, RI Project Code: CAS-HWM

Siterem Site Number: SR-26-1709

Facility Status: Active

Project Code Desc: CAS-HWM Project Date: 07/12/2013

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: 1008248001 **DIST/DIR:** 0.520 SE **ELEVATION:** 81 **MAP ID:** 72

NAME: NORTH EAST KNITTING Rev: 04/07/2021

ADDRESS: 179 CONANT ST ID/Status: Inactive ID/Status: GLNF-HWM PAWTUCKET, RI 02860 ID/Status: SR-26-0542

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: GLOBE NARROW FABRICS (FORMER)

Address: 179 CONANT STREET City,State,Zip: PAWTUCKET, RI Project Code: GLNF-HWM Siterem Site Number: SR-26-0542

Facility Status: Inactive

Project Code Desc: GLNF-HWM Project Date: 01/20/1994 Acres: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$122982214 DIST/DIR: 0.574 WSW ELEVATION: 94 MAP ID: 73

NAME: CUMBERLAND FARMS STORE#RI0484 Rev: 04/07/2021

ADDRESS: 823 SMITHFIELD AVENUE (791 SMITHFIELD AVE,147 RESER D) Status: Active UD Status: CFLIN-HWM

LINCOLN, RI ID/Status: SR-18-1893

SOURCE: RI Department of Environmental Management

SHWS:

Name: CUMBERLAND FARMS STORE#RI0484

Address: 823 SMITHFIELD AVENUE (791 SMITHFIELD AVE,147 RESERVOIR AVE)

City,State,Zip: LINCOLN, RI Project Code: CFLIN-HWM Siterem Site Number: SR-18-1893

Facility Status: Active

Project Code Desc: CFLIN-HWM

Project Date: 06/07/2018

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: S103246883 DIST/DIR: 0.582 ENE **ELEVATION:** 88 **MAP ID:** 74

NAME: BEACON STREET DISPOSAL 04/07/2021 Rev: ID/Status: Inactive ADDRESS: BEACON & WASHINGTON ST ID/Status: BSD-HWM

CENTRAL FALLS, RI ID/Status: SR-04-0111

SOURCE: RI Department of Environmental Management

SHWS:

Name: BEACON STREET DISPOSAL Address: BEACON & WASHINGTON ST City, State, Zip: CENTRAL FALLS, RI

Project Code: BSD-HWM

Siterem Site Number: SR-04-0111

Facility Status: Inactive Project Code Desc: BSD-HWM Project Date: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$111440573 **DIST/DIR:** 0.595 ESE **ELEVATION:** 82 **MAP ID:** 75

NAME: C-TOWN **Rev**: 04/07/2021

ADDRESS: 300 BARTON STREET

DAWTHCKET BL

ID/Status: Active ID/Status: CTN-SUBC

PAWTUCKET, RI ID/Status: SR-26-0322 B

SOURCE: RI Department of Environmental Management

SHWS:

Name: C-TOWN

Address: 300 BARTON STREET City,State,Zip: PAWTUCKET, RI Project Code: CTN-SUBC

Siterem Site Number: SR-26-0322 B

Facility Status: Active

Project Code Desc: CTN-SUBC Project Date: 12/06/2011

Acres: 4.4

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$118905826 **DIST/DIR:** 0.629 ESE **ELEVATION:** 82 **MAP ID:** 76

NAME: AUTO ZONE **Rev**: 04/07/2021

ADDRESS: 262 BARTON STREET

ID/Status: Active

PAWTUCKET, RI ID/Status: AUTOZ-HWM ID/Status: SR-26-0322 A

SOURCE: RI Department of Environmental Management

SHWS:

Name: AUTO ZONE

Address: 262 BARTON STREET City, State, Zip: PAWTUCKET, RI Project Code: AUTOZ-HWM Siterem Site Number: SR-26-0322 A Facility Status: Active

Project Code Desc: AUTOZ-HWM

Project Date: 03/21/2013

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$123692909 DIST/DIR: 0.696 SE ELEVATION: 78 MAP ID: R77

NAME: PAWTUCKET/CENTRAL FALLS COMMUTER RAIL STATION Rev: 04/07/2021

ADDRESS: 280 PINE STREET

DAMETHOUSET BY

ID/Status: Active
ID/Status: PCFT-HWM

PAWTUCKET, RI ID/Status: SR-26-1938

SOURCE: RI Department of Environmental Management

SHWS:

Name: PAWTUCKET/CENTRAL FALLS COMMUTER RAIL STATION

Address: 280 PINE STREET City,State,Zip: PAWTUCKET, RI Project Code: PCFT-HWM Siterem Site Number: SR-26-1938

Facility Status: Active

Project Code Desc: PCFT-HWM

Project Date: 03/14/2019

Acres: 3.5

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$123692908 DIST/DIR: 0.696 SE ELEVATION: 78 MAP ID: R78

NAME: PAWTUCKET/CENTRAL FALLS COMMUTER RAIL STATION Rev: 04/07/2021

ADDRESS: 280 PINE STREET

ID/Status: Active

280 PINE STREET ID/Status: PCFT-DOT PAWTUCKET, RI ID/Status: SR-26-

SOURCE: RI Department of Environmental Management

SHWS:

Name: PAWTUCKET/CENTRAL FALLS COMMUTER RAIL STATION

Address: 280 PINE STREET City,State,Zip: PAWTUCKET, RI Project Code: PCFT-DOT Siterem Site Number: SR-26-Facility Status: Active

Project Code Desc: PCFT-DOT Project Date: 03/18/2019 Acres: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: 1008248003 DIST/DIR: 0.727 SSW ELEVATION: 50 MAP ID: 79

NAME: LEVIN PLATING CO. Rev: 04/07/2021

ADDRESS: 560 MINERAL SPRING AVE ID/Status: Active ID/Status: MSM-HWM PAWTUCKET, RI 02860 ID/Status: SR-26-1139 A

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: PROCACCIANTI MILL

Address: 560 MINERAL SPRING AVENUE

City,State,Zip: PAWTUCKET, RI Project Code: MSM-HWM

Siterem Site Number: SR-26-1139 A

Facility Status: Active

Project Code Desc: MSM-HWM Project Date: Not reported

Acres: 5

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$103247104 **DIST/DIR:** 0.736 West **ELEVATION:** 219 **MAP ID:** 80

NAME:MCFADDEN PROPERTYRev:04/07/2021ADDRESS:51 WILLIAMS STREETID/Status: Inactive
ID/Status: MEDN-HWM

ID/Status: MFDN-HWM LINCOLN, RI ID/Status: SR-18-0798

SOURCE: RI Department of Environmental Management

SHWS:

Name: MCFADDEN PROPERTY Address: 51 WILLIAMS STREET City,State,Zip: LINCOLN, RI Project Code: MFDN-HWM Siterem Site Number: SR-18-0798

Facility Status: Inactive

Project Code Desc: MFDN-HWM

Project Date: 03/18/1994 Acres: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

1000162730 DIST/DIR: 0.740 East **ELEVATION:** EDR ID: 103 **MAP ID**: 81

NAME: **CUMBERLAND FARMS #3809** 04/07/2021 Rev:

ID/Status: Inactive ADDRESS: 478 BROAD ST ID/Status: CFBS-HWM CENTRAL FALLS, RI 02863

ID/Status: SR-04-1758 **PROVIDENCE**

SOURCE: RI Department of Environmental Management

SHWS:

Name: CUMBERLAND FARMS - BROAD STREET - VO562

Address: 478 BROAD STREET City, State, Zip: CENTRAL FALLS, RI

Project Code: CFBS-HWM

Siterem Site Number: SR-04-1758

Facility Status: Inactive

Project Code Desc: CFBS-HWM

Project Date: 11/13/2014

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: S106859355 DIST/DIR: 0.744 SE **ELEVATION:** 79 **MAP ID**: 82

NAME: PINE STREET ASSOCIATES 04/07/2021 Rev:

ID/Status: Active ADDRESS: 258 PINE STREET ID/Status: PINE-HWM

PAWTUCKET, RI ID/Status: SR-26-1109

SOURCE: RI Department of Environmental Management

SHWS:

Name: PINE STREET ASSOCIATES Address: 258 PINE STREET City, State, Zip: PAWTUCKET, RI Project Code: PINE-HWM

Siterem Site Number: SR-26-1109

Facility Status: Active

Project Code Desc: PINE-HWM Project Date: 03/16/2005

Acres: 2.4

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$107732800 **DIST/DIR:** 0.748 East **ELEVATION:** 103 **MAP ID:** 83

NAME: CHARISMA MANUFACTURING CO. Rev: 04/07/2021

ADDRESS: 400 BROAD ST

CENTRAL FALLS PL03863

ID/Status: Inactive ID/Status: FDP-HWM

CENTRAL FALLS, RI 02863 ID/Status: SR-04-1753 PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: FAMILY DOLLAR (PROPOSED) - 400 BROAD STREET

Address: 400 BROAD STREET City,State,Zip: CENTRAL FALLS, RI

Project Code: FDP-HWM

Siterem Site Number: SR-04-1753

Facility Status: Inactive Project Code Desc: FDP-HWM Project Date: 09/19/2014

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$107733080 **DIST/DIR:** 0.771 ESE **ELEVATION:** 76 **MAP ID:** 84

NAME: UNION WADDING CO. Rev: 04/07/2021

ADDRESS: 125 GOFF AVE ID/Status: Active

PAWTUCKET, RI 02862 ID/Status: WLOO-HWM ID/Status: SR-26-1976

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: WATERLOO LOFTS Address: 125 GOFF AVENUE City,State,Zip: PAWTUCKET, RI Project Code: WLOO-HWM Siterem Site Number: SR-26-1976

Facility Status: Active

Project Code Desc: WLOO-HWM

Project Date: 11/13/2019

Acres: 5.7

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

ID/Status: SR-26-1762

EDR ID: 1000432909 DIST/DIR: 0.787 SSW **ELEVATION:** 53 **MAP ID**: 85

NAME: PROVIDENCE METALLIZING 04/07/2021 Rev: ID/Status: Inactive **ADDRESS: 51 FAIRLAWN AVENUE** ID/Status: PRM-SFA PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: PROVIDENCE METALIZING Address: 51 FAIRLAWN AVENUE City, State, Zip: PAWTUCKET, RI Project Code: PRM-SFA Siterem Site Number: SR-26-1762

Facility Status: Inactive Project Code Desc: PRM-SFA Project Date: 03/20/1987

Acres: 7

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

CORRACTS

EDR ID: 1000432909 DIST/DIR: 0.787 SSW ELEVATION: 53 MAP ID: 85

NAME: PROVIDENCE METALLIZING Rev: 03/22/2021

ADDRESS: 51 FAIRLAWN AVENUE ID/Status: RID001187277

PROVIDENCE

SOURCE: US EPA

CORRACTS:

Name: PROVIDENCE METALLIZING CO INC

PAWTUCKET, RI 02860

Address: 51 FAIRLAWN AVE Address 2: Not reported EPA ID: RID001187277 Area Name: ENTIRE FACILITY

Corrective Action: REFERRED TO STATE

Actual Date: 00:00.0

Air Release Indicator: Not reported

Groundwater Release Indicator: Not reported

Soil Release Indicator: Not reported

Surface Water Release Indicator: Not reported

Name: PROVIDENCE METALLIZING CO INC

Address: 51 FAIRLAWN AVE Address 2: Not reported EPA ID: RID001187277 Area Name: ENTIRE FACILITY

Corrective Action: CA PRIORITIZATION-HIGH CA PRIORITY

Actual Date: 00:00.0

Air Release Indicator: Not reported

Groundwater Release Indicator: Not reported

Soil Release Indicator: Not reported

Surface Water Release Indicator: Not reported

Name: PROVIDENCE METALLIZING CO INC

Address: 51 FAIRLAWN AVE Address 2: Not reported EPA ID: RID001187277 Area Name: ENTIRE FACILITY

Corrective Action: REFERRED TO A NON-RCRA AUTHORITY-REFERRED TO CERCLA

Actual Date: 00:00.0

Air Release Indicator: Not reported

Groundwater Release Indicator: Not reported

Soil Release Indicator: Not reported

Surface Water Release Indicator: Not reported

Name: PROVIDENCE METALLIZING CO INC

Address: 51 FAIRLAWN AVE Address 2: Not reported EPA ID: RID001187277 Area Name: ENTIRE FACILITY

Corrective Action: STABILIZATION MEASURES EVALUATION-FURTHER INVESTIGATION NECESSARY

Actual Date: 00:00.0

- Continued on next page -

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

CORRACTS

EDR ID: 1000432909 DIST/DIR: 0.787 SSW ELEVATION: 53 MAP ID: 85

NAME: PROVIDENCE METALLIZING Rev: 03/22/2021

ADDRESS: 51 FAIRLAWN AVENUE ID/Status: RID001187277

PAWTUCKET, RI 02860 PROVIDENCE

SOURCE: US EPA

Air Release Indicator: Not reported

Groundwater Release Indicator: Not reported

Soil Release Indicator: Not reported

Surface Water Release Indicator: Not reported

Name: PROVIDENCE METALLIZING CO INC

Address: 51 FAIRLAWN AVE Address 2: Not reported EPA ID: RID001187277 Area Name: ENTIRE FACILITY

Corrective Action: HUMAN EXPOSURES CONTROLLED DETERMINATION-FACILITY DOES NOT MEET

DEFINITION Actual Date: 00:00.0

Air Release Indicator: Not reported

Groundwater Release Indicator: Not reported

Soil Release Indicator: Not reported

Surface Water Release Indicator: Not reported

Name: PROVIDENCE METALLIZING CO INC

Address: 51 FAIRLAWN AVE Address 2: Not reported EPA ID: RID001187277 Area Name: ENTIRE FACILITY

Corrective Action: RELEASE TO GW CONTROLLED DETERMINATION-FACILITY DOES NOT MEET

DEFINITION Actual Date: 00:00.0

Air Release Indicator: Not reported

Groundwater Release Indicator: Not reported

Soil Release Indicator: Not reported

Surface Water Release Indicator: Not reported

Name: PROVIDENCE METALLIZING CO INC

Address: 51 FAIRLAWN AVE Address 2: Not reported EPA ID: RID001187277 Area Name: ENTIRE FACILITY

Corrective Action: RFA COMPLETED-ASSESSMENT WAS A PA-PLUS

Actual Date: 00:00.0

Air Release Indicator: Not reported

Groundwater Release Indicator: Not reported

Soil Release Indicator: Not reported

Surface Water Release Indicator: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$104180142 DIST/DIR: 0.800 NE ELEVATION: 83 MAP ID: 86

NAME: JANOWSKI LEEDON WEBBING Rev: 04/07/2021

ADDRESS: 86 TREMONT STREET

CENTRAL FALLS, RI

ID/Status: Inactive ID/Status: JLW-HWM ID/Status: SR-04-0669

SOURCE: RI Department of Environmental Management

SHWS:

Name: JANOWSKI LEEDON WEBBING Address: 86 TREMONT STREET City,State,Zip: CENTRAL FALLS, RI

Project Code: JLW-HWM

Siterem Site Number: SR-04-0669

Facility Status: Inactive Project Code Desc: JLW-HWM Project Date: 08/10/1999

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: 1016678706 DIST/DIR: 0.819 ENE ELEVATION: 108 MAP ID: 87

NAME: FAMILY DOLLAR #7972 Rev: 04/07/2021

ADDRESS: 839 BROAD ST
CENTRAL FALLS, RI 02863

ID/Status: Inactive ID/Status: MDON-HWM ID/Status: SR-04-0797

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: MCDONALD'S

Address: 839 BROAD STREET City,State,Zip: CENTRAL FALLS, RI Project Code: MDON-HWM Siterem Site Number: SR-04-0797

Facility Status: Inactive

Project Code Desc: MDON-HWM

Project Date: 08/28/2006

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$104943039 **DIST/DIR:** 0.828 ESE **ELEVATION:** 76 **MAP ID:** \$88

 NAME:
 CENTENIAL TOWERS
 Rev:
 04/07/2021

 ADDRESS:
 35 GOFF STREET
 ID/Status: Inactive ID/Status: CENT-HWM

PAWTUCKET, RI ID/Status: CENT-HWM ID/Status: SR-26-0228

SOURCE: RI Department of Environmental Management

SHWS:

Name: CENTENIAL TOWERS Address: 35 GOFF STREET City,State,Zip: PAWTUCKET, RI Project Code: CENT-HWM Siterem Site Number: SR-26-0228

Facility Status: Inactive

Project Code Desc: CENT-HWM

Project Date: 09/21/2000

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

ID/Status: Inactive

ID/Status: MACO-HWM

ID/Status: SR-26-0768

1000174808 DIST/DIR: 0.830 SE **ELEVATION:** EDR ID: 88 **MAP ID**: 89

MAACO AUTO PAINTING & BODY WORKS NAME: 04/07/2021 Rev:

ADDRESS: 501 MAIN ST

PAWTUCKET, RI 02860

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: MAACO

Address: 501 MAIN STREET City, State, Zip: PAWTUCKET, RI Project Code: MACO-HWM Siterem Site Number: SR-26-0768 Facility Status: Inactive

Project Code Desc: MACO-HWM

Project Date: 06/19/2000

Acres: 1

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$106250418 DIST/DIR: 0.840 SE ELEVATION: 78 MAP ID: 90

NAME:PARKIN YARN (FORMER)Rev:04/07/2021ADDRESS:21 COMMERCE STREETID/Status: Inactive ID/Status: PARY-HWM

PAWTUCKET, RI ID/Status: PARY-HWM ID/Status: SR-26-1063

SOURCE: RI Department of Environmental Management

SHWS:

Name: PARKIN YARN (FORMER) Address: 21 COMMERCE STREET City,State,Zip: PAWTUCKET, RI Project Code: PARY-HWM Siterem Site Number: SR-26-1063

Facility Status: Inactive

Project Code Desc: PARY-HWM

Project Date: 02/10/2004

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$109172350 **DIST/DIR:** 0.859 ESE **ELEVATION:** 77 **MAP ID:** \$91

NAME:NATIONAL GRID - VAULT 355Rev:04/07/2021ADDRESS:GOFF & BROAD STREETID/Status: Inactive ID/Status: NE355-HWM

PAWTUCKET, RI ID/Status: SR-26-0946

SOURCE: RI Department of Environmental Management

SHWS:

Name: NATIONAL GRID - VAULT 355 Address: GOFF & BROAD STREET City,State,Zip: PAWTUCKET, RI Project Code: NE355-HWM Siterem Site Number: SR-26-0946

Facility Status: Inactive

Project Code Desc: NE355-HWM

Project Date: 05/02/2008

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: 1000288133 **DIST/DIR:** 0.866 NE **ELEVATION:** 80 **MAP ID:** T92

NAME: SHELL OIL PRODUCTS COMPANY

Rev: 04/07/2021

ID/Status: Inactive

ADDRESS: 957 BROAD ST

CENTRAL FALLS, RI 02863

ID/Status: Inactive ID/Status: SHSS-NJD ID/Status: NJD-04-0045

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: SHELL SERVICE STATION Address: 957 BROAD STREET City,State,Zip: CENTRAL FALLS, RI

Project Code: SHSS-NJD

Siterem Site Number: NJD-04-0045

Facility Status: Inactive
Project Code Desc: SHSS-NJD
Project Date: 10/23/2003
Acres: Not reported

6602106.2s Site Details Page - 259

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

ID/Status: SR-18-0762

EDR ID: 1000378782 DIST/DIR: 0.879 North **ELEVATION:** 57 **MAP ID**: 93

NAME: LONSDALE NARROWS 04/07/2021 Rev:

ID/Status: Active ADDRESS: OFF LONSDALE AVENUE ID/Status: LDN-SFA LINCOLN, RI 02865

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: LONSDALE NARROWS Address: OFF LONSDALE AVENUE

City, State, Zip: LINCOLN, RI Project Code: LDN-SFA

Siterem Site Number: SR-18-0762

Facility Status: Active Project Code Desc: LDN-SFA Project Date: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: U001892457 **DIST/DIR:** 0.881 NE **ELEVATION:** 72 **MAP ID:** T94

 NAME:
 HASBRO, INC.
 Rev:
 04/07/2021

 ADDRESS:
 1033 BROAD ST
 ID/Status: Inactive ID/Status: TOYS-HWM

CENTRAL FALLS, RI ID/Status: SR-04-0593

SOURCE: RI Department of Environmental Management

SHWS:

Name: HASBRO, INC.

Address: 1033 BROAD STREET City, State, Zip: CENTRAL FALLS, RI

Project Code: TOYS-HWM Siterem Site Number: SR-04-0593

Facility Status: Inactive

Project Code Desc: TOYS-HWM Project Date: 08/19/1997

Project Date: 08/19/1997 Acres: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$104410790 **DIST/DIR:** 0.892 ESE **ELEVATION:** 76 **MAP ID:** 95

NAME: DENNIS PRINTING COMPANY

ADDRESS: 69 MONTGOMERY STREET

Rev: 04/07/2021

ID/Status: Inactive
ID/Status: DEND HIV/M

PAWTUCKET, RI ID/Status: DENP-HWM ID/Status: SR-26-0369

SOURCE: RI Department of Environmental Management

SHWS:

Name: DENNIS PRINTING COMPANY Address: 69 MONTGOMERY STREET City,State,Zip: PAWTUCKET, RI Project Code: DENP-HWM Siterem Site Number: SR-26-0369

Facility Status: Inactive

Project Code Desc: DENP-HWM

Project Date: 01/27/2000

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: S105537069 DIST/DIR: 0.894 South **ELEVATION:** 41 **MAP ID:** 96

NAME: ONE SAN ANTONIO WAY PROPERTY 04/07/2021 Rev:

ID/Status: Inactive ADDRESS: 1 SAN ANTONIO WAY ID/Status: OSAW-HWM PAWTUCKET, RI

ID/Status: SR-26-1044

SOURCE: RI Department of Environmental Management

SHWS:

Name: ONE SAN ANTONIO WAY PROPERTY

Address: 1 SAN ANTONIO WAY City, State, Zip: PAWTUCKET, RI Project Code: OSAW-HWM Siterem Site Number: SR-26-1044

Facility Status: Inactive

Project Code Desc: OSAW-HWM

Project Date: 06/11/2002

Acres: 2.3

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$102869429 **DIST/DIR:** 0.907 East **ELEVATION:** 61 **MAP ID:** 97

NAME: CASCADE BEVERAGE COMPANY Rev: 04/07/2021

ADDRESS: 500 HIGH STREET

CENTRAL FALLS BI

ID/Status: Inactive ID/Status: CBC-HWM

CENTRAL FALLS, RI ID/Status: SR-04-0230

SOURCE: RI Department of Environmental Management

SHWS:

Name: CASCADE BEVERAGE COMPANY

Address: 500 HIGH STREET City, State, Zip: CENTRAL FALLS, RI

Project Code: CBC-HWM

Siterem Site Number: SR-04-0230

Facility Status: Inactive

Project Code Desc: CBC-HWM Project Date: 04/19/2012

Acres: 1

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: S118567459 **DIST/DIR:** 0.924 ESE **ELEVATION:** 71 **MAP ID:** 98

NAME: WEINBERG COMMERCIAL PROPERTY 2 Rev: 04/07/2021

ADDRESS: 26 SUMMER STREET

ID/Status: Inactive ID/Status: WCP2-HWM

PAWTUCKET, RI ID/Status: SR-26-1789 B

SOURCE: RI Department of Environmental Management

SHWS:

Name: WEINBERG COMMERCIAL PROPERTY 2

Address: 26 SUMMER STREET City,State,Zip: PAWTUCKET, RI Project Code: WCP2-HWM

Siterem Site Number: SR-26-1789 B

Facility Status: Inactive

Project Code Desc: WCP2-HWM

Project Date: 10/27/2015

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

1000422222 DIST/DIR: 0.951 SSW **ELEVATION:** EDR ID: 63 MAP ID: U99

NAME: BLACKSTONE VALLEY REGIONAL TRANSFER STATION 04/07/2021 Rev:

ID/Status: Active ADDRESS: 240 GROTTO AVE

ID/Status: PAWT-SFA PAWTUCKET, RI 02860 ID/Status: SR-26-1078

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: PAWTUCKET INCINERATOR Address: 240 GROTTO AVENUE City, State, Zip: PAWTUCKET, RI Project Code: PAWT-SFA Siterem Site Number: SR-26-1078

Facility Status: Active

Project Code Desc: PAWT-SFA Project Date: 03/11/1988 Acres: Not reported

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: S106495672 DIST/DIR: 0.960 SSW **ELEVATION:** 73 **MAP ID:** U100

FOOLPROOF BREWING COMPANY LLC NAME: 04/07/2021 Rev:

ID/Status: Inactive ADDRESS: 241 GROTTO AVE ID/Status: AFRI-HWM

PAWTUCKET, RI 02860 ID/Status: SR-26-0028

SOURCE: RI Department of Environmental Management

SHWS:

Name: AFRICO PROPERTY Address: 241 GROTTO AVENUE City, State, Zip: PAWTUCKET, RI Project Code: AFRI-HWM Siterem Site Number: SR-26-0028

Facility Status: Inactive Project Code Desc: AFRI-HWM Project Date: 06/17/2004

Acres: 4.42

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$105857067 DIST/DIR: 0.976 SSE ELEVATION: 89 MAP ID: 101

NAME: OFFENHAUSER RI/CONTINENTAL BRONZE Rev: 04/07/2021

ADDRESS: 11 WEBB STREET ID/Status: Active ID/Status: OFFH-HWM ID/Status: SR-26-1036A

SOURCE: RI Department of Environmental Management

SHWS:

Name: OFFENHAUSER RI /CONTINENTAL BRONZE

Address: 11 WEBB STREET City,State,Zip: PAWTUCKET, RI Project Code: OFFH-HWM

Siterem Site Number: SR-26-1036A

Facility Status: Active

Project Code Desc: OFFH-HWM

Project Date: 05/15/2003

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

1000315637 DIST/DIR: 0.984 East **MAP ID:** V102 EDR ID: **ELEVATION:** 66

NAME: **TEKNICOTE INC** 04/07/2021 Rev: ID/Status: Monitoring ADDRESS: 396 ROOSEVELT AVE ID/Status: RAR-HWM ID/Status: SR-04-1850

CENTRAL FALLS, RI 02863

PROVIDENCE

SOURCE: RI Department of Environmental Management

SHWS:

Name: RESIDENCES AT ROOSEVELT, LLC (TEKNICOTE (FORMER))

Address: 396 ROOSEVELT AVENUE City, State, Zip: CENTRAL FALLS, RI

Project Code: RAR-HWM

Siterem Site Number: SR-04-1850 Facility Status: Monitoring Project Code Desc: RAR-HWM Project Date: 07/27/2017

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

0.991 East EDR ID: S108962981 DIST/DIR: **ELEVATION: MAP ID:** V103 64

NAME: KILMARTIN REALTY 04/07/2021 Rev:

ID/Status: Active ADDRESS: 413 ROOSEVELT AVENUE ID/Status: KILM-HWM

CENTRAL FALLS, RI ID/Status: SR-04-0704

SOURCE: RI Department of Environmental Management

SHWS:

Name: KILMARTIN REALTY

Address: 413 ROOSEVELT AVENUE City, State, Zip: CENTRAL FALLS, RI

Project Code: KILM-HWM Siterem Site Number: SR-04-0704

Facility Status: Active

Project Code Desc: KILM-HWM Project Date: 09/12/2007

Acres: 2.96

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$108963047 **DIST/DIR:** 0.993 East **ELEVATION:** 52 **MAP ID:** 104

NAME: NAVIGANT CREDIT UNION (BLACKSTONE RIVER REALTY) Rev: 04/07/2021

ADDRESS: 501 ROOSEVELT AVENUE ID/Status: Inactive ID/Status: NCUP-HWM

CENTRAL FALLS, RI ID/Status: SR-04-0133

SOURCE: RI Department of Environmental Management

SHWS:

Name: NAVIGANT CREDIT UNION (BLACKSTONE RIVER REALTY)

Address: 501 ROOSEVELT AVENUÈ City,State,Zip: CENTRAL FALLS, RI

Project Code: NCUP-HWM Siterem Site Number: SR-04-0133

Facility Status: Inactive

Project Code Desc: NCUP-HWM

Project Date: 10/16/2009

Acres: 2.5

Site Detail Report

Target Property: 10 HIGGINSON AVENUE JOB: P7037

CENTRAL FALLS, RI 02863

SHWS

EDR ID: \$105857059 **DIST/DIR:** 0.999 East **ELEVATION:** 53 **MAP ID:** 105

NAME: HEALTH TEX BUILDING

ADDRESS: 558 ROOSEVELT AVENUE

STANDARD STANDARD

CENTRAL FALLS, RI ID/Status: SR-04-0597

SOURCE: RI Department of Environmental Management

SHWS:

Name: HEALTH TEX BUILDING Address: 558 ROOSEVELT AVENUE City,State,Zip: CENTRAL FALLS, RI

Project Code: HTB-HWM

Siterem Site Number: SR-04-0597

Facility Status: Inactive Project Code Desc: HTB-HWM Project Date: 04/11/2003

Acres: 4.53

Database Descriptions

NPL: NPL National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices. NPL - National Priority List Proposed NPL - Proposed National Priority List Sites.

NPL Delisted: Delisted NPL The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate. Delisted NPL - National Priority List Deletions

CERCLIS: SEMS SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL. SEMS - Superfund Enterprise Management System

NFRAP: SEMS-ARCHIVE SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that, based upon available information, the location is not judged to be potential NPL site. SEMS-ARCHIVE - Superfund Enterprise Management System Archive

RCRA COR ACT: CORRACTS CORRACTS identifies hazardous waste handlers with RCRA corrective action activity. CORRACTS - Corrective Action Report

RCRA TSD: RCRA-TSDF RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste. RCRA-TSDF - RCRA - Treatment, Storage and Disposal

RCRA GEN: RCRA-LQG RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month. RCRA-LQG - RCRA - Large Quantity Generators RCRA-SQG - RCRA - Small Quantity Generators. RCRA-VSQG - RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity Generators).

Federal IC / EC: US ENG CONTROLS A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health. US ENG CONTROLS - Engineering Controls Sites List US INST CONTROLS - Institutional Controls Sites List.

Database Descriptions

ERNS: ERNS Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances. ERNS - Emergency Response Notification System

State/Tribal CERCLIS: SHWS This list includes sites that have been investigated under the Federal CERCLIS program (SFA sites) as well as sites that have notified under the state program or have been investigated for hazardous substances (HWM sites). SHWS - List of CERCLIS and State Sites in RI

State/Tribal SWL: SWF/LF Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites. SWF/LF - Solid Waste Management Facilities

State/Tribal LTANKS: LUST The LUST Case List is a summary of UST Facilities in RI with leaking USTs, which includes information on the date of release discovery and the status of the LUST Case (active, soil removal only, or inactive). LUST - LUST Case List INDIAN LUST R6 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R10 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R10 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R8 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R7 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R1 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R4 - Leaking Underground Storage Tanks on Indian Land.

State/Tribal Tanks: UST The UST Master List is a summary of registered UST Facilities in RI, which includes information on abandoned, in use, permanently closed and temporarily closed USTs. UST - UST Master List AST - Aboveground Storage Tanks. INDIAN UST R6 - Underground Storage Tanks on Indian Land. INDIAN UST R1 - Underground Storage Tanks on Indian Land. INDIAN UST R1 - Underground Storage Tanks on Indian Land. INDIAN UST R4 - Underground Storage Tanks on Indian Land. INDIAN UST R7 - Underground Storage Tanks on Indian Land. INDIAN UST R7 - Underground Storage Tanks on Indian Land. INDIAN UST R8 - Underground Storage Tanks on Indian Land. INDIAN UST R8 - Underground Storage Tanks on Indian Land. INDIAN UST R8 - Underground Storage Tanks on Indian Land.

State/Tribal IC / EC: AUL This list was developed by RIDEM for use as a general reference and are not meant to be legally authoritative source for the location of hazardous materials, nor for the status, condition or permissible use of a site. AUL - Waste Management Sites with Environmental Land Use Restrictions

ST/Tribal Brownfields: BROWNFIELDS Brownfields are real properties where the expansion, redevelopment or reuse may be complicated by the actual or potential presence of a hazardous substance, pollutant, or contaminat. BROWNFIELDS - Brownfields Site List

US Brownfields: US BROWNFIELDS Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs. US BROWNFIELDS - A Listing of Brownfields Sites

Other Haz Sites: US CDL A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments. US CDL - Clandestine Drug Labs PFAS - Sites With Known PFAS Contamination.

Database Descriptions

Spills: HMIRS Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT. HMIRS - Hazardous Materials Information Reporting System SPILLS - Oil & Hazardous Material Response Log/Spill Report. SPILLS 90 - SPILLS90 data from FirstSearch.

Other: RCRA NonGen / NLR RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste. RCRA NonGen / NLR - RCRA - Non Generators / No Longer Regulated FEDLAND - Federal and Indian Lands. TSCA - Toxic Substances Control Act. TRIS - Toxic Chemical Release Inventory System. SSTS - Section 7 Tracking Systems. RAATS - RCRA Administrative Action Tracking System. PRP - Potentially Responsible Parties. PADS - PCB Activity Database System. ICIS - Integrated Compliance Information System. FTTS - FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act). FTTS INSP - FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act). MLTS - Material Licensing Tracking System. RADINFO - Radiation Information Database. BRS - Biennial Reporting System. INDIAN RESERV - Indian Reservations. US AIRS (AFS) - Aerometric Information Retrieval System Facility Subsystem (AFS). US AIRS MINOR - Air Facility System Data. FINDS - Facility Index System/Facility Registry System. PCS ENF - Enforcement data. PCS INACTIVE - Listing of Inactive PCS Permits. MINES MRDS - Mineral Resources Data System. PCS - Permit Compliance System.

Database Sources

NPL: EPA	
	Updated Quarterly
NPL Delisted: EPA	
	Updated Quarterly
CERCLIS: EPA	
	Updated Quarterly
NFRAP: EPA	
	Updated Quarterly
RCRA COR ACT: EPA	
	Updated Quarterly
RCRA TSD: Environmer	ntal Protection Agency
	Updated Quarterly
RCRA GEN: Environme	ntal Protection Agency
	Updated Quarterly
Federal IC / EC: Environ	mental Protection Agency
	Varies
ERNS: National Respon	se Center, United States Coast Guard
	Updated Quarterly
State/Tribal CERCLIS: [Department of Environmental Management
	Updated Semi-Annually
State/Tribal SWL: Depai	rtment of Environmental Management
	Updated Semi-Annually
State/Tribal LTANKS: Do	epartment of Environmental Management
	Updated Quarterly
State/Tribal Tanks: Depa	artment of Environmental Management
	Updated Quarterly

Database Sources

State/Tribal IC / EC: Department of Environmental Management

Updated Semi-Annually

ST/Tribal Brownfields: Department of Environmental Management

Updated Semi-Annually

US Brownfields: Environmental Protection Agency

Updated Semi-Annually

Other Haz Sites: Drug Enforcement Administration

Updated Quarterly

Spills: U.S. Department of Transportation

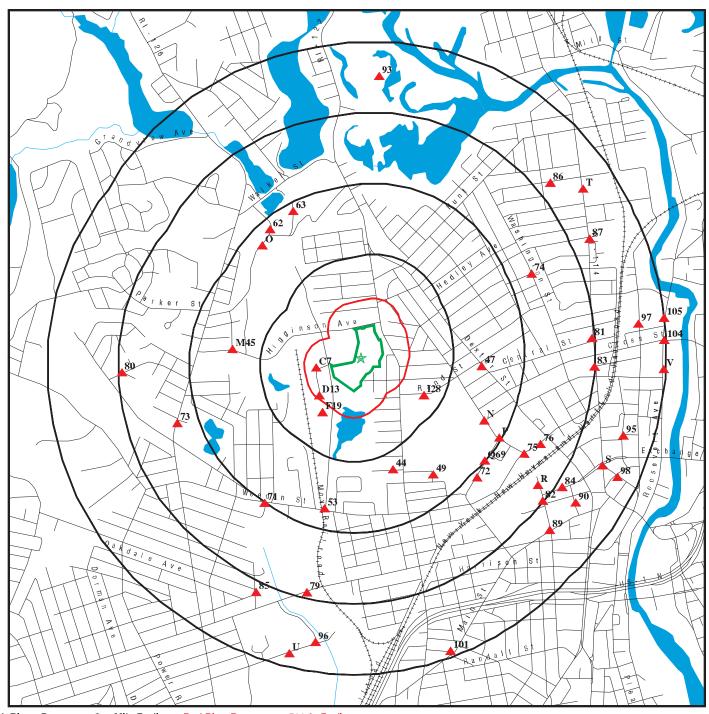
Updated Quarterly

Other: Environmental Protection Agency

Updated Quarterly

Street Name Report for Streets near the Target Property

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863 Target Property: JOB: P7037


Street Name	Dist/Dir	Street Name	Dist/Dir
Ave C4	0.22.555		
Ayr St Barber Ave	0.23 SSE 0.15 SSE		
Brook St	0.15 SSE 0.08 South		
Chapel St	0.22 East		
Claremont St	0.12 NE		
Clifton St	0.18 SSE		
Crossman St	0.21 NNE		
Crow Point Rd	0.12 West		
Emmett St	0.18 North		
Garvey Ct	0.09 SSE		
Hendricks St	0.22 North		
Higginson Ave	0.11 NNW		
Kendall St	0.11 ENE		
Moore St	0.17 East		
Moshassuck Valley Ind Hwy	0.12 West		
N Crow Point Rd	0.17 NW		
Oakland St	0.06 SE		
Orchard St	0.09 East		
Park St	0.16 NE		
Parker St	0.14 East		
Pine St	0.24 NE		
RI-122	0.11 ENE		
Rand St	0.18 SE		
Tiffany St	0.20 NE		
Watson St	0.15 ESE		
Wetmore St	0.13 LSL 0.22 NNW		

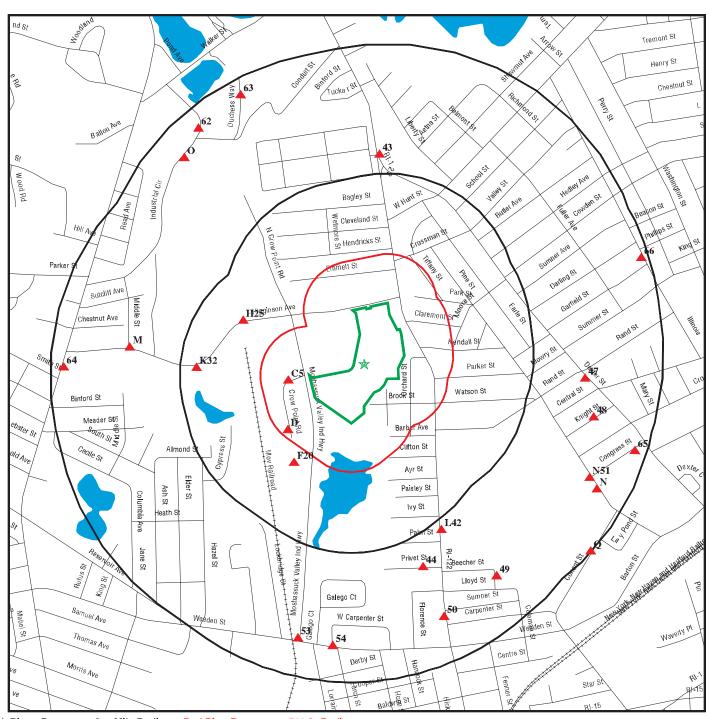
Environmental FirstSearch 1.000 Mile Radius

ASTM MAP: NPL, RCRACOR, STATES Sites

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863

Black Rings Represent Qtr. Mile Radius; Red Ring Represents 500 ft. Radius

Target Property (Latitude: 41.88489 Longitude: 71.402926)


Identified Sites Indian Reservations BIA

Environmental FirstSearch 0.500 Mile Radius

0.500 Mile Radius ASTM MAP: CERCLIS, RCRATSD, LUST, SWL

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863

Black Rings Represent Qtr. Mile Radius; Red Ring Represents 500 ft. Radius

★ Target Property (Latitude: 41.88489 Longitude: 71.402926)

Identified Sites

Indian Reservations BIA

Environmental FirstSearch 0.25 Mile Radius

ASTM MAP: RCRAGEN, ERNS, UST, FED IC/EC, METH LABS

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863

Black Rings Represent Qtr. Mile Radius; Red Ring Represents 500 ft. Radius

Target Property (Latitude: 41.88489 Longitude: 71.402926)

Identified Sites

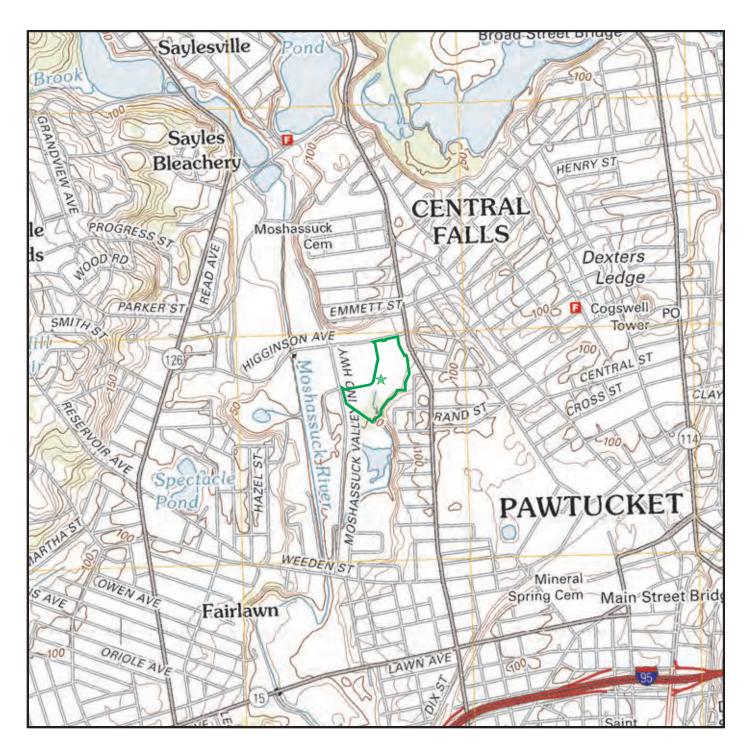
Indian Reservations BIA

Environmental FirstSearch 0.25 Mile Radius

0.25 Mile Radius Non ASTM Map, Spills, FINDS

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863

Black Rings Represent Qtr. Mile Radius; Red Ring Represents 500 ft. Radius


- ★ Target Property (Latitude: 41.88489 Longitude: 71.402926)
- Identified Sites

Indian Reservations BIA

10 HIGGINSON AVENUE CENTRAL FALLS, RI 02863

Map Image Position: TP

Map Reference Code & Name: 5644906 Pawtucket

Map State(s): RI Version Date: 2012 Map Image Position: S

Map Reference Code & Name: 5644908 Providence

Map State(s): RI Version Date: 2012

NORTHEAST REVALUATION GROUP LLC

Central Falls

(Summary Data - may not be Complete Representation of Property)

1/2 Baths:

Average

Zoning: M-2

Parcel: 9-50 Location: 10 HIGGINSON AVE Owner: CITY OF CENTRAL FALLS 78 - Municipal Account: 2864 User Acct: 32-0003-00 LUC:

Parcel Values

Total: \$985,100 Land: \$771,100 Land Area: 8.308 AC Building: \$214,000 Assessed: \$985,100

Sales Information Book and Page Instrument Type Date 06/30/2004 554-202

\$0 CITY OF CENTRAL FALLS \$0

Grantor

Price

\$0.00

UNK 12/31/1900

Year Built: Condition: **Building Type:** Grade: % Air Conditioned: **Heat Fuel:** Heat Type: Fireplaces: **Exterior Wall: Bsmnt Garage:** Roof Cover: # of Units:

of Bedrooms:

1

of Rooms: Yard Item(s) Description Quantity Condition Quality Value Size Year 2400 1965 ΑV Average

Cabana \$114,900.00 Chain Link Fence 4' 1000 1993 AV Average \$6,400.00 Asphalt Paving 5000 1983 ΑV Average \$7,500.00 Asphalt Paving 28650 2000 AV Average \$62,800.00 Yard Light - Single 3 1 1993 \$2,300.00 AV Average Yard Light - Single 12 1 1993 ΑV \$9,000.00 Average Baseball Diamond 1 1 1983 AVAverage \$6,300.00 Hockey Field 1 1 1983 ΑV Average \$4,800.00

1993

AV

Full Bath:

Basket Ball Court **Building Areas**

2

Area Net Area Finished Area

Disclaimer: This information is for tax assessing purposes and is not warranted

ELECTRICAL PERMIT APPLICATION

MUNICIPALITY Central Falls		NI MEDICAL CODE	4 EO6-36
APPLICATION DATE 9/6/06	CENSUS TRACT	FFF RECEIVED: \$ 920.4	no Chkt allia
1. STREET LOCATION Higgenson Ave			
2 PLAT/MAP3. LOT/BLOCK _	A FILE /PARCEI	POLE NO. or UNDERGROUND NO.	PO -
6. USE OF STRUCTURE: PREVIOUS COntra	al Falls Sports Commi	_ 5. PLOOR LOCATION <u>Soccer</u> /	Football Field
6. USE OF STRUCTURE: PREVIOUS Central 7Temporary X N	au lestelleties	PROPOSEDSa	ame
8. OWNER City of Central Fal	Te Appres	e of Service Starting Date	9/4/06
8. OWNER City of Central Falls.	ADDRESS 100 M	**************************************	TEL NO.
9. ELECTRICAL CONTRACTOR Ryan Elec	COUSE ADDRESS TOU M	Innesota Ave., Warwick	RT 02888 TEL NO.732-
O. ARCH, OR ENG.	ADDRESS		TEL. NO
1. STAMPED PRINTS (Circle one) YES NO) 12. RHODE ISLAND REG. NO.	13. ELECTRIC	CIAN'S LIC NO. AC-50
4. DESCRIPTION OF WORK TO BE PERFORME	b Furnish and instal	l underground cabling	from the service bld. to
4 poles on the football f	ield and 4 poles on	the soccer field. Fur	nish and install circuit
with light South	tor, time clock, hands	s on automatic for con	trol panel. Install 8 pole
with lights furnished by			
5. Service entrance voltage 480	Amperage 80	Phase3	Na of Meters existing
6. Wire size (cu. or al.) #6, 1/0, 2/0,	3/0 alum XHHW	Conductor Per Phase	
7. Estimated load: Electrical Heat	k.w. Lights72 k.w	RangeDryer_	Motors, H.P., Phase
B. ESTIMATED COST OF COMPLETED INSTALL	ATION: \$ 166,000.00		The state of the s
MUNICIPAL ELECTRICAL PERMIT FEE:			
COST O	x .001 F INSTALLATION x .001	· New	= \$ 754.00
(1 & 2 FAMILY DWELLINGS LIMITED)		TOTAL PERMIT FEE	= \$ 166,00
I hereby certify that I have the	ne authority to make the foregoing	no application describe and at	= \$_920_00 is correct and hat the owner of this
building and the undersigned agree to confo	m to all applicable codes and ordina	ance of the state and this jurisdiction.	is correct and that the owner of this
FI FCTRICAL CONTRACTORIS	IGNATURE QUILLO	6/10	
	Taurongo E	Ryan Ir Providen	110
	RITE BELOW THIS LINE	ELECTRICAL WIRHLO	PERMIT
spections Temporary Service		Date	1
Roughing In		And the state of t	U
Service & Meter		Militar and continues said, day the stack 1865 - 485 - 4++464 - Intelligence according to the said and the sa	PERMIT GRANTED
Off Peak Meter		Automobile description and the "Manufacture space" of the "May Conference or Manufacture space"	DATE 1/9/06
Final Approval			196
Disapproved*	•		65 15/1
For the following reasons		Market and the second s	ELECTRICAL INSPECTOR
	and the second		
	CERTIFICATE OF	INSPECTION	
To the Plant grown on		1	DATE
To the Electric Utility Company: The ins your service	tallation described above has been	completed and has been inspected and	d approval is granted for connection to
		FERCTRICA	INSPECTOR

MUNICIPALITY . a. . a. . 10.

<u>datus</u>

USE AND OCCUPANCY

7	
4-	
0	
1	

This Certificate must be posted where required by the State Building Code, and permanently maintained in a conspicuous place at or	has been inspected and the following occupancy thereof is hereby authorized: "Replance Fill 22-wage Macallicap	Building Permit No.:Plan No.:	Architect or Engineer: Arrowsond Construction Co.	Owner: Ciry of General Palls Use Zone:	Addition: Pastrona facilities	erected on Plat No.: Lot No.: So	will the state harleton cakes, planting election!	e manorar and suc. This waitcing is in Tall amplicace	eteritric, rostroom Earlibeion and pow ready for	THIS IS TO CERTIFY that the
--	--	-------------------------------	---	--	-------------------------------	----------------------------------	---	---	--	-----------------------------

Occupancies: Max. Allowable floor live loads per sq. ft.	Occupancy Load
Basement:	
1st Floor: Backrooms and Storage	
2nd Floor:	
3rd Floor:	
4th Floor:	
5th Floor:	
6th Floor:	
7th Floor:	
8th Floor:	
9th Floor:	
0th Floor:	
Roof:	

Expiration Date_

Building Official (1982) 30 J. Perca?

Jul 16, 1992

CA-BC-2

Mechanical Permit Add to a project

2020 C

Active

8615

Details

Submitted on Feb 19, 2020 at 8:27 am

Attachments

0 files

Activity Feed

Latest activity on Feb 20, 2020

Applicant

Irene Rodrigues

Location

10 HIGGINSON AVE, CENTRAL FALLS, RI 02863

Timeline Add New -

Tax Clearance

Completed Feb 19, 2020 at 8:31 am

Mechanical Application Completeness Review

Completed Feb 19, 2020 at 9:12 am

Mechanical Permit Approval

Completed Feb 20, 2020 at 9:58 am

Mechanical Permit Fee

Paid Feb 20, 2020 at 10:23 am

Permit Issuance

Issued Feb 20, 2020 at 10:23 am

Mechanical Inspections

In Progress

I attest that I am authorized by the owner of this property to perform all work relative to this permit. I certify that I am familiar with the provisions of the applicable City Ordinances and State of Rhode Island Building Codes and hereby agree to make this installation in conformance with such. I hold all licenses or other credentials necessary to perform the work described and am insured to the extent required by law. In the event that I decide to cease work relative to the permit, I will notify the authority issuing this permit. Otherwise, I agree to notify such authority after the work is complete, so that the required inspection may be arranged. I further agree to keep all necessary parts of the work exposed until accepted by the inspector. I understand that violation of these provisions are punishable by fines or imprisonment. I understand that I may not begin the work described on this application until I receive a permit.

By checking this box, and typing my name, I intend to electronically affix my signature, indicating that I have read, understand and affirm this Licensed Mechanical Professional attestation. *

Typed name of person making attestation (Please also check the box in the next section to enter your credentials) \ast

Wayne Moore

Mechanical License Holder Details (if applicable)

Check here to search for and select the registered mechanical professional responsible for the scope of this permit

 \square

Mechanical License Holder

Type the name, company name, or license number (as issued by the Department of Labor and Training) and click on the license legally associated with this permit application. This section opens if you have checked the box above indicating you have a Mechanical Professional. If you encounter any license validation issues, please contact the State Contractors Registration Board 401-462-8580 Opt 4. License updates may take up to 24 hours to be available in the system.

ML Name
WAYNE S MOORE

ML Address
57 OAKWOOD AVE CUMBERLAND RI 02864

ML Phone # (401) 726-

Nature/Type of Business

Types of Equipment to be Installed

Check the box for the corresponding equipment type below to display fields allowing you to enter one or more pieces of equipment of that type.

Water Heaters
Fuel or Water Tanks
Boilers and Furnaces
Other (A/C, Stove, Condenser, etc.)
Boilers and Furnaces
Occupancies (for Fire Plan Review)
Remarks - included on permit
Received By (for checks paid in office)
■ Fee Paid

Mechanical Permit · Add to a project

Active

:

8615

Details

Submitted on Feb 19, 2020 at 8:27 am

Attachments

0 files

Activity Feed

Latest activity on Feb 20, 2020

Applicant

Irene Rodrigues

Location

10 HIGGINSON AVE, CENTRAL FALLS, RI 02863

Timeline Ádd New ▼

Tax Clearance

Completed Feb 19, 2020 at 8:31 am

Mechanical Application Completeness Review

Completed Feb 19, 2020 at 9:12 am

Mechanical Permit Approval

Completed Feb 20, 2020 at 9:58 am

Mechanical Permit Fee

Paid Feb 20, 2020 at 10:23 am

Permit Issuance

Issued Feb 20, 2020 at 10:23 am

Mechanical Inspections

In Progress

Electrical Permit · Add to a project

1部局2928, 2020日

Active

:

8450

Details

Submitted on Nov 8, 2019 at 9:00 am

Attachments

O files

Activity Feed

Latest activity on Jan 8, 2020

Applicant

ryan Kelly

쌀 0

Location

10 HIGGINSON AVE, CENTRAL FALLS, RI 02863

Timeline

Add New -

Tax Clerance

Completed Nov 8, 2019 at 9:02 am

Electrical Application Completeness Review

Completed Nov 12, 2019 at 7:12 am

Electrical Permit Approval

Completed Nov 12, 2019 at 9:04 am

Electrical Permit Fee

Paid Nov 13, 2019 at 8:58 am

Permit Issuance

Issued Nov 13, 2019 at 8:58 am

Electrical Inspections

In Progress

I attest that I am authorized by the owner of this property to perform all work relative to this permit. I certify that I am familiar with the provisions of the applicable City Ordinances and State of Rhode Island Building Codes and hereby agree to make this installation in conformance with such. I hold all licenses or other credentials necessary to perform the work described and am insured to the extent required by law. In the event that I decide to cease work relative to the permit, I will notify the authority issuing this permit. Otherwise, I agree to notify such authority after the work is complete, so that the required inspection may be arranged. I further agree to keep all necessary parts of the work exposed until accepted by the inspector. I understand that violation of these provisions are punishable by fines or imprisonment. I understand that I may not begin the work described on this application until I receive a permit.

By checking this box, and typing my name, I intend to electronically affix my signature, indicating that I have read, understand and affirm this Licensed Electrical Professional attestation. *

Typed name of person making attestation (Please also check the box in the next section to enter your credentials) *

Ryan Kelly

Search For a Licensed Electrical Professional

Do You Need to Add a Licensed Electrical Professional to the Application? (Select 'Yes' to search for a Licensed Electrical Professional or Select 'No' only if a Licensed Electrical Professional is not being used) * Yes

Electrical Professional

Type the name, company name, or license number (as issued by the Department of Labor and Training) and click on the license legally associated with this permit application. This section opens if you have checked the box above indicating you have an Electrical Professional. *If you encounter any license validation issues, please contact the State Contractors Registration Board 401-462-8580 Opt 4. License updates may take up to 24 hours to be available in the system.*

EP Name RYAN C KELLY

EP Address
10 WYSTERIA LANE CUMBERLAND RI 02865

EP Phone # (401) 333

7/21, 1:38 PM	OpenGov
Architect/Engineer Details (if applicable)	
Check here to search for and select the registered profession project	nal that will serve as Architect/Engineer for this
Business Owner Details	
Please complete if different from Property Owner	
Is the space occupied by a business?	
Electrical Info	
Service Entrance Voltage	
240 delta	
Amperage	
200	
Phase 3	
5	

Number of Meters

1

Wire Size (cu. or al.)

3/0

Conductor per Phase

1

Estimated Load

Electrical Heat (kw)

0

Electrical Permit · Add to a project

8450

Details

Submitted on Nov 8, 2019 at 9:00 am

Attachments

0 files

Activity Feed

Latest activity on Jan 8, 2020

Applicant

ryan Kelly

Location

10 HIGGINSON AVE, CENTRAL FALLS, RI 02863

Timeline Add New -

Tax Clerance

Completed Nov 8, 2019 at 9:02 am

Electrical Application Completeness Review

Completed Nov 12, 2019 at 7:12 am

Electrical Permit Approval

Completed Nov 12, 2019 at 9:04 am

Electrical Permit Fee

Paid Nov 13, 2019 at 8:58 am

Permit Issuance

Issued Nov 13, 2019 at 8:58 am

Electrical Inspections

In Progress

Electrical Permit · Add to a project

8378

Details

Submitted on Oct 2, 2019 at 2:21 pm

Attachments

0 files

Activity Feed

Latest activity on Oct 3, 2019

Applicant

Sean Cody

100

Location

10 HIGGINSON AVE, CENTRAL FALLS, RI 02863

Timeline Add New -

Tax Clerance

Completed Oct 2, 2019 at 2:22 pm

Electrical Application Completeness Review

Completed Oct 2, 2019 at 2:23 pm

Electrical Permit Approval

Completed Oct 3, 2019 at 8:45 am

Electrical Permit Fee

Paid Oct 3, 2019 at 9:27 am

Permit Issuance

Issued Oct 3, 2019 at 9:27 am

Electrical Inspections

In Progress

Who is submitting this application? *
Other Authorized Agent (Lessee, contractor's agent, etc.)

Other Authorized Agent (Lessee, contractor's agent, etc.) Affidavit

Pursuant to Rhode Island General Laws § 23-27.3-113.3, I hereby certify, that on behalf of the owner of the subject property, I have the authority to make the foregoing application, that the application is correct, and that the owner of this building, any contracted professionals and I agree to comply with applicable building and fire codes of the State of Rhode Island. I understand that as the applicant, I will receive the automated notification once this permit has been issued, and I will promptly notify the property owner (and contracted professionals performing work under the scope of this permit, if applicable).

By checking this box as the Other Authorized Agent, and typing my name, I intend to electronically affix my signature, indicating that I have read, understand and affirm this attestation. *

8

Typed name of person making attestation * Sean Cody

Search For a Licensed Electrical Professional

Do You Need to Add a Licensed Electrical Professional to the Application? (Select 'Yes' to search for a Licensed Electrical Professional or Select 'No' only if a Licensed Electrical Professional is not being used) *
Yes

Electrical Professional

Type the name, company name, or license number (as issued by the Department of Labor and Training) and click on the license legally associated with this permit application. This section opens if you have checked the box above indicating you have an Electrical Professional. If you encounter any license validation issues, please contact the State Contractors Registration Board 401-462-8580 Opt 4. License updates may take up to 24 hours to be available in the system.

EΡ	N	lai	ne
----	---	-----	----

EP Address

/27/21, 1:39 PM	OpenGov
EP Valid Insurance? *	
∀	
Architect/Engineer Details (if applicable)	
Check here to search for and select the registered profession project	nal that will serve as Architect/Engineer for this
Business Owner Details	
Please complete if different from Property Owner	
Is the space occupied by a business?	
Electrical Info	
Service Entrance Voltage	
277/480	
Amperage	
400	
Phase	
3 phase 4 wire	
Number of Meters	
1	
-	
Wire Size (cu. or al.)	
Wire Size (cu. or al.) 600 mcm cu	
and morn ou	

Conductor per Phase

1

Fire Plan Review Types (Internal Use Only - will display on letter from Fire Marshal)
Please choose Yes or No indicating whether or not the Fire Plan Review included the below types.
Fire Alarm
Life Safety
Sprinkler
Suppression
Additional Commonte (to be incomed into 1911)
Additional Comments (to be inserted into letter)
■ Enter Required Action to respond to Deficiencies Found During Fire Plan Review (Internal
Use Only - will display on letter from Fire Marshal)
Action Required
O Deficiencies (if anniischie) (lutamalilla Cula milli lin in Einate in Eina
□ Deficiencies (if applicable) (Internal Use Only - will display on Fire Marshal Plan Review letter)
letter)
letter) ☐ Inspection Request
letter)
letter) ☐ Inspection Request

Electrical Permit · Add to a project

0期0402322020日

Active

8378

Details

Submitted on Oct 2, 2019 at 2:21 pm

Attachments

0 files

Activity Feed

Latest activity on Oct 3, 2019

Applicant

Sean Cody

쌸 0

Location

10 HIGGINSON AVE, CENTRAL FALLS, RI 02863

Timeline

Add New -

Tax Clerance

Completed Oct 2, 2019 at 2:22 pm

Electrical Application Completeness Review

Completed Oct 2, 2019 at 2:23 pm

Electrical Permit Approval

Completed Oct 3, 2019 at 8:45 am

Electrical Permit Fee

Paid Oct 3, 2019 at 9:27 am

Permit Issuance

Issued Oct 3, 2019 at 9:27 am

Electrical Inspections

In Progress

Building Permit · Add to a project

0数03部03(2020 20

Active

:

8305

Details

Submitted on Aug 27, 2019 at 3:15 pm

Attachments

1 file

Activity Feed

Latest activity on Sep 6, 2019

Applicant

Bob Baldwin

₩ 0

Add New -

Location

10 HIGGINSON AVE, CENTRAL FALLS, RI 02863

Timeline

Tax Clearence

Completed Aug 30, 2019 at 12:22 pm

Building Application Completeness Review

Completed Aug 30, 2019 at 12:33 pm

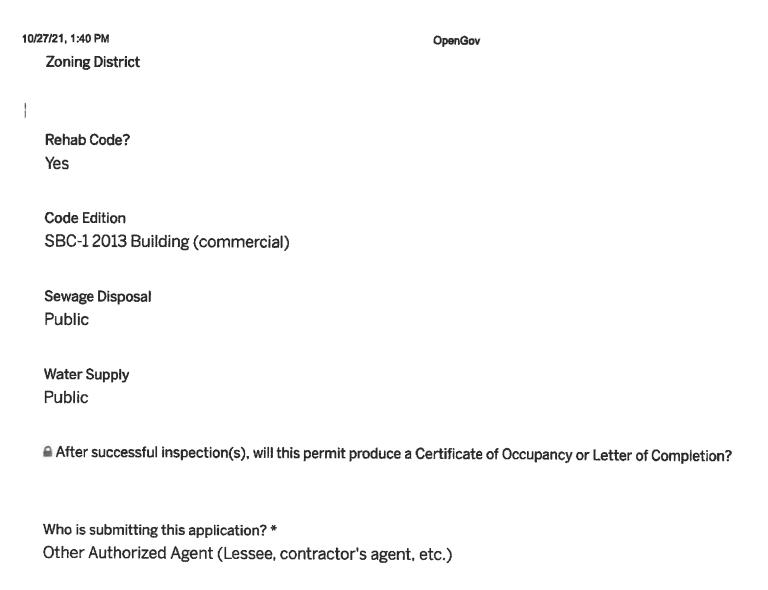
Fire Plan Review Determination

Completed Aug 30, 2019 at 12:33 pm

Building Plan Review

Completed Aug 30, 2019 at 12:34 pm

Final Building Permit Approval


Completed Aug 30, 2019 at 12:34 pm

Building Permit Fee

Paid Sep 6, 2019 at 2:13 pm

Permit Issuance

Issued Sep 6, 2019 at 2:13 pm

Other Authorized Agent (Lessee, contractor's agent, etc.) Affidavit

Pursuant to Rhode Island General Laws § 23-27.3-113.3, I hereby certify, that on behalf of the owner of the subject property, I have the authority to make the foregoing application, that the application is correct, and that the owner of this building, any contracted professionals and I agree to comply with applicable building and fire codes of the State of Rhode Island. I understand that as the applicant, I will receive the automated notification once this permit has been issued, and I will promptly notify the property owner (and contracted professionals performing work under the scope of this permit, if applicable).

By checking this box as the Other Authorized Agent, and typing my name, I intend to electronically affix my signature, indicating that I have read, understand and affirm this attestation. *

 \square

Typed name of person making attestation *
Bob Baldwin

Use of Structure

Fill out the appropriate fields based on the type of construction to be performed.

Check here to search for and select the registered Asbestos/Lead/Radon professional for this project

Fire Plan Review Basic Information

IMPORTANT: Any violation, deficiency, or requirement that may have been overlooked in the course of this plan review is also subject to the correction or inclusion under the provision of any applicable code.

*Please indicate the cost of the project below. Reminder: Estimated Cost of Construction should not include Mechanical, Electrical, or Plumbing (MEP) costs of site work, but SHOULD include any equipment/materials related to the fire safety (sprinkler, exit signs, smoke alarms, fire alarms, emergency lights, etc.)

Estimated Total Cost of Construction excluding MEP and site work, but including fire safety equipment as described immediately above (\$) - Enter zero (0) if not applicable *

Living Units

Heating/Air Conditioning Type
Oil

Number of Stories (Above Grade)

1

Number of Stories (Below Grade)

Check if facility licensed by State

Number of Residents or Clients

1

 \Box

Does this building have any existing variances from the Rhode Island Fire Safety Code Board of Appeal and Review?

■ Building Permit Fields (Internal Use Only - will display on generated permit)

☐ Fire Plan Review Types (Internal Use Only - will display on letter from Fire Marshal) Please choose Yes or No indicating whether or not the Fire Plan Review included the below types.
Fire Alarm
Life Safety
Sprinkler
Suppression
Additional Comments (to be inserted into letter)
Action Required
■ Deficiencies (if applicable) (Internal Use Only - will display on Fire Marshal Plan Review letter)
€ Stop Work Order Details
Enter Reason for Stop Work Order

BUILDING PERMIT

PERMIT #: 8305
PROJECT #
PROJECT NAME:
FEE PAID:

RECD BY:

OWNER/AGENCY	AT SITE LOCATION	ADDITIONAL REMARKS	IS PERMITTED TO PERFORM THE FOLLOWING SCOPE OF WORK	THIS IS TO CERTIFY THAT RI CONTRACTOR
NAME: CITY OF CENTRAL FALLS ADDRESS: 580 BROAD STREET CENTRAL FALLS, RI 02896	ADDRESS: 10 HIGGINSON AVE CENTRAL FALLS, RI 02863 CENTRAL FALLS, RI 02863 CENTRAL FALLS, RI 02863 CENTRAL FALLS, RI 02863 CONING: M-2 BUILDING CLASSIFICATION: USE/OCCUPANCY:		Rehab the old Dexter Tool Building for industrial use as a Carpentry Shop	NAME: JOHN MARCANTONIO COMPANY: BUILDERS HELPING HEROES, INC ADDRESS: 450 VETERANS MEMORIAL PARKWAY #301 EAST PROVIDENCE RI 02914 IF PROPERTY OWNER, INDICATE HERE: REGISTRATION/IJCENSE INFO: LICENSE TYPE: General Contractor BCRB: 19

provided that the person accepting this Permit shall in every respect confirm to the terms of the application on file in this office and to the provisions of the Statutes and Ordinances relating to the Zoning, Construction, Alteration, and Maintenance of Buildings in the municipality and shall begin work on said building by March 06, 2020 (within SIX MONTHS from the date of Issuance of this permit) hereof and prosecute the work thereon to a speedy Completion.

Any person who shall violate any of the Statutes and Ordinances relating to Zoning, Construction, Alteration, and Maintenance in the municipality shall be punished by penalties imposed by the State Building Code

Som W. Dawl

and Local Zoning Ordinances.

± 0, 03 ±

STAGE OF CONSTRUCTION

SIGNATURE

9 9

Work shall not proceed until the inspector has approved the various stages of construction.

JOHN W. HANLEY, BUILDING OFFICIAL
DATE: September 06, 2019
SIGNATURE

THIS PERMIT MUST BE RETURNED FOR CERTIFICATE OF OCCUPANCY

On remote sites this card may be kept within the contractor's vehicle, readily available for inspection.

10/27/21, 1:41 PM OpenGov

Building Permit · Add to a project

Active

:

8305

Details

Submitted on Aug 27, 2019 at 3:15 pm

Attachments

1 file

Activity Feed

Latest activity on Sep 6, 2019

Applicant

Bob Baldwin

쌀 0

Location

10 HIGGINSON AVE, CENTRAL FALLS, RI 02863

Timeline

Add New -

Tax Clearence

Completed Aug 30, 2019 at 12:22 pm

Building Application Completeness Review

Completed Aug 30, 2019 at 12:33 pm

Fire Plan Review Determination

Completed Aug 30, 2019 at 12:33 pm

Building Plan Review

Completed Aug 30, 2019 at 12:34 pm

Final Building Permit Approval

Completed Aug 30, 2019 at 12:34 pm

Building Permit Fee

Paid Sep 6, 2019 at 2:13 pm

Permit Issuance

Issued Sep 6, 2019 at 2:13 pm

10/27/21, 1:42 PM OpenGov

Electrical Permit · Add to a project

8227

Details

Submitted on Jul 1, 2019 at 9:04 pm

Attachments

0 files

Activity Feed

Latest activity on Jul 10, 2019

Applicant

JOSEPH BOTELHO

Location

10 HIGGINSON AVE, CENTRAL FALLS, RI 02863

Timeline Add New -

Tax Clerance

Completed Jul 2, 2019 at 1:51 pm

Electrical Application Completeness Review

Completed Jul 3, 2019 at 1:07 pm

Electrical Permit Approval

Completed Jul 9, 2019 at 9:51 am

Electrical Permit Fee

Paid Jul 10, 2019 at 7:16 pm

Permit Issuance

Issued Jul 10, 2019 at 7:16 pm

Electrical Inspections

In Progress

Who is submitting this application? *
Licensed Electrical Professional

Licensed Electrical Professional Affidavit

I attest that I am authorized by the owner of this property to perform all work relative to this permit. I certify that I am familiar with the provisions of the applicable City Ordinances and State of Rhode Island Building Codes and hereby agree to make this installation in conformance with such. I hold all licenses or other credentials necessary to perform the work described and am insured to the extent required by law. In the event that I decide to cease work relative to the permit, I will notify the authority issuing this permit. Otherwise, I agree to notify such authority after the work is complete, so that the required inspection may be arranged. I further agree to keep all necessary parts of the work exposed until accepted by the inspector. I understand that violation of these provisions are punishable by fines or imprisonment. I understand that I may not begin the work described on this application until I receive a permit.

By checking this box, and typing my name, I intend to electronically affix my signature, indicating that I have read, understand and affirm this Licensed Electrical Professional attestation. *

3

Typed name of person making attestation (Please also check the box in the next section to enter your credentials) *
joseph botelho

Search For a Licensed Electrical Professional

Do You Need to Add a Licensed Electrical Professional to the Application? (Select 'Yes' to search for a Licensed Electrical Professional or Select 'No' only if a Licensed Electrical Professional is not being used) *
Yes

Electrical Professional

Type the name, company name, or license number (as issued by the Department of Labor and Training) and click on the license legally associated with this permit application. This section opens if you have checked the box above indicating you have an Electrical Professional. If you encounter any license validation issues, please contact the State Contractors Registration Board 401-462-8580 Opt 4. License updates may take up to 24 hours to be available in the system.

EP Name
JOSEPH BOTFLHO

EP Address
20 WHEELER STREET REHOBOTH MA 02769

10/27/21, 1:42 PM	OpenGov
EP License Expiration Date	
01/31/2021	
EP Valid Insurance? *	
☑	
Architect/Engineer Details (if applicable)	
Check here to search for and select the registered profession	nal that will serve as Architect/Engineer for this
project	_
Business Owner Details	
Please complete if different from Property Owner	
Is the space occupied by a business?	
0	
Electrical Info	
Service Entrance Voltage	
120-240	
Amperage	
100	
Phase	
1	
Number of Meters	
1	
Wire Size (cu. or al.)	
2 al	

Conductor per Phase

■ Tel #

☐ Fire Plan Review Types (Internal Use Only - will display on letter from Fire Marshal) Please choose Yes or No indicating whether or not the Fire Plan Review included the below types.
Fire Alarm
Life Safety
Sprinkler
Suppression
Additional Comments (to be inserted into letter)
■ Enter Required Action to respond to Deficiencies Found During Fire Plan Review (Internal Use Only - will display on letter from Fire Marshal)
Action Required
□ Deficiencies (if applicable) (Internal Use Only - will display on Fire Marshal Plan Review letter)
■ Inspection Request
Person Making Request

ELECTRICAL PERMIT

PERMIT #: 8227
PROJECT #:
PROJECT NAME:

FEE PAID: RECD BY:

PROVIDED that the person accepting this Permit shall in every respect confirm to the terms of the application on file in this office and to the provisions of the Statutes and Ordinances relating to the Zoning.

Construction, Alteration, and Meintenance of Buildings in the municipality and shall begin work on said building by January 10, 2020 (within SIX MONTHS from the date of issuance of this permit) hereof and prosecute the work thereon to a speedy Completion.

Any person who shall violate any of the Statutes and Ordinances relating to Zoning, Construction, Alteration, and Maintenance in the municipality shall be punished by penalties imposed by the State Building Code and Local Zoning Ordinances.

The Standard

JOHN HANLEY, BUILDING OFFICIAL DATE: July 10, 2019

This is an e-permit. To learn more, scan this barcode or visit centralfallsri.viewpointcloud.com/#/records/8407

Work shall not proceed until the inspector has approved the various stages of construction,

ELECTRICAL PERMIT

PERMIT #: 8227 PROJECT #: PROJECT NAME:

FEE PAID: RECD BY:

- COLEGA		
THIS IS TO CERTIFY THAT RI CONTRACTOR	NAME: JOSEPH BOTELHO ADDRESS: 20 WHEELER STREET REHOBOTH MA 02769 COMPANY: BOTELHO ELECTRIC COMPANY ADDRESS:	REGISTRATION/LICENSE INFO: LICENSE TYPE: ELECTRICAL CONTRACTOR LICENSE NUMBER: A-003356
IS PERMITTED TO PERFORM THE FOLLOWING SCOPE OF WORK	install a temporary service	/ service
ADDITIONAL REMARKS		
AT SITE LOCATION	ADDRESS: 10 HIGGINSON AVE CENTRAL FALLS, RI 02863	PLATIMAP - LOT/BLOCK - FILE/PARCEL: 9-50 AREA: 8.31 ZONING: M-2 BUILDING CLASSIFICATION: USE/OCCUPANCY:
OWNER/AGENCY	ADDRESS: 580 BROAD STREET CENTRAL FALLS, RI 02896	

PROVIDED that the person accepting this Permit shall in every respect confirm to the terms of the application on file in this office and to the provisions of the Statutes and Ordinances relating to the Zoning, Construction, Alteration, and Maintenance of Buildings in the municipality and shall begin work on said building by January 10, 2020 (within SIX MONTHS from the date of issuance of this permit) hereof and prosecute the work thereon to a speedy Completion.

Any person who shall violate any of the Statutes and Ordinances relating to Zoning, Construction, Alteration, and Maintenance in the municipality shall be punished by penalties imposed by the State Building Code and Local Zoning Ordinances.

The R. San

DATE: July 10, 2019 JOHN HANLEY, BUILDING OFFICIAL

This is an e-permit. To learn more, scan this barcode or visit centralfallsri.viewpointcloud.com/#/records/8407

Work shall not proceed until the inspector has approved the various stages of construction.

10/27/21, 1:43 PM OpenGov

Electrical Permit · Add to a project

2612-9028, 2018 @

Active

:

7395

Details

Submitted on Jun 19, 2018 at 9:37 pm

Attachments

O files

Activity Feed

Latest activity on Jun 26, 2018

Applicant

JOSEPH BOTELHO

쌸 0

Location

10 HIGGINSON AV, CENTRAL FALLS, RI 02863

Timeline

Add New -

Electrical Application Completeness Review

Completed Jun 21, 2018 at 12:43 pm

Electrical Permit Fee

Paid Jun 22, 2018 at 10:26 am

Electrical Permit Approval

Completed Jun 26, 2018 at 11:10 am

Permit Issuance

Issued Jun 26, 2018 at 11:10 am

Electrical Inspections

In Progress

Electrical Permit General Information

10/27/21, 1:43 PM OpenGov

I attest that I am authorized by the owner of this property to perform all work relative to this permit. I certify that I am familiar with the provisions of the applicable City Ordinances and State of Rhode Island Building Codes and hereby agree to make this installation in conformance with such. I hold all licenses or other credentials necessary to perform the work described and am insured to the extent required by law. In the event that I decide to cease work relative to the permit, I will notify the authority issuing this permit. Otherwise, I agree to notify such authority after the work is complete, so that the required inspection may be arranged. I further agree to keep all necessary parts of the work exposed until accepted by the inspector. I understand that violation of these provisions are punishable by fines or imprisonment. I understand that I may not begin the work described on this application until I receive a permit.

By checking this box, and typing my name, I intend to electronically affix my signature, indicating that I have read, understand and affirm this Licensed Electrical Professional attestation. *

3

Typed name of person making attestation (Please also check the box in the next section to enter your credentials) *

joseph botelho

Search For a Licensed Electrical Professional

Do You Need to Add a Licensed Electrical Professional to the Application? (Select 'Yes' to search for a Licensed Electrical Professional or Select 'No' only if a Licensed Electrical Professional is not being used) * Yes

Electrical Professional

Type the name, company name, or license number (as issued by the Department of Labor and Training) and click on the license legally associated with this permit application. This section opens if you have checked the box above indicating you have an Electrical Professional. If you encounter any license validation issues, please contact the State Contractors Registration Board 401-462-8580 Opt 4. License updates may take up to 24 hours to be available in the system.

EP Name

JOSEPH BOTELHO

EP Address
20 WHEELER STREET REHOBOTH MA 02769

EP Phone # (623) 498

EP Email Address botelhoelectric@cox.net

Electrical Heat (kw)

Architect/Engineer Details (if applicable)

Check here to search for and select the registered professional that will serve as Architect/Engineer for this project
Business Owner Details
Please complete if different from Property Owner
Is the space occupied by a business?
Electrical Info
Service Entrance Voltage
Amperage
Phase
Number of Meters
Wire Size (cu. or al.)
Conductor per Phase
Estimated Load

Life Safety
Sprinkler
Suppression
Additional Comments (to be inserted into letter)
△ Enter Required Action to respond to Deficiencies Found During Fire Plan Review (Internal Use Only - will display on letter from Fire Marshal)
Action Required
☑ Deficiencies (if applicable) (Internal Use Only - will display on Fire Marshal Plan Review letter)
≙ Inspection Request
₽ Person Making Request
₽ Tel #
■ Requested Inspection Date
■ Inspection Completed

ELECTRICAL PERMIT

PERMIT #: 7395 PROJECT #: PROJECT NAME:

FEE PAID: RECD BY:

	NAME: JOSEPH BOTELHO	REGISTRATION/LICENSE INFO:
THIS IS TO CERTIFY THAT RI CONTRACTOR	AUDRESS: 20 WHEELER STREET REHOBOTH MA 02/69 COMPANY: BOTELLO ELECTRIC COMPANY ADDRESS: , , , , , , , , , , , , , , , , , ,	LICENSE TYPE: ELECTRICAL CONTRACTOR LICENSE NUMBER: A-603356
S PERMITTED TO PERFORM THE FOLLOWING SCOPE OF WORK		tent, lighting and some outlets to be fed by 125,000 watts generator
ADDITIONAL REMARKS		
AT SITE LOCATION	ADDRESS: 10 HIGGINSON AV CENTRAL FALLS, RI 02863	PLATIMAP - LOT/BLOCK - FILE/PARCEL: 9-50 AREA: 8.31 ZONING: M-2 BUILDING CLASSIFICATION:
OWNER/AGENCY	NAME: CITY OF CENTRAL FALLS ADDRESS: 580 BROAD STREET CENTRAL FALLS, RI 02896	

PROVIDED that the person accepting this Permit shall in every respect confirm to the terms of the application on file in this office and to the provisions of the Statutes and Ordinances relating to the Zoning, Construction, Alteration, and Maintenance of Buildings in the municipality and shall begin work on said building by 12/26/2018 (within SIX MONTHS from the date of issuance of this permit) hereof and prosecute the work thereon to a speedy Completion. Any person who shall violate any of the Statutes and Ordinances relating to Zoning, Construction, Alteration, and Maintenance in the municipality shall be punished by penalties imposed by the State Building Code and Local Zoning Ordinances.

DATE: June 26, 2018 JOHN HANLEY, BUILDING OFFICIAL

Work shall not proceed until the inspector has approved the various stages of construction,

This is an e-permit. To learn more, scan this barcode or visit centralfallsri.viewpointcloud.com/#/records/7395

ξ

10/27/21, 1:44 PM OpenGov

Plumbing Permit · Add to a project

0期0%多020202020

Complete

•

8432

Details

Submitted on Nov 4, 2019 at 9:50 am

Attachments

0 files

Activity Feed

Latest activity on Nov 18, 2019

Applicant

Norman Rodriguez

쌀 0

Location

10 HIGGINSON AVE, CENTRAL FALLS, RI 02863

Timeline

Add New -

Tax Clearance

Completed Nov 4, 2019 at 9:54 am

Plumbing Application Completeness Review

Completed Nov 5, 2019 at 7:47 am

Plumbing Permit Approval

Completed Nov 5, 2019 at 8:52 am

Plumbing Permit Fee

Paid Nov 5, 2019 at 9:04 am

Permit Issuance

Issued Nov 5, 2019 at 9:04 am

Plumbing Inspection

Completed Nov 18, 2019 at 1:38 pm

VoeneqO Mq 44:1,121/23/01

I hold all licenses or other credentials necessary to perform the work described and am insured to the extent required by law. In the event that I decide to cease work relative to the permit, I will notify the authority issuing this permit. Otherwise, I agree to notify such authority after the work complete, so that the required inspection may be arranged. I further agree to keep all necessary parts of the work exposed until accepted by the inspector. I understand that violation of these provisions are punishable by fines or imprisonment. I understand that I may not begin the work described on this application until I receive a permit.

By checking this box, and typing my name, I intend to electronically affix my signature, indicating that I have read, understand and affirm this Licensed Plumbing Professional attestation. *

Typed name of person making attestation *

Norman rodriguez

Plumbing License Holder Details (if applicable)

Check here to search for and select the registered plumbing professional responsible for the scope of this permit

Plumbing Professional

Type the name, company name, or license number (as issued by the Department of Labor and Training) and click on the license legally associated with this permit application. This section opens when you have indicated above that a Licensed Plumber will perform all work. It you encounter any license validation issues, please contact the State Contractors Registration Board 401-any license validation issues, please contact the State Contractors Registration Board 401-any license validation issues, please may take up to 24 hours to be available in the system.

NORMAN A RODRIGUEZ

ssenbbA 99

64 APPLETON STREET PROVIDENCE RI 02909-2731

PP Phone #

PP Email Address

10/27/21, 1:44 PM OpenGov

Fill in all proposed fixtures, their location, and how many are to be installed.

Additional Details
Trap Type
Pipe Material
Vented to roof? □
Yard or Area Drains?
Water Filtration Contractor Details (if applicable)
Check here to search for and select the Water Filtration Contractor for this project.
← Fire Plan Review
IMPORTANT: Any violation, deficiency, or requirement that may have been overlooked in the course of this plan review is also subject to the correction or inclusion under the provision of any applicable code.
Please do not complete this section if you have already completed it once for this project or if this application does not need to be reviewed for fire code compliance. Complete this section ONLY if you are not completing an accompanying building permit application AND this application requires approval from the fire marshal.
Building Construction Classification

○ Other Information

Please indicate the cost of the project below. Reminder: Estimated Cost of Construction should no	ot.
include Mechanical, Electrical, or Plumbing (MEP) costs of site work, but SHOULD include any	-
equipment/materials related to the fire safety (sprinkler, exit signs, smoke alarms, fire alarms, emergency lights, etc.)	

errergency lights, etc.)
Estimated Total Cost of Construction excluding MEP and site work, but including fire safety equipment as described immediately above (\$)
Heating/Air Conditioning Type
Number of Stories (Above Grade)
Number of Stories (Below Grade)
Is facility licensed by a state agency?
Licensing State Agency
Number of Residents or Client
Does this building have any existing variances from the Rhode Island Fire Safety Code Board of Appeal and Review?
Plumbing Permit Fields (Internal Use Only - will display on permit)
Remarks - included on Permit

10/27/21, 1:44 PM OpenGov

Plumbing Permit · Add to a project

0節0%到0克02020日

Complete

:

8432

Details

Submitted on Nov 4, 2019 at 9:50 am

Attachments

0 files

Activity Feed

Latest activity on Nov 18, 2019

Applicant

Norman Rodriguez

≌ 0

Location

10 HIGGINSON AVE, CENTRAL FALLS, RI 02863

Timeline

Add New -

Tax Clearance

Completed Nov 4, 2019 at 9:54 am

Plumbing Application Completeness Review

Completed Nov 5, 2019 at 7:47 am

Plumbing Permit Approval

Completed Nov 5, 2019 at 8:52 am

Plumbing Permit Fee

Paid Nov 5, 2019 at 9:04 am

Permit Issuance

Issued Nov 5, 2019 at 9:04 am

Plumbing Inspection

Completed Nov 18, 2019 at 1:38 pm

PLUMBING PERMIT

PERMIT #: 8432
PROJECT #:
PROJECT NAME:

FEE PAID: RECD BY:

	NAME: CITY OF CENTRAL FALLS ADDRESS: 580 BROAD STREET CENTRAL FALLS, RI 02896	OWNER/AGENCY
PLATIMAP - LOT/BLOCK - FILE/PARCEL: 9-50 AREA: 8.31 ZONING: M-2 BUILDING CLASSIFICATION: USE/OCCUPANCY:	ADDRESS: 10 HIGGINSON AVE CENTRAL FALLS, RI 02863	AT SITE LOCATION
		ADDITIONAL REMARKS
alf bath	Hair	IS PERMITTED TO PERFORM THE FOLLOWING SCOPE OF WORK
REGISTRATION/LICENSE INFO: LICENSE TYPE: MASTER PLUMBER LICENSE NUMBER: MP007396	NAME: NORMAN A RODRIGUEZ COMPANY: DIVONA ENTERPRISES ADDRESS: 64 APPLETON STREET PROVIDENCE RI 02909-2731 IF PROPERTY OWNER, INDICATE HERE:	THIS IS TO CERTIFY THAT RI CONTRACTOR

provided that the person accepting this Permit shall in every respect confirm to the terms of the application on file in this office and to the provisions of the Statutes and Ordinances relating to the Zoning, Construction, Alteration, and Maintenance of Buildings in the municipality and shall begin work on said building by May 05, 2020 (within SIX MONTHS from the date of issuance of this permit) hereof and prosecute the work thereon to a speedy Completion.

Any person who shall violate any of the Statutes and Ordinances relating to Zoning, Construction, Alteration, and Maintenance in the municipality shall be punished by penalties imposed by the State Building Code

and Local Zoning Ordinances.

JOHN HANLEY, Building Official DATE: November 05, 2019

This is an e-permit. To learn more, scan this barcode or visit centraffallsrl.viewpointcloud.com/#/records/8730

Work shall not proceed until the inspector has approved the various stages of construction.

Electrical Permit · Add to a project

Complete

1328 (E06-367)

Details

Submitted on Sep 6, 2006 at 1:00 am

Attachments

O files

Activity Feed

Latest activity

Applicant

RYAN ELECTR CONSTR

쌸 0

Add Non-

Jul 27

Timolina

Location

10 HIGGINSON AV, CENTRAL FALLS, RI 02863

i intellite	Add New •
Issue Permit Completed Invalid date	Jul 27

Electrical Permit General Information

Completed Invalid date

Close Permit

Please complete the fields required per the scope of work to the best of your knowledge. If some information is not known, please click "Save and exit" in the upper right corner and return to complete the application before submission. If additional information is required, you will be notified via your registered e-mail address.

Job Number/Name (applicants may utilize this optional field to label this application with their own identifier)

Electrical Heat (kw)

Lights (kw)

27/21, 1:45 PM	OpenGov
Life Safety	
Sprinkler	
Suppression	
Juppression	
Additional Comments (to be inserted into letter)	
Enter Required Action to respond to Deficiencies F	ound During Fire Plan Review (Internal
Use Only - will display on letter from Fire Marshal)	
Action Required	
4	
O.P. C.	
■ Deficiencies (if applicable) (Internal Use Only - will letter)	display on Fire Marshal Plan Review
letter)	
△ Inspection Request	
Person Making Request	
■ Tel #	
Requested Inspection Date	
=quostou mapoution pate	
Olementics Occupated	
☐ Inspection Completed ☐ Inspection Complet	

apart effic

0

OpenGov

m ■ Historical Permit Data

m a Permit #

E06-367

Type

ELECTRICAL

1 □ □ Date Applied

09/06/2006

m

■ Date Issued

09/06/2006

1 ■ Stamped Prints

F

m

■ Work Date

11

1 Work Assessor

FURNISH AND INSTALL UNDERGROUND CABLING

Total Buildings

0

0

0

0

□ Cost (electrical)

166000

1 ■ Sprinklers Required F **m** A Sewer Type 0 **ROBERT ZUBA @** ■ New Use Type RESIDENTIAL RESIDENTIAL **®** ■ ISDS ID 0 0 **1** ■ Historical Additional Contractor Data Name RYAN ELECTR CONSTR Exp 11 ■ Out of State F Reg No

AC - 50

- Payment Number
- 2113

VM

application

Т

a ovd

T

■ Fee Code

CEADA

a units

166000.0000

■ Unit Type

UNIT(S)

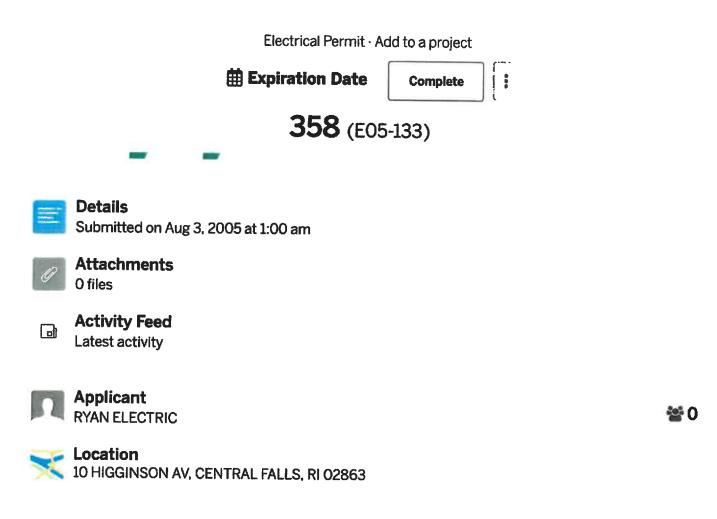
rate

0.001000

Rate x Units

166.000000

⋒ amount


166.00

166.00

Payment Date

09/06/2006

10/27/21, 1:46 PM OpenGov

Timeline	Add New -
Issue Permit Completed Invalid date	Jul 27
Close Permit Completed Invalid date	Ju l 27

Electrical Permit General Information

Please complete the fields required per the scope of work to the best of your knowledge. If some information is not known, please click "Save and exit" in the upper right corner and return to complete the application before submission. If additional information is required, you will be notified via your registered e-mail address.

Job Number/Name (applicants may utilize this optional field to label this application with their own identifier)

Lights (kw)

apart effic

0

OpenGov

E05-133

™ A Type

ELECTRICAL

1 ■ Date Applied 08/03/2005

m a Date Issued 09/30/2005

1 ■ Stamped Prints

F

m ■ Work Date

11

1 ■ Work Assessor

GENERAL WIRE

Total Buildings

0

™ Assess (old)

0

0

□ Cost (general)

0

m a Cost (electrical)

70000

```
■ Sprinklers Required
F
1 Sewer Type
0
m ■ Issued By
ROBERT ZUBA
COMMERCIAL
COMMERCIAL
I ■ ISDS ID
0
m ⋒ k lead
0
1 ■ Historical Additional Contractor Data

    Name

  RYAN ELECTRIC
  ⊕ Exp
  11
  Out of State
  F
  Reg No
  AC-50
```

ovd

Т

■ Fee Code
CEADA

Q units 70000.0000

■ Unit Type UNIT(S)

arate 0.001000

■ Rate x Units
70.00000

a amount 70.00

Payment Amount 0.00

■ Payment Date09/30/2005

4 D + 4 D + 2 D + 1 D +

Plat/Lot 9-50 Central Falls

▼ Owner

Owner 1 CITY OF CENTRAL FALLS

➤ Owner Account #: 32-0003-00

% Owned 99.0

CITY OF CENTRAL FALLS

0.00

■10 HIGGINSON AVE

Account: 2864

Zone M-2

LUC 78

Assessment

Card of

MORTHEAST

\$982,100

intraluation enoup llc

Sale Price Leg Ref 654-202

Ž

Type

12/31/1900

06/30/2004 12/31/1900 Data

0

► Previous Owners & Sales Information

Appr Value 770,800

Use Value

HIGGINSON

Address 680 BROAD STREET, CENTRAL FALLS, RI 02896-0000

Owner 3 Owner 2

Use Code Bidg Value Assessment SF/YI Value Land Size

211,300 #########

TOTAL

78

211,300

Land Value 770,800 770,800

AG Credit

Assessed Value

Year LUC 2021 78

Building

SF/YI 214,000

Land Size

AGR Credit

Appraised Value

Assessed Value

985,100

Previous Assessments

982,100 982,100

2018

217,400 217,400 214,000 214,000

217,400

701,000 701,000 701,000 771,100 771,100 Land 771,100

> 918,400 918,400

> > 918,400 985,100 985,100 985,100

•

918,400

985,100 985,100

2019

78 78

Source > Mkt Adj Cost VAL per SQ Unit/Card >

VAL per SQ Unit/Parcel >

2022

Neigh 601

Adjusted

Unit Price

➤ Land Information

Use Description Units Unit Type Land Type LT Fact

N

1 78 Municipal

361881

II.

E 1%

Inf 2 %

inf 3

Inf 3 %

Spec Land Juris Fact

Print Date = 9/16/2021 Printed By = Carolina

Year ID: 2022

Disclaimer - This information is believed to be correct, but is subject to change and is not warranteed.

☑ Central Falls	V	10 HIGGINSON AVE	ON AVE						Card of	7	
▶ Plat/Lot 9-50	V	Account: 2864		LUC 78	Zone M-2		Asse	Assessment	\$982,100	NORTHEAST	***
Building Information		▼ Grade		➤ Other Factors	actors	۳	Sub-Area Detail		•	REVALUATION GROUP LLS	UP LLC
	Description	Grade		Flood Hazard	ard		Description	Area Fin. Area	a Rate Under V	▶ Visit History	₹
BLDG Type Story Height		Ait LUC	EFF Year Alt %	Street	et i	Total				Date Result	Ву
RES Units COM Units				Traffic	The state of the s					1/42/2018 Review	, <u>F</u>
Foundation BMT Floor		Depreciation	on	Bas \$/SQ	G :					11/12/2015 KEVEW	MP
Frame 1 Frame 2	%	Code	Description	% Size Adi	ί <u>δ</u>					4/4/2012 Vacant	Ė
<u> </u>	%	Condition		Adj \$/SQ	S S						H
Roof Type 1 Roof Type 2	×	Functional		Othr Featrs							
Roof Cover 1 Roof Cover 2	*	Economic	1	Grade Fac	1 8						
INT Wall 1 INT Wall 2	%º	Special	•	Neigh inn							
Figure 1 Floors 2	%	VO		Adj Total							
SMT Garages Color				Depreciation	ion	▼ Notes					
		Total De	Total Depreciation % >	Depr Total	豆						
IN VEXT		Domodolin									
		Additions Piumbing	Piumbina	Complex	Data						
% Solar HW % Are			Electric	Location							
% COM Wall		Exterior	Heating	FL Level							
Ω		Kitchen	General	# Floors							
Parking Type % Sprinkled		Daul(a)		Bldg Seq							
		➤ Building Permits									
Quantity Quality	¥	1 02/19/2020	Manta #	Closed Date B	BP Type Est Cost	st % Done	-	Description/Directions	lons		
Full Bath		2 11/06/2019	E8460	m:	ELEC 10,000		Open Ret	ab the old Dexter	Rehab the old Dexter Tool Building for use as Carpentry Shop	Managa Appara	
Ext Full Bath		3 11/04/2019	P8432	v	PLMB 600	9	*	Half bath			
Half Beth		4 10/02/2019	E8378	п	ELEC 4,000		Open Rep	lace 2 Pull Boxes	Replace 2 Pull Boxes and Restore Electrical Service to Field Light Towers that	vice to Field Light Towers	that
Ext Half Bath		6 07/02/2019	E8227	7 0	BLDG 0			ab the old Dexter	Rehab the old Dexter Tool Building for Industrial use as a Carpentry Shop	use as a Carpentry Shop	•
Ext Fixtures		7			1,000		Chair	mount of maniputary agreemen	LANCO		
Kitchens		(0)									
Ext Kitchens		v									
Fireplaces		V Special Features & Vard Home	Hiros & Va	nd Itoms						24	
W.S. Flues		Use Dest	Description A		Length Width	SF Size Quality		Condition Year Asse	Assessed Value	Odlar Ifilo.	
F Boom County by Floor		8 23	_	w			60	- 5	2,200	PrioriD1a	
	loar I min	3 48		< <		1,000	. w		6,100	PrioriD1b	
T TOOMIS T COULDNIE	LIGOR CRASI	y :	Paving-Asph 0	Y 12		8 -1	. u		8,600	PriorID1c	
		846	BBall Ct 0	≺ - 12 -		1		AV 1983	7,300	PrioriD2a	
N		84A	_	¥		<u>.</u>	E4 1		6,100	PrioriD2b	
ω		848	Hockey Fld 0	Υ 1		_	မ		4,700	PrioriD2c	
4		8 56 Pav	Paving-Asph 0	· -		28,650	Ç3		61,400	PrioriD3a	
Totals		-	Capara	7		2,400	မ	AV 1965	114,900	PrioriD3b	
District of Gift 2004				<u> </u>						PrioriD3c	

Print Date = 9/16/2021 Printed By = Carolina

Year ID: 2022

Disclaimer - This information is believed to be correct, but is subject to change and is not warrantsed.

CENTRAL

Central Falls Fire Department

RI Builders Association Real Jobs Rhode Island (644) 10 Higginson AVE Central Falls, RI 02863

	Occupa	ancy Information	
Occupancy ID	644	Occupancy Type	Business Office
Latitude	41.886508	Phone	
Longitude	-71.402107	Fax	
Email		Utility Billing Number	
Map Page		National Grid	
Business Lic. Number		Assessed Value	
Ssessor Parcel Number		Number of Units	1
Occupancy Load	109	Year Built	
Critical Infrastructure		Station	1 - Station 1

Occupied and operating	
Mercantile, business, other	
	Occupied and operating Mercantile, business, other 2 - Sullivan, Keith M

Occupancy History
Former Dexter Tool. Best Access is from Crow Point Raod.

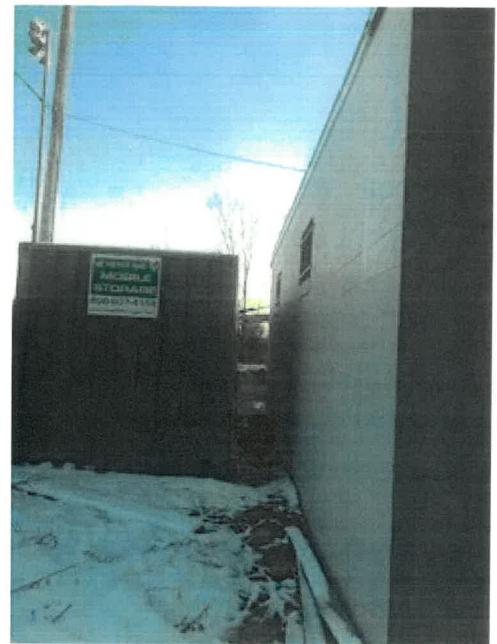
	C	Contacts	
Contact Name	Address	Contact Numbers	Description
City of Central Falls, City Clerk (Owner)		Phone: 401-727-7400	Description
RI Builders Association (Tenant)	450 Veterans Memorial PKY #301	Phone: 401-438-7400	

	Prefire Pla	n	
uilding Height (feet)	15	Number Of Floors	1
Width (feet)	30	Length (feet)	75
Square Footage	2250 N	eeded Fire Flow (gpm)	10
Basement Present	No	Fire Alarm Panel Loc.	N/A
Master Key Loc.		Gas/LPG Shutoff Loc.	Side 2
Other Loc. Info		Exposure Info	Olde 2
HazMat		Building Access	Side 2
Access Problems		Roof Construction	Steel, Open Web
ntilation Problems		Normally Occupied	8amto 8pm
Prefire Plan Notes		mornially occupied	овино ории
Construction Type	Ordinary (Joisted Masonry), Type III		
Roof Type	Flat - Contains no slope, may or may	not have eaves	
Roof Material	Class C - Fire-resistant, able to withsta	and light exposure	
lectrical Panel Loc.	Side 2 by garage door	and light exposure	

		Fire Protection	Systems	
FD Con	nections		- Cy Clonic	
Sprinkler Ro	oom Loc.			
Water Su				
There are no	fire protection syster	ns associated with this occupand	ey.	
		Nearby Hyd	Irants	
ID	Distance		Status	Туре
103-011	772 Lonsdale A	VE at Higginson AVE Central F		Туре
	81 ft.	Unknown Flow	In Service	Wet
103011	756 Lonsdale A	VE Central Falls, RI	III Col vida	AAGI

	198 ft.	Unknown Flow	In Service	Wet	
103-017	CLAREMONT ST Central Falls, RI				
	507 ft.	Unknown Flow	In Service		
103-003	EMMETT ST Central Falls, RI				
	541 ft.	Unknown Flow	In Service		
103-009	PARK ST Central Falls, RI				
	578 ft.	Unknown Flow	In Service		
103-010	PARK ST Central Falls, RI				
	578 ft.	Unknown Flow	In Service		
K03-003	LONSDALE AVE Central Falls, RI				
	609 ft.	Unknown Flow	In Service		
103-012	LONSDALE AVE Central Falls, RI				
	609 ft.	Unknown Flow	In Service		
H03-002	LONSDALE AVE Central Falls, RI				
	609 ft.	Unknown Flow	In Service		
J03-012	LONSDALE AVE Central Falls, RI				
	609 ft.	Unknown Flow	In Service		

Chemical Inventory	
There are no chemicals associated with this occupancy.	
Images	



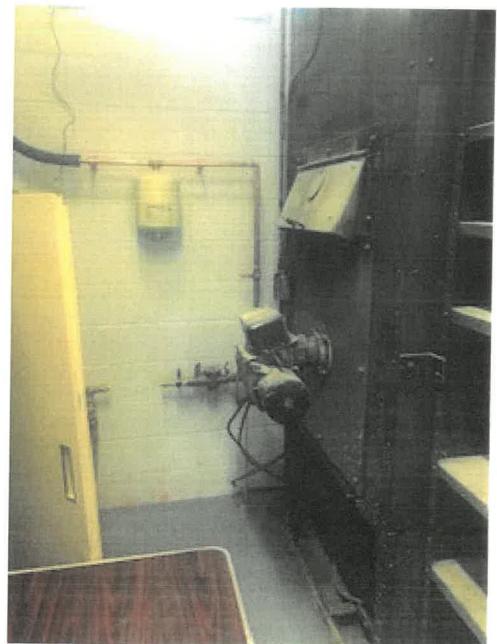
Side 1 Photo

Side 2 Photo

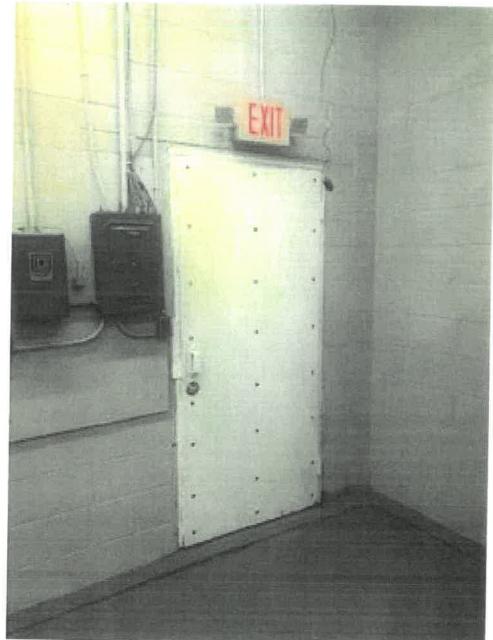
Side 3

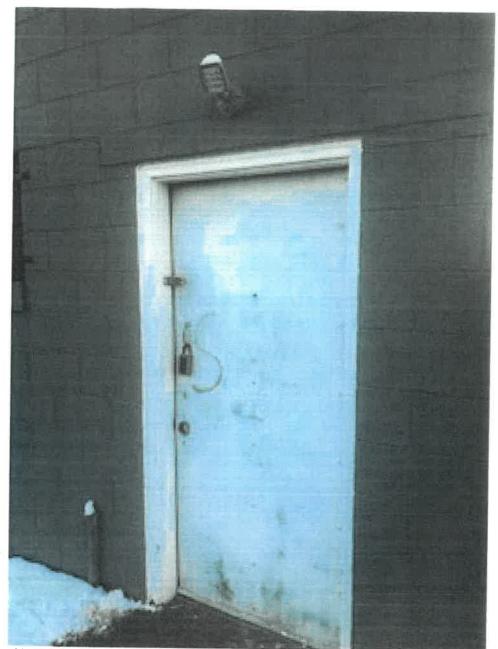
Side 4

Classromm

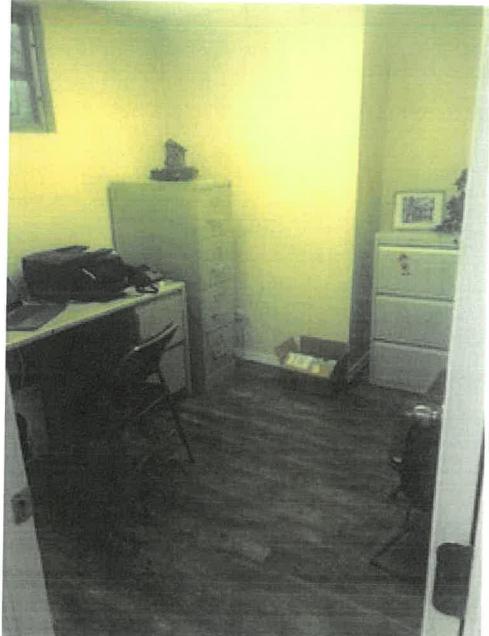

Shop Area

Shop Area


Oil Tank 275 Gal


Furnace

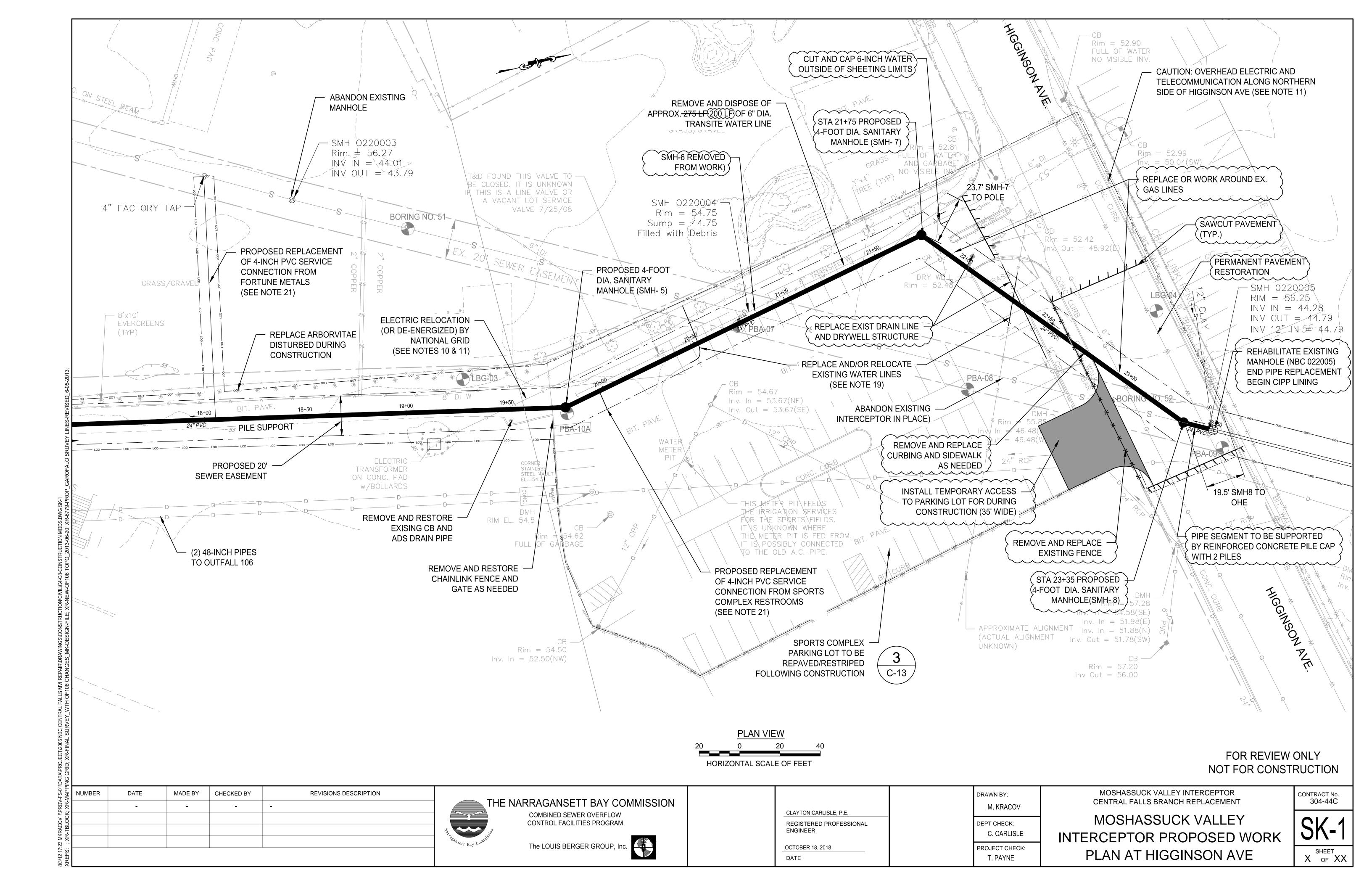
Main Exit


Shop Exit

Main Exit Exterior

Shop Exit Exterior

Office



Restrooms

Occupancy Load

September 26, 2019

Francis L Corrigan Sports Complex Higginson Ave & Lonsdale Ave Central Falls, RI 02863

Re: Francis L. Corrigan Sports Complex

AstroTurf Corporation is pleased to submit the following BUDGETARY purchasing proposal for approximately **91,260 square feet** of **AstroTurf® Synthetic Turf** to be installed at Francis L. Corrigan Sports Complex located in Central Falls, RI. Our BUDGETARY quote includes all labor, materials, tools, and equipment necessary to install in-place the synthetic turf applications (in accordance with our published product specifications) and described as follows:

Grass to Turf Full Conversion

AstroTurf Rhino Blend 48, 2" Pile Height

\$ 863,965.00

Inclusions:

- Mobilization
- Track Bridge
- Excavation and haul off of up to 8" of existing soil
- Furnish and install 12" HDPE perforated drainage system into excavated trenches
- Furnish and install of 12" flat drain per manufacturers recommendation
- 6" dynamic stone base
- Laser grade fine stone to required synthetic turf tolerances
- Installation of selected AstroTurf® Synthetic Turf System by manufacturer-certified crews.
 - o Inlays for the sports of Soccer and (2) Flag Football fields
 - o An infill of **Ambient SBR/ Silica Sand** at the manufacturer-approved weights and ratios for the selected **AstroTurf® GameDay Grass™ system**.
- Cleanup and disposal of our debris into dumpsters.
- Prevailing Wages
- G-max test
- AstroTurf JLB Turf Groomer
- Pricing is based on a standard color palette
- AstroTurf employs an ASBA Certified Field Builder-Synthetic Fields on staff
- Training owner on the maintenance equipment

Exclusions:

- Any new or repair of fencing, foul poles, concrete curb, concrete walks, asphalt, restoration.
- Removal and/or replacement of unstable or unsuitable subgrade material
- Rock excavation
- Any certification, testing, or inspection costs, other than those associated with visual base inspection
- The provision of temporary power, water or washroom facilities
- Removal, relocation or replacement of existing services and/or utilities within the project area
- Demolition work (including rock blasting and removal) that may require non-standard excavation equipment and methods
- The replacement of existing concrete and/or asphalt, other than the concrete curb detailed above.
- Owner is responsible for the condition of the haul route to the onsite dump area
- Score board, player's benches, bleachers, fencing, gates etc.
- Site security and restoration
- Any sports event, goals, sports netting, or any other athletic equipment applications not noted above are excluded
- Any Liquidated Damages surcharges are excluded
- Any building permits or site inspection fees
- Any soil boring or testing
- Performance Bonds
- Any taxes
- Engineering or design fees
- Any testing not specified in inclusions
- Any mock ups
- Infiltration testing
- Any cost for excavating unsuitable soils

Our proposal is submitted based on our assumption that all architect-approved net payments will be received within thirty (30) days of the approval date, and that final payment will be released to us within thirty (30) days of the completion of all final punch list items as certified by the architect.

Sincerely,

Bob Lord

Bob Lord

blord@astroturf.com Sales Representative 774-513-0020

P7037 10 Higginson Avenue Central Falls, RI 02863

Inquiry Number: 6602106.5

August 03, 2021

Certified Sanborn® Map Report

Certified Sanborn® Map Report

08/03/21

Site Name: Client Name:

P7037 Sage Environmental, Inc.
10 Higginson Avenue 172 Armistice Boulevard
Central Falls, RI 02863 Pawtucket, RI 02860

EDR Inquiry # 6602106.5 Contact: Korie Turgeon Nichols

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Sage Environmental, Inc. were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 6B94-4840-A036

PO # P7037 **Proiect** P7037

Maps Provided:

1965

1949

1923

1902

Sanborn® Library search results

Certification #: 6B94-4840-A036

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

Library of Congress

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Sage Environmental, Inc. (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2021 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Sanborn Sheet Key

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

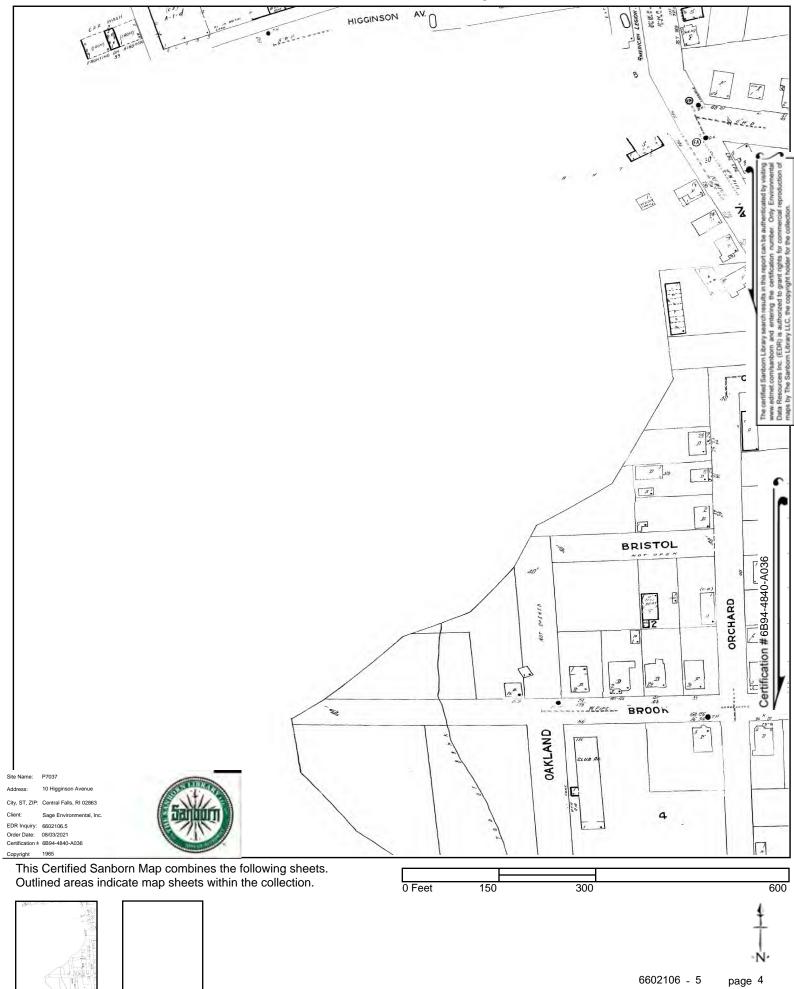
1949 Source Sheets

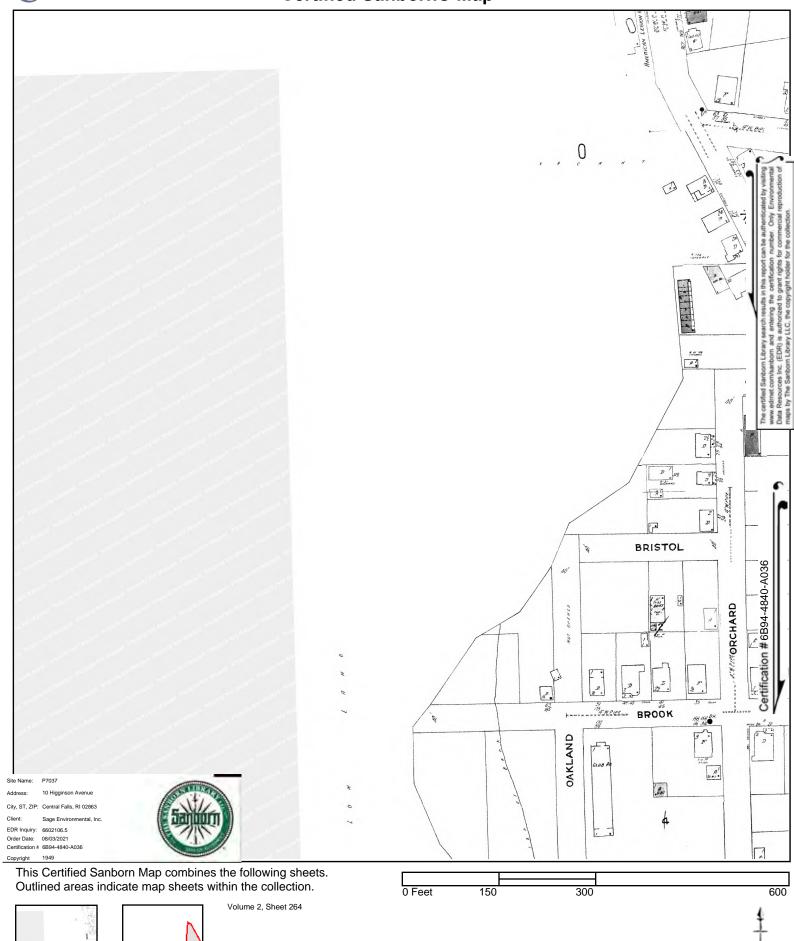
Volume 2, Sheet 264 1949

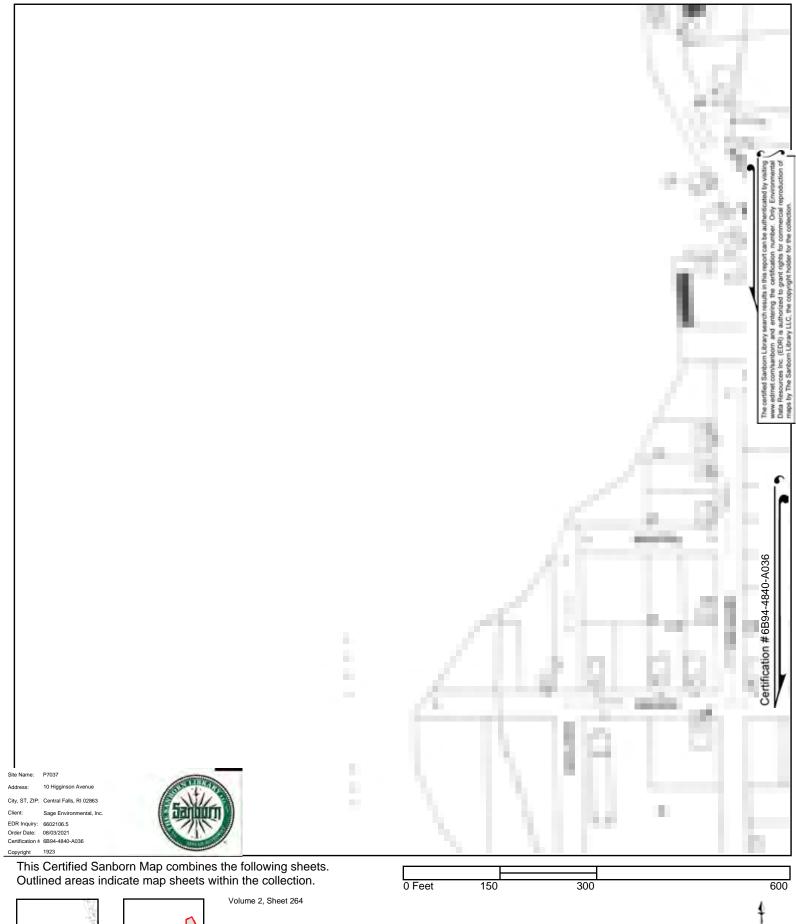
1923 Source Sheets

Volume 2, Sheet 264 1923

1902 Source Sheets

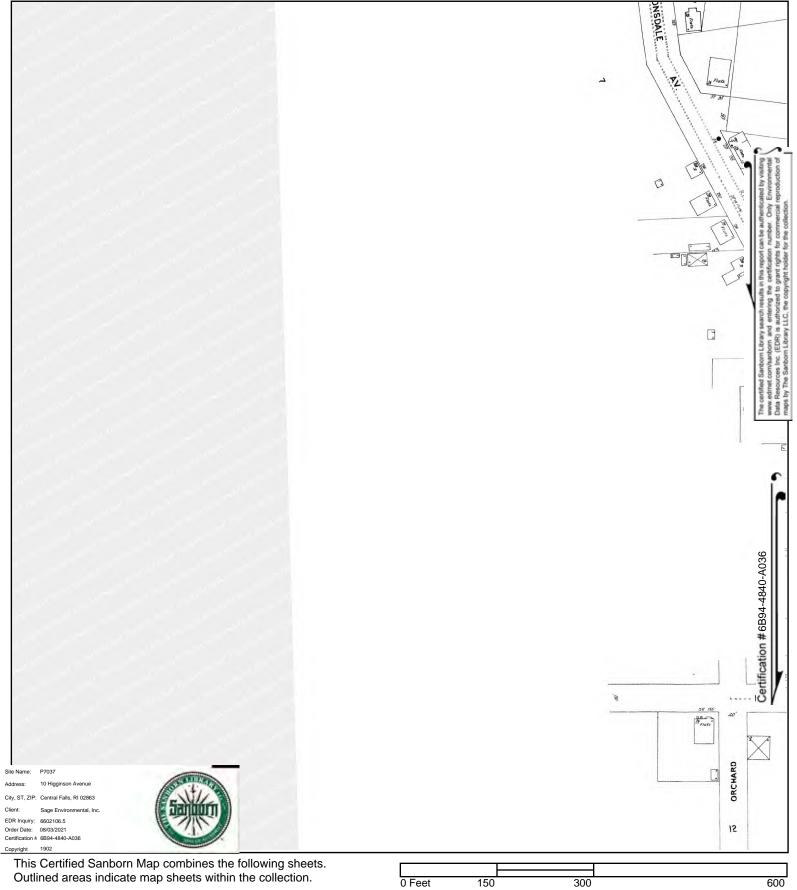

Volume 1, Sheet 68 1902


Volume 1, Sheet 43 1902

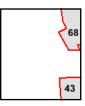


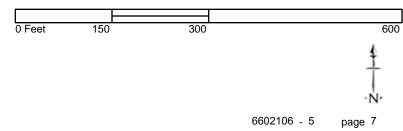
264

6602106 - 5 page 5



6602106 - 5


page 6



Volume 1, Sheet 43 Volume 1, Sheet 68

P7037 10 Higginson Avenue Central Falls, RI 02863

Inquiry Number: 6602106.5

August 03, 2021

Certified Sanborn® Map Report

Certified Sanborn® Map Report

08/03/21

Site Name: Client Name:

P7037 Sage Environmental, Inc.
10 Higginson Avenue 172 Armistice Boulevard
Central Falls, RI 02863 Pawtucket, RI 02860

EDR Inquiry # 6602106.5 Contact: Korie Turgeon Nichols

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Sage Environmental, Inc. were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 6B94-4840-A036

PO # P7037 **Proiect** P7037

Maps Provided:

1965

1949

1923

1902

Sanborn® Library search results

Certification #: 6B94-4840-A036

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

Library of Congress

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Sage Environmental, Inc. (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2021 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Sanborn Sheet Key

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1949 Source Sheets

Volume 2, Sheet 203 1949

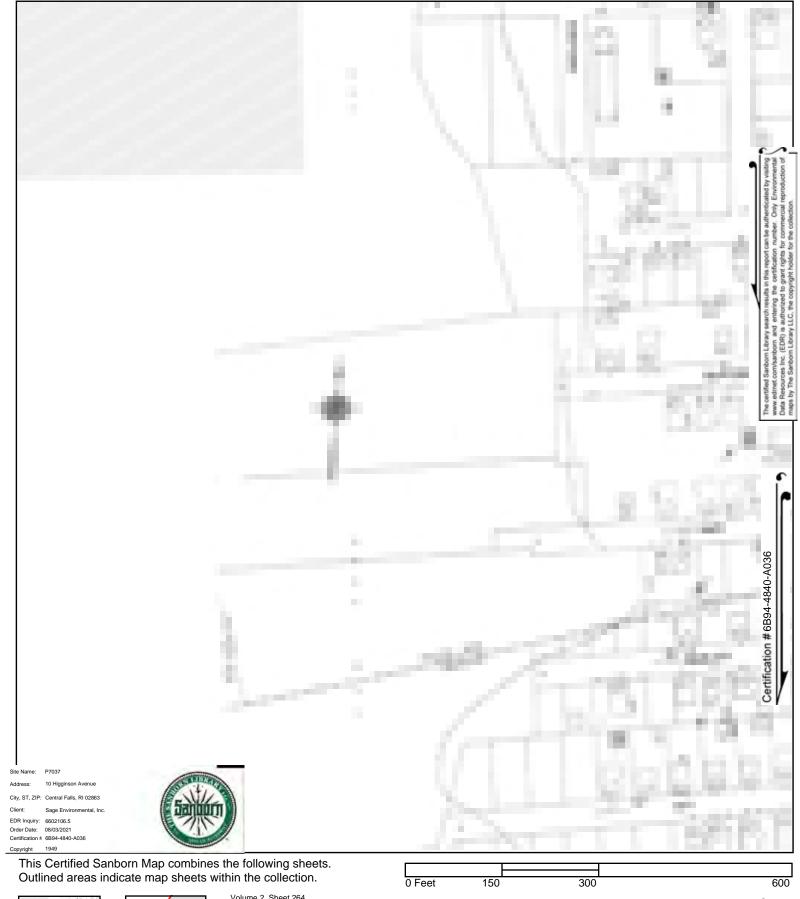
Volume 2, Sheet 264 1949

1923 Source Sheets

Volume 2, Sheet 203 1923

Volume 2, Sheet 264 1923

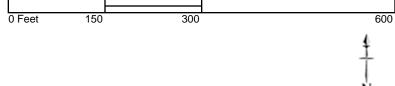
1902 Source Sheets

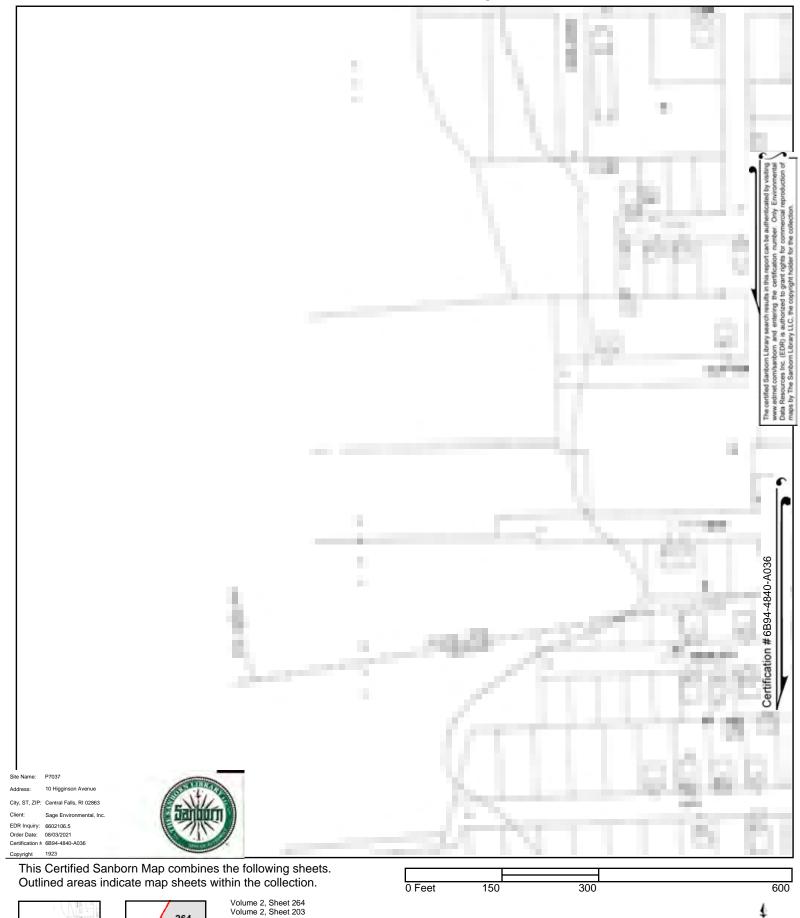


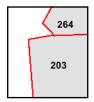
Volume 1, Sheet 43 1902

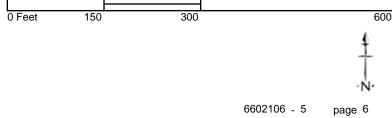
6602106 - 5

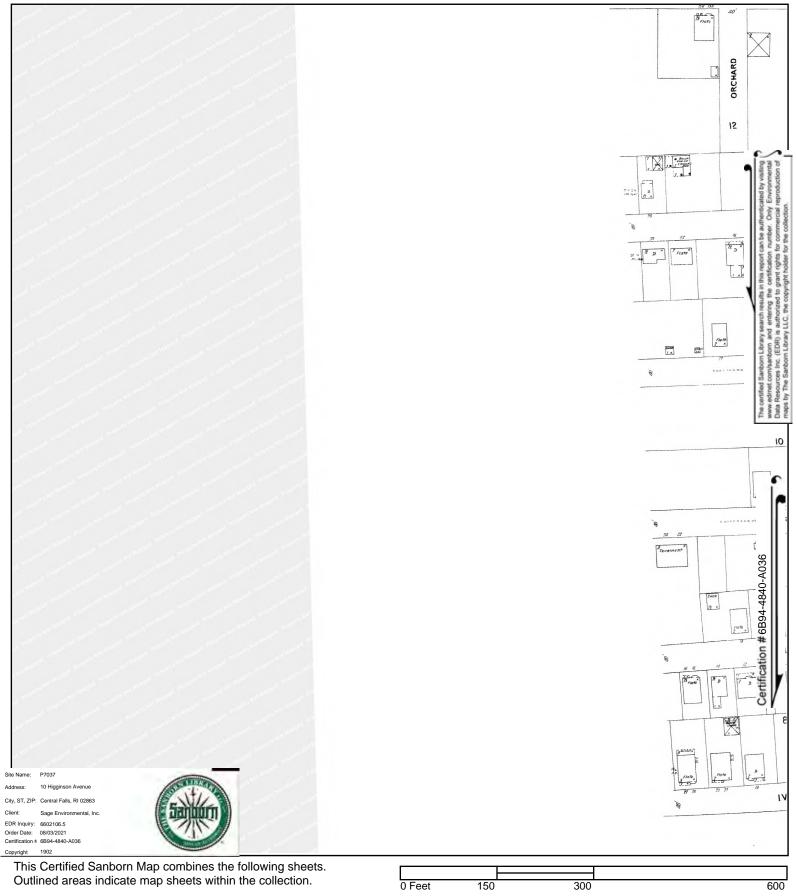
page 4

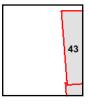


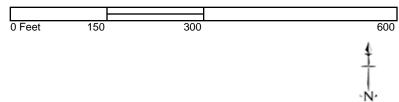





Volume 2, Sheet 264 Volume 2, Sheet 203



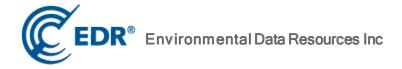




Volume 1, Sheet 43

6602106 - 5

page 7



S3969

10 Higginson Ave Central Falls, RI 02863

Inquiry Number: 6648257.1 September 08, 2021

The EDR-City Directory Image Report

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business.

Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Report includes a search of available city directory data at 5 year intervals.

RECORD SOURCES

EDR's Digital Archive combines historical directory listings from sources such as Cole Information and Dun & Brad street. These standard sources of property information complement and enhance each other to provide a more comprehensive report.

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer. Reproduction of City Directories without permission of the publisher or licensed vendor may be a violation of copyright.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. A check mark indicates where information was identified in the source and provided in this report.

<u>Year</u>	Target Street	Cross Street	<u>Source</u>
2017	$\overline{\checkmark}$	$\overline{\checkmark}$	EDR Digital Archive
2014	$\overline{\checkmark}$		EDR Digital Archive
2010	$\overline{\checkmark}$		EDR Digital Archive
2005	$\overline{\checkmark}$		EDR Digital Archive
2000	$\overline{\checkmark}$		EDR Digital Archive
1995	$\overline{\checkmark}$		EDR Digital Archive
1992	$\overline{\checkmark}$		EDR Digital Archive
1989	$\overline{\checkmark}$		Polk's City Directory
1984	$\overline{\checkmark}$		Polk's City Directory
1979	$\overline{\checkmark}$		Polk's City Directory
1974	$\overline{\checkmark}$		Polk's City Directory
1971	$\overline{\checkmark}$		Polk's City Directory
1966	$\overline{\checkmark}$		Polk's City Directory
1961	$\overline{\checkmark}$		Polk's City Directory

EXECUTIVE SUMMARY

Year Target Street Cross Street Source

FINDINGS

TARGET PROPERTY STREET

10 Higginson Ave Central Falls, RI 02863

<u>Year</u>	<u>CD Image</u>	<u>Source</u>
HIGGINSC	<u>ON AVE</u>	
2017	pg A1	EDR Digital Archive
2014	pg A3	EDR Digital Archive
2010	pg A5	EDR Digital Archive
2005	pg A7	EDR Digital Archive
2000	pg A9	EDR Digital Archive
1995	pg A12	EDR Digital Archive
1992	pg A14	EDR Digital Archive
1989	pg A16	Polk's City Directory
1984	pg A18	Polk's City Directory
1979	pg A20	Polk's City Directory
1974	pg A22	Polk's City Directory
1971	pg A23	Polk's City Directory
1966	pg A24	Polk's City Directory
1961	pg A25	Polk's City Directory

6648257-1 Page 3

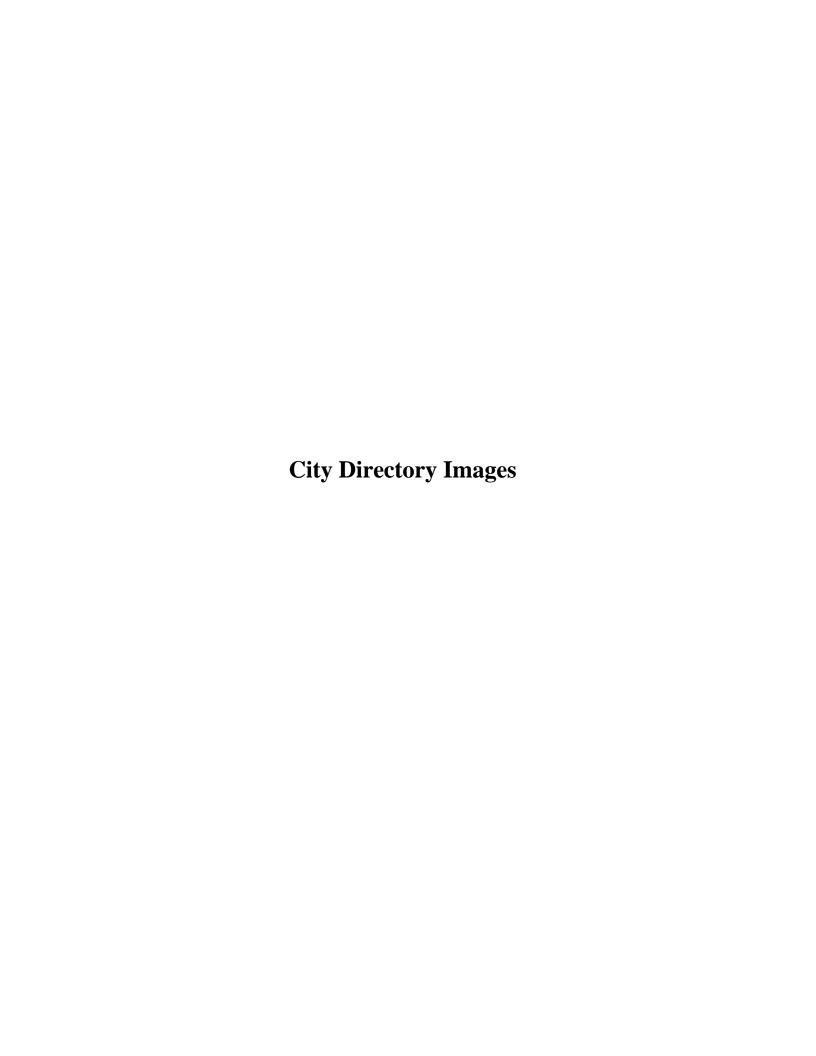
FINDINGS

CROSS STREETS

<u>Year</u>	<u>CD Image</u>	<u>Source</u>	
CROW POI	NT RD		
2017	-	EDR Digital Archive	Street not listed in Source
1995	pg.A11	EDR Digital Archive	
CROWN PC	DINT RD		
1989	pg. A15	Polk's City Directory	
1984	-	Polk's City Directory	Street not listed in Source
1979	-	Polk's City Directory	Street not listed in Source
1974	-	Polk's City Directory	Street not listed in Source
1971	-	Polk's City Directory	Street not listed in Source
1966	-	Polk's City Directory	Street not listed in Source
1961	-	Polk's City Directory	Street not listed in Source
MOSHASSI	JCK IND HWY		
1989	pg. A17	Polk's City Directory	
1984	pg. A19	Polk's City Directory	
1979	pg. A21	Polk's City Directory	
1974	-	Polk's City Directory	Street not listed in Source
1971	-	Polk's City Directory	Street not listed in Source
1966	-	Polk's City Directory	Street not listed in Source
1961	-	Polk's City Directory	Street not listed in Source
MOSHASSI	JCK VALLEY IND	<u>HWY</u>	
2017	pg. A2	EDR Digital Archive	
2014	pg. A4	EDR Digital Archive	
2010	pg. A6	EDR Digital Archive	
2005	pg. A8	EDR Digital Archive	
1992	-	EDR Digital Archive	Street not listed in Source

6648257-1 Page 4

FINDINGS


Year CD Image Source

MOSHASSUCK VALLEY IND PKWY

2000 pg. A10 EDR Digital Archive

MOSHASSUCK VALLEY INDUSTRIAL PK

1995 pg. A13 EDR Digital Archive

Target Street Cross Street Source

→ EDR Digital Archive

33 40	WHITTETHIGGINGS CO HORIZON FORM & AGREEMENT
70	HORIZOTT ORM WASTELMENT

Target Street Cross Street Source
- Source EDR Digital Archive

MOSHASSUCK VALLEY IND HWY 2017

520 530 600	TAGGART SAND PRODUCTS CORP A J TRANSPORTATION INC NETTTS OF MA
000	

Target Street Cross Street Source

→ EDR Digital Archive

30 33 51	PACKAGING & MORE INC WHITTETHIGGINS CO NEW ENGLAND PAINT MFG CO

Target Street Cross Street Source

- ✓ EDR Digital Archive

MOSHASSUCK VALLEY IND HWY 2014

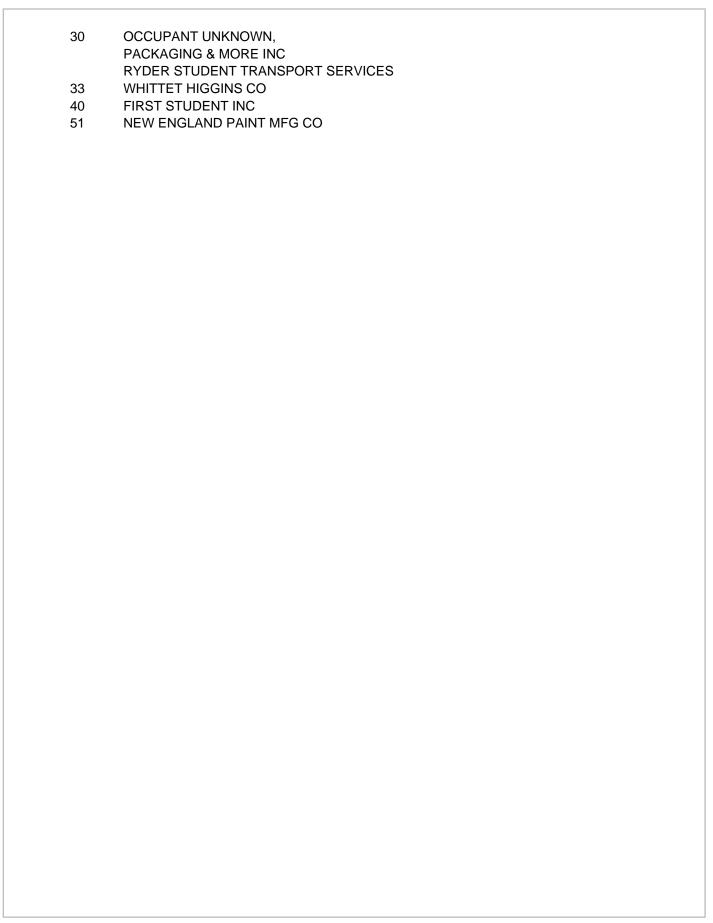
500 530 600	OCCUPANT UNKNOWN, A J TRANSPORTATION INC MARCHETTI, DIANE NEW ENGLAND TRACTOR TRAILER TRAINING

Target Street Cross Street Source

→ EDR Digital Archive

30 51	PACKAGING & MORE NEW ENGLAND PAINT MFG CO

Target Street Cross Street Source


- ✓ EDR Digital Archive

MOSHASSUCK VALLEY IND HWY 2010

500 520 600	OCCUPANT UNKNOWN, TAGGART SAND PRODUCTS CORP NEW ENGLAND TRACTOR TRAILER

Target Street Cross Street Source

→ EDR Digital Archive

MOSHASSUCK VALLEY IND HWY 2005

500 520 530 600	OCCUPANT UNKNOWN, TAGGART SAND PRODUCTS CORP A J TRANSPORTATION INC HIGHWAY DRIVER LEASING CORP LIBERTY DISPOSAL NEW ENGLA TRACT TRAIL TRA NEW ENGLA TRACT TRAIL TRAIN

Target Street Cross Street Source

- EDR Digital Archive

30	PACKAGING & MORE
33	WHITTET HIGGINS COMPANY SCREW PRODS
51	NEW ENGLAND PAINT MANUFACTURING CO INCORPORATED

Target Street Cross Street Source

- Cross Street EDR Digital Archive

MOSHASSUCK VALLEY IND PKWY 2000

500	C & E TRANSPORTATION INCORPORATED EASTERN TRANSPORTATION

Target Street Cross Street Source
- Source EDR Digital Archive

CROW POINT RD 1995

1	DEXTER TOOL CO

Target Street Cross Street Source

→ EDR Digital Archive

33 51	WHITTET-HIGGINS CO, SCREW PRODS NEW ENGLAND PAINT MANUFACTURING CO INC

Target Street Cross Street Source

- ✓ EDR Digital Archive

MOSHASSUCK VALLEY INDUSTRIAL PK 1995

500	C & E TRANSPORTATION INC CALORE COOK TRANS INC EASTERN TRANSPORTATION

Target Street Cross Street Source

- EDR Digital Archive

30	ALMAC'S SUPERMARKETS-STORES
33	IGA FOODLINER WHITTET-HIGGINS CO, SCREW PRODS
51	NEW ENGLAND PAINT MANUFACTURING CO INC

CROWN POINT RD 1989

Barney Robert R

80 No Return

93 B U E Power Station

97 Holiday Auto Annex Inc 722-3951

98 B & L Machine & Sales Co (Addl Sp) TIFFANY ENDS

9

CROWN ST (CENTRAL FALLS) FROM 75 SAMOSET AV TO BLACKSTONE RIVER

ZIP CODE 02863

20★Ferreira Jos

23 Six Roy 728-8364

28 Seminick Walter J @

30 Seminick Walter J 724-4794

43 Nault Maurice C @ 726-3566

5

CROWN POINT RD (CENTRAL FALLS)-FROM HIGGINSON AV TO LINCOLN TOWN LINE

ZIP CODE 02863

1 Dexter Tool Company 722-8344

80

CRYSTAL PL -FROM OPP 304 BEVERAGE HILL AV SOUTH TO DEAD END

ZIP CODE 02861

10 Palo Robt @ 722-4111

25 G & G Crystal Works 725-3029 Bodick John J @ 722-4128

31 Woodard Leslie N Jr draftsmn © 727-1722

35 Geremia James @ 725-1150

43 Tardif Ronald L @

49 Leach Ralph D Jr @ 728-9327

55 Ruthowski James S @ 728-8441

46

CUMBERLAND ST -FROM 260 BENEFIT TO STEARNS

ZIP CODE 02861

9 Antunes Aurora C Mrs ©

10 Rizzardini Karen 722-3836

15 Walkowski Rita E Mrs @ 728-5464

16 Duffy Fredk A @ 728-1942

22 Alix Rene J @ 722-3074

HIGGINSON AVE 1989

59 Carbone Albert J 727-0654 MOHASSUCK VALLEY INDUST HWY 61 Solis Julio E 725-0205 INTERSECTS Caycho 66 Cipriano John @ 722-8672 Cipriano John C 728-1389 HIGH ST -FROM 210 MAIN NORTH THROUGH CENTRAL PALLS TO 67 Heroux Alice A Mrs @ 723-7127 69 Bourre Normand A 724-1796 1345 BROAD *Barriere Edw 723-1555 ZIP CODE 02860 70 Giroux Harvey J @ 723-3236 30 Tavares News Stand 725-6770 71 Dial Ricardo 40 Circular Parking parking lot Mastrogiovanni Diane SUMMER BEGINS 72 Burgos Gloria @ 84*Haines Kathleen M 726-6637 #Guiran Roberto 728-2264 85 New England Telephone (Engineering) **★Villa** Amparo 727-9550 Falla 86 Vacant 73 Moreau Lucien J 723-8334 Vacant 74*Mejia Omar 725-8791 102 Salvation Army The 723-9533 Smith Raymond 110 Monast Apartments 722-4797 77 Watkins Bemt Pilkington John J 722-0313 *Malouin Diane 101 Walsh Robt A 724-8994 3 78 Saint Ephraim's Rectory 723-9095 102 No Return Doumato Abdulahad Rev 103 No Return HOOD ST BEGINS 91 Gomes Henrique P ® 722-1433 Agrela Joao 725-0722 104 Dextradeur Eric 726-6685 105 No Return 106 Monast Realty Co 722-4797 93 Vacant 107 Dermanouelian Paula 726-3494 108 Kelly John 725-1380 52 201 Audet Lorenzo Jr 725-1494 HERALD WAY -FROM OPP 84 202 Vacant WEBSTER EASTERLY TO DEAD 203★Willis Geo 204 Gallego Leonard J 726-8662 205 Wild Hank ZIP CODE 02861 205 Wild Barry coml fishermn 99 Rhode Island Jewish Herald newspaper 206 Mularz Mary E Mrs 728-7424 724-0200 207 Summerly James F Herald Press newspaper 724-0200 208 Holtzman Reba 722-9544 301*Rooney Frances 722-4125 24 302★Kenney Mary HICKS ST -FROM 255 MINERAL 303 Mc Knight Peter SPRING AV TO DEAD END 304 Di Saia Ann C 722-6054 305 Vacant ZIP CODE 02860 306*Alix Normand 726-2191 ABBOTT INTERSECTS 307 Brown Francis A 722-2670 21 Vacant 308 Dufresne Delor A 25 Fernandes Louis G N UNION INTERSECTS Cabral Isabel 723-0653 120 Hall Institute sch 722-2003 Silva Carlos 724-2779 122 Mister B's Jean Outlet (Overflow) 27 Goff Betty L 724-6567 123 Major Electric & Supply Inc 724-7100 29 No Return 31 Moran Paula J Mrs 21 BALDWIN INTERSECTS EXCHANGE INTERSECTS 38*Laporte Michl R © 723-1996 160 Woodlawn Gardens Apartments No Return 725-8060 ★Marrero Angelo L 40 Fernandes Ildo @ 723-8353 101 Burley Ruth A Mrs 102 Phaneuf J Alfred 725-3283 42*Arbosa Regina F 103#Hazard Georgette 44★Chamaro Russell R 728-8113 104 Molloy Marcelle S 724-0346 46 ★Fortes Dominges 728-1291 105 Pierce Judith 50*Wood Ronald M 723-4195 106 Monteiro Louisa M 726-0451 52 Silva Frank R @ 725-6931 107 O'Neill Betty 724-8347 55 Woodlawn Baptist Church (Parking 108 Labonte Mary J Lot) 109 Bourgault Pearl COOPER BEGINS 201 Maynard Madeleine C 202 Campbell Wm F 725-8204 203 Hebert Flora 726-5472 HIGGINSON AV (CENTRAL FALLS) 204*Pecure Rita 722-1353 FROM 768 LONSDALE AV TO CITY 205 Silva Dorothy LINE 206 Alberghini Harold 723-3164 207 Auger Jennie D 726-2408 ZIP CODE 02863 208 Goyette Alma Mrs 30 Higginson Avenue I G A Market 209★Richards J 726-3600 210#Jocjz Peter 725-7274 33 Whittet-Higgins Co mtl prods 728-0700 211 Farrell Wm E 722-4024 53 Livco Auto Body & Sales 728-9561 301 Duclos Wm A 725-1835 51 New England Paint Manufacturing Co 302 Rzemien Montana Mrs 723-2525 303 Foster Lillian J 723-0579 Inc 722-4606

Target Street

Cross Street

Source Polk's City Directory

MOSHASSUCK IND HWY 1989

197 Belvery Elwin M @ 725-8421 *Fagundes Anthony 727-0805 198★Bedard A 199#Groce James A No Return 204 Alexander Michl J 725-3967 No Return 205★Salois Robt Lebon Roger R @ 726-3045 206 Dos Santos Luis @ 726-0138 208★Harris Scott *Bolano Nelson 214 Lobello Albert R 215 Stevenson Ernest B @ 722-1515 216 Hindle Wallace L @ 723-0636 218 Graham Glenn R 723-3352 *Breiere David 223 Halliwell Thos S @ 723-0488 226 Dodd Terrence M 724-5638 227★Corrigan Yvonne @ **★**Elefsiades Thomas 230 Carreira Antonio @ Antonelli Barbara 728-4367 235 Carlson Philip A 728-7629 236 Howard James R @ 728-7194 Gouveia Lino 727-0228 245 Renzi Richd J @ 728-0492 **★**Wolverton Janice Gibbon Kevin trucker 725-0520 MOSHASSUCK ST -FROM 1091 MAIN OPP WEST AV TO BEY ESTEN AV ZIP CODE 02860 1 Microfibres Inc textile mfrs 725-4883 ESTEN AV ENDS 150 City Of Pawt Parks & Rec Dept morley field 155 Zart's Inc jwlrs mfg 724-1418 18 MOSHASSUCK VALLEY IND HW -FROM LINCOLN TOWN LINE SOUTHERLY TO BEY 498 WEEDEN ST

ZIP CODE 02860

500 Calore Cook Transportation Co 728-5050

MOSS ST -FROM OPP 43 BACON TO 99 INDIA

ZIP CODE 02860

15

HIGGINSON AVE 1984

ZIP CODE 02860 ABBOTT INTERSECTS

- 21 Stanley Nancy *Reis Alexander *Pimental Patricia
- 25 Ferndes Louis G Cabral Isabel 723-0653 Silva Carlos 724-2779
- 27 Campbell Betty L Mrs 728-3217
- 29 Cawley Leo J 726-1436
- 31 Moran Paula J Mrs 725-1912 BALDWIN INTERSECTS
- 38 Seebeck Janet @ 723-3229 Beland David 724-5831 *Racine Harold
- 40 Gibau
- 42*Correia E T 724-8532
- 44 Pontbriand Diane F 724-0453
- 46★Case Thomas 728-1465
- 50*Sarault Brian J 727-0101
- 52 Silva Frank R @ 726-0723
- 55 Woodlawn Baptist Church (Parking Lot) COOPER BEGINS

HIGGINSON AV (CENTRAL FALLS) FROM 768 LONSDALE AV TO CITY LINE

ZIP CODE 02863

- 30 Dumas Brothers I G A Market 726-3600
- 33 Whittet-Higgins Co mtl prods 728-0700
- 47 Livco Car Wash 726-9561
- 53 Vacant

Vacant

New England Paint Manufacturing Co Inc 422-4606

HIGH ST -FROM 210 MAIN NORTH THROUGH CENTRAL FALLS TO 1345 BROAD

ZIP CODE 02860

- 30 Tavares News Stand 725-6770
- 40 Circular Parking parking lot

SUMMER BEGINS

- 56 Pawtucket Public Library Annex 725-3714
- 84★Ormond Michl T ⊙
- 85★Higgins James R
- 86 Donnelly Jean 722-8964 Coderre David M 728-3715

MOSHASSUCK IND HWY 1984

No Return

230 No Return Nisbet Carol

235 Carlson Philip A 728-7629

236 Howard James R ⊚ 728-7194

245 Renzi Richd J © 728-0492 Hanna Leslie B 725-0520 Gibbon Kevin trucker

38

MOSHASSUCK ST -FROM 1091 MAIN OPP WEST AV TO BEY ESTEN AV

ZIP CODE 02860

1 Indev Inc textile mfrs 725-4883 Microfibres Inc textile mfrs 725-4883 ESTEN AV ENDS

150 Morley Field city park

155 Zart's Inc jwlrs mfg 724-1418

18

MOSHASSUCK VALLEY IND HWY -FROM LINCOLN TOWN LINE SOUTHERLY TO BEY 498 WEEDEN ST

ZIP CODE 02860 Crook Manor Playground 500 Calore Cook Transportation Co 728-5050

71

MOSS ST -FROM OPP 43 BACON TO 99 INDIA

ZIP CODE 02860

32 No Return

45 Greenhalgh E & A Co Inc threaded metal fasteners 728-3510

46 Allcock Brian ⊚ 723-0558

52 Poquette Timothy @ 724-1370

55 Farber Company The sht mtl contra 725-2492

78

MT VERNON BLVD —FROM 369

HIGGINSON AVE 1979

21★Borges Unberto L Sousa Leonido 723-3025

*Tavares Robt E

25 Harvey Richd 722-7773

*Rudolph Karen
Loarenco Carmel V Mrs 722-7774

27 Campbell Betty L Mrs 725-3217

29 Cawley Leo J 726-1436

31 Moran Paula J Mrs 725-1912 BALDWIN INTERSECTS

33★Seebeck Janet C ⊚ ★Newton Charles ⊚ Vacant

40 Rogers Alf G 723-2783

42★Lambert James C Caso Joseph F 728-8586

44 Betelho John R

46★Caso Thos

48*Dodge Michl E

481/2 No Return

50 Gaipe Manuel

52 Silva Frank R @ 727-0583

55 Woodlawn Baptist Church (Parking Lot) COOPER BEGINS

63 Kaszyk Kirk D 724-7950

65 No Return

5

HIGGINSON AV (CENTRAL FALLS) FROM 766 LONSDALE AV TO CITY LINE

ZIP CODE 02863

30 First National Stores Inc 726-2736

33 Whittet-Higgins Co metal prod 728-0700

47 Livco Car Wash 726-9561

53 Crown Motor Freight 724-4150 Ryder Truck Lines 728-6206 Equipment Leasing Corp trucks leasing 724-4151

Source
Polk's City Directory

MOSHASSUCK IND HWY 1979

18

MOSHASSUCK VALLEY IND HWY

-FROM LINCOLN TOWN LINE
SOUTHERLY TO BEY 496 WEEDEN
ST

ZIP CODE 02860 Crook Manor Playground 509 Calore Cook Transportation Co 728-5050

71

MOSS ST —FROM 50 BACON TO AMTRAK

ZIP CODE 02860

32★Ford John P @ 725-9829

45 Greenhalgh E & A Co Inc threaded metal farteners 728-3510

46 Stenovitch Dolores C INDIA INTERSECTS

55 Farber Company The sht mtl 725-2492

78

MT VERNON BLVD —FROM 369 COLUMBUS SOUTHERLY TO SCARBOROUGH RD

ZIP CODE 02861

- 4 Lucier Roland W @ 726-2017
- 10 Nolan Rose M Mrs @ 723-0822
- 16 Mc Connon Joseph F ⊚ 726-1896
- 22 Vincent Raymond D @ 723-7468
- 23 Arrighi Clara C Mrs @ 722-1128
- 28 Vacant
- 30 Day Paul C 728-0531
- 32 Day Carl P @ 723-8026 CATHERINE ENDS
- 40 Dorval Aurora R Mrs @ 726-5959
- 48 Martins Francisco @ 723-7183
- 47 Murtha Rita A ⊚ 723-5970
- E4 C. Cath M Man @ 700 070E

Polk's City Directory

HIGGINSON AVE 1974

38 Medeiros Joseph A 726-4280 Medeiros Manuel S ⊚ 724-4194 Campanile Anthony 728-5534

40 Kerr Ronald F

42★Girouard Stepb Provience Dolores Mrs 728-3207

44 Hyde James 722-9427

46 Silva Edw @ 724-5053

48 Vacant

481/2 ★ Rene Nelson A

50 Resendes Eduardo

52 Silva Frank R ⊚ COOPER BEGINS

63 * Kaszyk Kim A 725-6356

65 Kaszyk Raymond ◎ 726-1132

5

HIGGINSON AV (CENTRAL FALLS) FROM 768 LONSDALE AV TO CITY LINE WD 5

ZIP CODE 02863

30 First National Stores Inc 726-9311

33 Whittet-Higgins Co screw prod 728-0700

47 Livco Car Wash 728-0760

53 Crown Motor Freight 724-4150 Equipment Leasing Corp trucks leasing 724-4151

27

HIGH ST —FROM 210 MAIN NORTH THROUGH CENTRAL FALLS TO 1345 BROAD WD 6

ZIP CODE 02860

20 Tavares James news dlr SUMMER BEGINS

56 Municipal Welfare Bldg 728-2000 State Dept Of Social & Rehabilitative Servs area ii ofc 728-2000 State Dept Of Pub Welfare (Pawt Ofc) 724-9140

84 Ereio Albert S ⊚ 722-0598

85 New England Telephone & Telegraph Co

86 Ereio Alberto S 728-1353 Perry Fred

88 Coffee Shoppe The

Source Polk's City Directory

HIGGINSON AVE 1971

AALL, PROVIDENCE, R.I. (02903) 2860)

86

- 44 Hyde James 722-9427
- 46 Silva Edw ⊚
- 48 Aguiar Victorino 725-7151
- 481/2 Cactano Antonio
- 50 Monteiro Joseph
- 52 Silva Frank R @ COOPER BEGINS
- 65 Kaszyk Raymond @ 726-1132

5 HIGGINSON AV (CENTRAL FALLS) FROM 768 LONSDALE AV TO CITY LINE WD 5

ZIP CODE 02863

- 30 First National Stores Inc 726-9311
- 43 Vacant
- 47 Livco Car Wash
- 53 Crown Motor Freight 724-4150 Equipment Leasing Corp trucks leasing 724-4151

HIGH ST -FROM 210 MAIN NORTH THROUGH CENTRAL FALLS TO 1345 BROAD WD 6

ZIP CODE 02860 SUMMER BEGINS

- 56 State Dept Of Pub Welfare (Pawt Ofc) 724-9140
- 84 Vacant
- 85 Vacant
- 86 Ereio Alberto S Perry Fred
- 88 Coffee Shoppe The
- 102 Salvation Army The 723-9678
- 110 Monast Apartments

Bsmt Beland Clifford A

- 101 D'Ambra Gladys M Mrs
- 102 Arrighi Mildred 723-7655 103 Speight Stanley E 724-3107
- 104 Reynolds Thornton F

```
DALOREIT AITTENDECTO
38 DE ROSA DONALO B . 724-2006
   DUFFY WALTER J PA2-0458
   SAINT PETER MARJORIE MRS
    726-4223
42 KELLY MARY PA3-1384
   ELLIOTT JOHN R . PA6-2769
44 HYDE JAMES M PA2-9247
46 HOEGEN MARTIN A 725-8809
47 PIZZO LAURA MRS
48 VACANT
48% VACANT
49 DESROCHERS CECILE MRS PA2-6389
50 SILVA FRANCISCO R . PA2-7117
52 SULLIVAN JAMES E PAS-1038
49 JONES ROBT S 725-6284
--- COOPER BEGINS
63 VACANT
65 KASZYK RAYMOND . PA7-1132
                                59A
HIGGINSON AV (CENTRAL FALLS)-FROM
  768 LONSDALE AV TO CITY LINE WO
  S
REX'S COAT & SUIT CO INC
 CLOTHING MFRS PA5-6950
FIRST NATIONAL STORES 726-9311
W B REALTY THRIFTY T CAR WASH
 INC • 724-5280
HIGH ST -FROM 191 MAIN NORTH
 THROUGH CENTRAL FALLS TO 1345
  BROAD WO 6 ALSO WDS 1 AND 2
  (CENTRAL
COUNTING HOUSE THE
4 LITTLE ACORN BOOK SHOP PAS-5533
  VACANT
7 GARONER BUILDING
      FLOORS
    20 FL M A C FINANCE PLAN INC
           LOANS PA2-5410
       ROOMS
   21 ADAMS DRUG CD (STGE)
   22 VACANT
   23 CASPERINI TULIO
          (DVERFLOW)
   24 GASPERINI TULIO J
        ACCORDION TCHR . PAS-0870
```

Target Street

Cross Street

<u>Source</u>

Polk's City Directory

HIGGINSON AVE 1961

eral Spring av to beyond Cooper wd 5

5∆Toher Thos F ∆Loomis Mary V Mrs Regan Jos L

∆Appleton Martha A Mrs

∆Knowlton Alpheus A Almond Edna

7 Fallow Norman W 9∆Ishmael Dorothy M

Mrs

Abbott crosses

21∆Desautell Leo A ⊚ McKinley Helen R

Mrs @

25∆Abrams Lillian Mrs ∆Coyle Veronica M

△Wilson Jos P

27△O'Hearn Cath M McArdle Jas J

29 Cawley Annie M

Baldwin crosses

38∆Livingston Marion T

△Duffy Walter J StPeter Marjorie Mrs

40 Vacant

42∆Bourgeois Sarah A Mrs ⊚

A Winterbottom Arth

44∆Hyde Jas M

46∆ Caldarone Gaetano

47∆Buteau Allen N

48 Drake Grace Mrs & Conway Vera Mrs

49∆Curran Fred

50∆Silva Frank ⊚

51∆Davenport Wm E

52∆Sullivan Jas E

Cooper begins


63 Vacant

65 △ Kaszyk Raymond ⊚

59

HIGGINSON AVENUE
(Central Falls)—
From 800 Lonsdale
av to City Line wd 5
0\(\text{Rex Coat & Suit Co} \)

Inc @ mfrs

SAGE

SOIL BORING/MONITORING WELL LOG: SE-101(MW)

PROJECT NUMBER: S3969 DRILL METHOD: Direct Push 5' Macrocore

DRILLING DATE: 10/21/2021 SAMPLE METHOD: Grab

LOGGED BY: Lacy Reyna

BORING TOTAL DEPTH: 13'

DRILLED BY: SAGE EnviroTech Drilling Services, Inc.

BORING/MW DIAMETER: 1"

SCREENING EQUIPMENT: PID LENGTH OF RISER: 3' LENGTH OF SCREEN: 10'

DEPTH O (FEET BGS)	SAMPLE INTERVAL	RECOVERY (FEET)	PID (PPMV)	MATERIAL DESCRIPTION (COLOR, DENSITY, CLASSIFICATION, MOISTURE CONTENT, NOTES)	LITHOLOGY GRAPHIC LOG	DTW (FEET BGS)	WELL CONSTRUCTION (VISUAL)	WELL CONSTRUCTION (DEPTH INTERVALS (FEET BGS))						
_ 0				(0-0.75') Asphalt.	00000			Filter Pack						
1 	0-2	1.75	ND	(0.75'-1.5') Olive grey, well graded, gravelly sands, little or no fines. (1.5'-1.75') Dark grey, well graded, gravelly sands, little or no fines.				Bentonite						
3	2-5	2.5	1.8	(0-1.25') Light grey, sand-silt mixtures. (1.25'-2') Dark grey, sand-silt mixtures.										
4 										(2'-2.25') Olive grey, well graded, gravelly sands, little or no fines.				
5 - - - - - - - 6				(0-1') Light grey, poorly graded, gravelly sands, little or no fines.		5.5								
				(1'-2.25') Light grey, sand-silt mixtures.										
 8	5-10	4.5	ND	(2.25'-2.5') Light grey, poorly graded, gravelly sands, little or no fines. (2.5'-3') Light grey, sand-silt mixtures. (3'-3.25') Dark				Filter Pack						
9				grey, sand-silt mixtures. (3.25'-4.5') Olive grey, well graded, gravelly sands, little or no fines.										
10	10-13	NS	NS	Not sampled. Well installed to 13' bgs.	, 5 6									
COMMENTS: THIS BORE LOG IS INTENDED FOR ENVIRONMENTAL NOT GEOTECHNICAL PURPOSES. ND (Non-Detect) = <1 ppmV; NS = Not Sampled; BGS = Below Ground Surface														

SAGE

SOIL BORING/MONITORING WELL LOG: SE-102(MW)

PROJECT NUMBER: S3969 DRILL METHOD: Direct Push 5' Macrocore

DRILLING DATE: 10/21/2021 SAMPLE METHOD: Grab
LOGGED BY: Lacy Reyna BORING TOTAL DEPTH: 13'

DRILLED BY: SAGE EnviroTech Drilling Services, Inc. BORING/MW DIAMETER: 1"

SCREENING EQUIPMENT: PID LENGTH OF RISER: 3' LENGTH OF SCREEN: 10'

DEPTH (FEET BGS)	SAMPLE INTERVAL	RECOVERY (FEET)	PID (PPMV)	MATERIAL DESCRIPTION (COLOR, DENSITY, CLASSIFICATION, MOISTURE CONTENT, NOTES)	LITHOLOGY GRAPHIC LOG	DTW (FEET BGS)	WEL CONSTRU (VISU)	ICTION	WELL CONSTRUCTION (DEPTH INTERVALS (FEET BGS))
_ 0	0-2	1.75	ND	(0-0.25') Olive grey loam, organic material (roots and grass). (0.25'-1') Olive grey, sand-silt mixtures.					Filter Pack
	0-2	1.75	ND	(1'-1.75') Olive grey, well graded, gravelly sands, little or no fines.					Bentonite
3	2-5	2.25	ND	(0-2.25') Olive Grey, well graded, gravelly sands, little or no fines.		5 5			
5 - - - - - 6				(0-1') Olive grey, sand-silt mixtures. (1'-1.25') Dark grey, sand-silt mixtures.		•			
- 7 - 8 - 9	5-10	2.25	ND	(1.25'-2.25') Light grey, poorly graded, gravelly sands, little or no fines.					Filter Pack
10 11 11 12 13 COMMENT THIS PAGE		NS	NS	Not sampled. Well installed to 13' bgs.					

SAGE

SOIL BORING/MONITORING WELL LOG: SE-103(MW)

PROJECT NUMBER: S3969 DRILL METHOD: Direct Push 5' Macrocore

DRILLING DATE: 10/21/2021 SAMPLE METHOD: Grab

LOGGED BY: Lacy Reyna BORING TOTAL DEPTH: 11'
DRILLED BY: SAGE EnviroTech Drilling Services, Inc.
BORING/MW DIAMETER: 1"

SCREENING EQUIPMENT: PID LENGTH OF RISER: 2'

LENGTH OF SCREEN:9'

DEPTH (FEET BGS)	SAMPLE INTERVAL	RECOVERY (FEET)	PID (PPMV)	MATERIAL DESCRIPTION (COLOR, DENSITY, CLASSIFICATION, MOISTURE CONTENT, NOTES)	LITHOLOGY GRAPHIC LOG	DTW (FEET BGS)	WELL CONSTRUCTION (VISUAL)	WELL CONSTRUCTION (DEPTH INTERVALS (FEET BGS))
_ 0				(0-0.5') Light brown, sand-silt mixtures, loamy organic material (grass and roots).				Filter Pack
_ _ 1 _ _	0-2	2	ND	(0.5'-1.75') Olive grey, well graded, gravelly sands, little or no fines.				Bentonite
				(1.75'-2') Yellowish brown, poorly graded, gravelly	0 0 0			
2 - _ _ _				sands, little or no fines. (0-0.25') Yellowish brown, well graded, gravelly sands, little or no fines.		3		
3 - - - - - - 4	2-5	2.25	ND	(0.25'-0.75') Dark grey, sand-silt mixtures. (0.75'-2.25') Light grey, sand-silt mixtures.		•		
5	5-10	2.75	ND	(0-2.5') Light grey, sand-silt mixtures.	_			Filter Pack
- - - - - - - - - - - - - - - - - - -	3-10	2.73	ND	(2.5'-2.75') Light grey, poorly graded, gravelly sands, little or no fines.				
10	10-11	NS	NS	Not sampled. Well installed to 11' bgs.				

THIS BORE LOG IS INTENDED FOR ENVIRONMENTAL NOT GEOTECHNICAL PURPOSES. ND (Non-Detect) = <1 ppmV; NS = Not Sampled; BGS = Below Ground Surface

DRILL METHOD: Hand Boring

PROJECT NUMBER: S3969

SAMPLE METHOD: Grab DRILLING DATE: 10/21/2021 BORING TOTAL DEPTH: 2' LOGGED BY: Lacy Reyna BORING/MW DIAMETER: 1.25"

DRILLED BY: SAGE EnviroTech Drilling Services, Inc.

SCREENING EQUIPMENT: PID

LENGTH OF RISER: Not Applicable LENGTH OF SCREEN: Not Applicable

DEPTH (FEET BGS)	SAMPLE INTERVAL	RECOVERY (FEET)	PID (PPMV)	MATERIAL DESCRIPTION (COLOR, DENSITY, CLASSIFICATION, MOISTURE CONTENT, NOTES)	LITHOLOGY GRAPHIC LOG DTW	WELL CONSTRUCTION (VISUAL)	WELL CONSTRUCTION (DEPTH INTERVALS (FEET BGS))
0.1				(0-0.25') Light grey, sand-silt mixtures.		No Well	No Well
0.3				(0.25'-0.5') Asphalt.			
0.5				(0.5'-0.75') Olive grey, poorly graded, gravelly sands, little or no fines.			
0.8 0.9 1 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 COMMENTS	0-2	1.25	ND	(0.75'-1') Light grey, sand-silt mixtures. (1'-1.25') Light brown, sand-silt mixtures with loamy, organic material (grass and roots).			

PROJECT NUMBER: S3969 DRILL METHOD: Hand Boring

DRILLING DATE: 10/21/2021 SAMPLE METHOD: Grab
LOGGED BY: Lacy Reyna BORING TOTAL DEPTH: 2'

DRILLED BY: SAGE EnviroTech Drilling Services, Inc. BORING/MW DIAMETER: 1.25"

SCREENING EQUIPMENT: PID

LENGTH OF RISER: Not Applicable

LENGTH OF SCREEN: Not Applicable

DEPTH O(FEET BGS)	SAMPLE INTERVAL	RECOVERY (FEET)	PID (PPMV)	MATERIAL DESCRIPTION (COLOR, DENSITY, CLASSIFICATION, MOISTURE CONTENT, NOTES)	LITHOLOGY GRAPHIC LOG	DTW (FEET BGS)	WELL CONSTRUCTION (VISUAL)	WELL CONSTRUCTION (DEPTH INTERVALS (FEET BOS))
0.1	0-2	0.75	ND	(0-0.75') Olive grey, poorly graded, gravelly sands, little or no fines.			No Well	(DEPTH NITERVALS (FEET BGS)) NO Well
COMMENTS THIS BORE I ND (Non-Det	LOG IS INTEN	DED FOR EN I; NS = Not S	IVIRONME ampled; BG	NTAL NOT GEOTECHNICAL PURPOSES. SS = Below Ground Surface				

PROJECT NUMBER: S3969 DRILL METHOD: Hand Boring

DRILLING DATE: 10/21/2021 SAMPLE METHOD: Grab
LOGGED BY: Lacy Reyna BORING TOTAL DEPTH: 2'

DRILLED BY: SAGE EnviroTech Drilling Services, Inc. BORING/MW DIAMETER: 1.25"

SCREENING EQUIPMENT: PID LENGTH OF RISER: Not Applicable

LENGTH OF SCREEN: Not Applicable

DEPTH O (FEET BGS)	SAMPLE INTERVAL	RECOVERY (FEET)	PID (PPMV)	MATERIAL DESCRIPTION (COLOR, DENSITY, CLASSIFICATION, MOISTURE CONTENT, NOTES)	LITHOLOGY GRAPHIC LOG DTW (FEET BGS)	WELL CONSTRUCTION (VISUAL)	WELL CONSTRUCTION (DEPTH NITEWALS (FEET BGS))		
0.1		1	ND			No Well	No Well		
THIS BORE ND (Non-Det	COMMENTS: THIS BORE LOG IS INTENDED FOR ENVIRONMENTAL NOT GEOTECHNICAL PURPOSES. ND (Non-Detect) = <1 ppmV; NS = Not Sampled; BGS = Below Ground Surface								

PROJECT NUMBER: S3969

DRILLING DATE: 10/21/2021

SCREENING EQUIPMENT: PID

LOGGED BY: Lacy Reyna

BORING TOTAL DEPTH: 2'

SAMPLE METHOD: Grab

DRILL METHOD: Hand Boring

BORING/MW DIAMETER: 1.25"

DRILLED BY: SAGE EnviroTech Drilling Services, Inc.

LENGTH OF RISER: Not Applicable

LENGTH OF SCREEN: Not Applicable

DEPTH O(FEET BGS)	SAMPLE INTERVAL	RECOVERY (FEET)	PID (PPMV)	MATERIAL DESCRIPTION (COLOR, DENSITY, CLASSIFICATION, MOISTURE CONTENT, NOTES)	LITHOLOGY GRAPHIC LOG DTW (FET BGS)	WELL CONSTRUCTION (VISUAL)	WELL CONSTRUCTION (DEPTH INTERVALS (FEET BGS))
0.1 - 0.2 - 0.3 - 0.4 - 0.5 - 0.6 - 0.7				(0-0.75') Olive grey, well graded, gravelly sands, little or no fines with organic material.		No Well	No Well
0.8	0-2	1	ND	(0.75'-1') Olive grey, sand-silt mixtures.			

THIS BORE LOG IS INTENDED FOR ENVIRONMENTAL NOT GEOTECHNICAL PURPOSES. ND (Non-Detect) = <1 ppmV; NS = Not Sampled; BGS = Below Ground Surface

PROJECT NUMBER: S3969 DRILL METHOD: Hand Boring

DRILLING DATE: 10/21/2021 SAMPLE METHOD: Grab
LOGGED BY: Lacy Reyna BORING TOTAL DEPTH: 2'

DRILLED BY: SAGE EnviroTech Drilling Services, Inc. BORING/MW DIAMETER: 1.25"

SCREENING EQUIPMENT: PID

LENGTH OF RISER: Not Applicable

LENGTH OF SCREEN: Not Applicable

DEPTH O(FEET BGS)	SAMPLE INTERVAL	RECOVERY (FEET)	PID (PPMV)	MATERIAL DESCRIPTION (COLOR, DENSITY, CLASSIFICATION, MOISTURE CONTENT, NOTES)	LITHOLOGY GRAPHIC LOG	DTW (FEET BGS)	WELL CONSTRUCTION (VISUAL)	WELL CONSTRUCTION (DEPTH INTERVALS (FEET BOS))
0.1	0-2	1.25	ND	(0-1.25') Olive grey, poorly graded, gravelly sands, little or no fines with organic material (wood and roots).		<u>)</u>	No Well	No Well
COMMENTS THIS BORE ND (Non-Det	LOG IS INTEN	DED FOR EN I; NS = Not S	IVIRONME ampled; BG	NTAL NOT GEOTECHNICAL PURPOSES. SS = Below Ground Surface				

PROJECT NUMBER: S3969 DRILL METHOD: Hand Boring

DRILLING DATE: 10/21/2021

LOGGED BY: Lacy Reyna

DRILLED BY: SAGE EnviroTech Drilling Services, Inc.

BORING/MW DIAMETER: 1.25"

DRILLED BY: SAGE EnviroTech Drilling Services, Inc.

BORING/MW DIAMETER: 1.25"

SCREENING EQUIPMENT: PID

LENGTH OF RISER: Not Applicable

LENGTH OF SCREEN: Not Applicable

DEPTH O(FEET BGS)	SAMPLE INTERVAL	RECOVERY (FEET)	PID (PPMV)	MATERIAL DESCRIPTION (COLOR, DENSITY, CLASSIFICATION, MOISTURE CONTENT, NOTES)	LITHOLOGY GRAPHIC LOG DTW (FEET BGS)	WELL CONSTRUCTION (VISUAL)	WELL CONSTRUCTION (DEPTH NITEWALS (FEET BGS))
0.1	0-2	0.75	ND	(0-0.75') Olive grey, poorly graded, gravelly sands, little or no fines with organic material (wood and roots). Rock at bottom of sample.		No Well	No Well
ND (Non-Del	tect) = <1 ppm\	IDED FOR EN V; NS = Not S	ampled; BG	NTAL NOT GEOTECHNICAL PURPOSES. SS = Below Ground Surface			

PROJECT NUMBER: S3969

DRILLING DATE: 10/21/2021

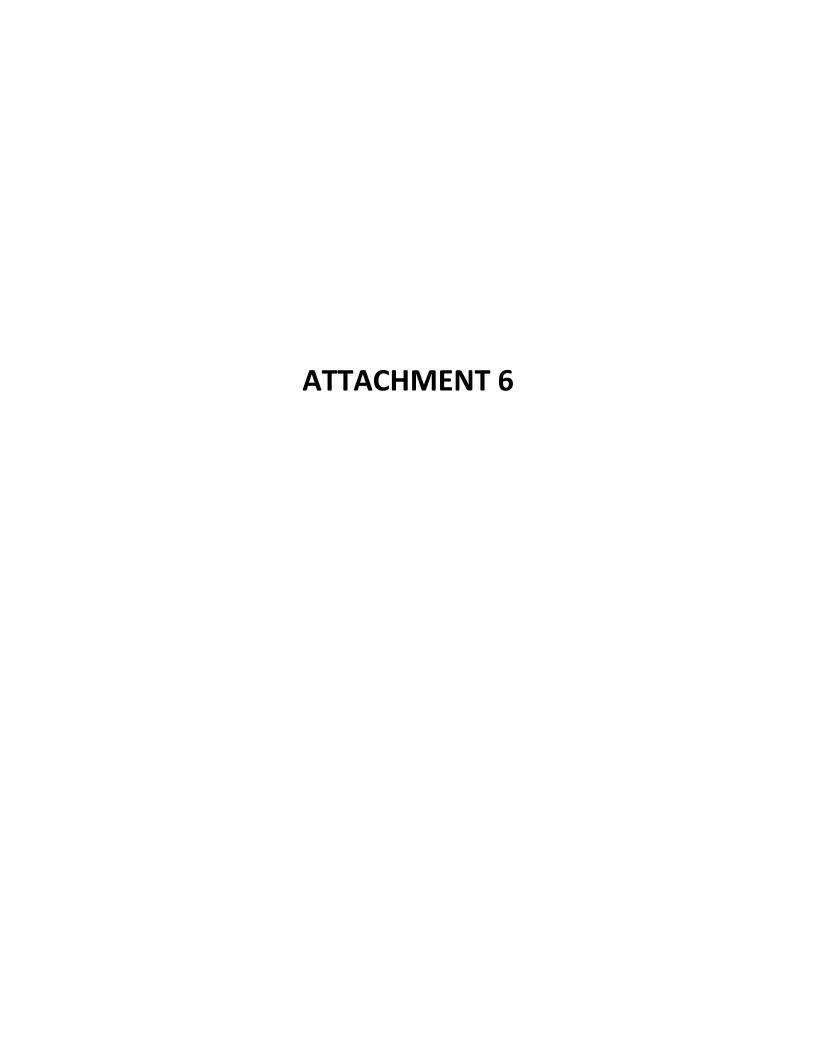
LOGGED BY: Lacy Reyna

DRILLED BY: SAGE EnviroTech Drilling Services, Inc.

SCREENING EQUIPMENT: PID

DRILL METHOD: Hand Boring

SAMPLE METHOD: Grab


BORING TOTAL DEPTH: 2'

BORING/MW DIAMETER: 1.25"

LENGTH OF RISER: Not Applicable

LENGTH OF SCREEN: Not Applicable

DEPTH (FEET RGS)		SAMPLE	RECOVERY (FEET)	PID (PPMV)	MATERIAL DESCRIPTION (COLOR, DENSITY, CLASSIFICATION, MOISTURE CONTENT, NOTES)	LITHOLOGY GRAPHIC LOG DTW (FEET BGS)	WELL CONSTRUCTION (VISUAL)	WELL CONSTRUCTION (DEPTH INTERVALS (FEET BGS))
E).1).2				(0-0.25') Dark grey, sand-silt mixtures with organic material (roots and grass).		No Well	No Well
).3).4).5).6).7).8).9 	0-2	1	ND	(0.25'-1') Olive grey, poorly graded, gravelly sands, little or no fines.			
	1.5							
E	1.7							
1	1.9							
COMME THIS BO ND (Nor	NTS: DRE LOG n-Detect)	S IS INTENE = <1 ppmV	DED FOR EN '; NS = Not Sa	VIRONMEN ampled; BG	NTAL NOT GEOTECHNICAL PURPOSES. S = Below Ground Surface			

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 1J25018 Client Project: S3969 - 10 Higginson Ave, Central Falls, RI

Report Date: 01-November-2021

Prepared for:

Cathy Racine SAGE Environmental 172 Armistice Blvd Pawtucket, RI 02860

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 10/25/21. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 1J25018. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
1J25018-01	SE-101 (0-2) MW	Soil	10/21/2021	10/25/2021
1J25018-02	SE-101 (2-5) MW	Soil	10/21/2021	10/25/2021
1J25018-03	SE-102 (0-2) MW	Soil	10/21/2021	10/25/2021
1J25018-04	SE-102 (5-10) MW	Soil	10/21/2021	10/25/2021
1J25018-05	SE-103 (0-2) MW	Soil	10/21/2021	10/25/2021
1J25018-06	SE-103 (2-5) MW	Soil	10/21/2021	10/25/2021
1J25018-07	SE-104 (0-2)	Soil	10/21/2021	10/25/2021
1J25018-08	SE-105 (0-2)	Soil	10/21/2021	10/25/2021
1J25018-09	SE-106 (0-2)	Soil	10/21/2021	10/25/2021
1J25018-10	SE-107 (0-2)	Soil	10/21/2021	10/25/2021
1J25018-11	SE-108 (0-2)	Soil	10/21/2021	10/25/2021
1J25018-12	SE-109 (0-2)	Soil	10/21/2021	10/25/2021
1J25018-13	SE-110 (0-2)	Soil	10/21/2021	10/25/2021

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

SE-101 (0-2) MW (Lab Number: 1J25018-01)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-101 (2-5) MW (Lab Number: 1J25018-02)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-102 (0-2) MW (Lab Number: 1J25018-03)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C

SE-102 (0-2) MW (Lab Number: 1J25018-03) (continued)

<u>Analysis</u>	<u>Method</u>
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-102 (5-10) MW (Lab Number: 1J25018-04)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-103 (0-2) MW (Lab Number: 1J25018-05)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-103 (2-5) MW (Lab Number: 1J25018-06)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-104 (0-2) (Lab Number: 1J25018-07)

Analysis	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-105 (0-2) (Lab Number: 1J25018-08)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-106 (0-2) (Lab Number: 1J25018-09)

Analysis	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-107 (0-2) (Lab Number: 1J25018-10)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-108 (0-2) (Lab Number: 1J25018-11)

Analysis	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-109 (0-2) (Lab Number: 1J25018-12)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

SE-110 (0-2) (Lab Number: 1J25018-13)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Polynuclear Aromatic Hydrocarbons	EPA 8270D
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Total Petroleum Hydrocarbons	EPA-8100-mod
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

Method References

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions:

VOAs: sample 'SE-106 (0-2)' was reported with one internal standard outside the method-recommended QC limits due to matrix interference.

Results: Total Metals

Sample: SE-101 (0-2) MW Lab Number: 1J25018-01 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Antimony	1.66		0.46	mg/kg	10/26/21	10/27/21			
Arsenic	5.94		0.46	mg/kg	10/26/21	10/27/21			
Beryllium	ND		0.23	mg/kg	10/26/21	10/27/21			
Cadmium	1.97		0.23	mg/kg	10/26/21	10/27/21			
Chromium	9.27		0.23	mg/kg	10/26/21	10/27/21			
Copper	21.0		0.93	mg/kg	10/26/21	10/27/21			
Lead	125		0.23	mg/kg	10/26/21	10/27/21			
Mercury	0.160		0.034	mg/kg	10/28/21	10/28/21			
Nickel	13.8		0.23	mg/kg	10/26/21	10/27/21			
Selenium	ND		0.46	mg/kg	10/26/21	10/27/21			
Silver	ND		0.23	mg/kg	10/26/21	10/27/21			
Zinc	91.7		0.9	mg/kg	10/26/21	10/27/21			
Thallium	ND		0.23	mg/kg	10/26/21	10/27/21			

Results: Total Metals

Sample: SE-101 (2-5) MW Lab Number: 1J25018-02 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	0.78		0.65	mg/kg	10/26/21	10/27/21		
Arsenic	3.40		0.65	mg/kg	10/26/21	10/27/21		
Beryllium	ND		0.32	mg/kg	10/26/21	10/27/21		
Cadmium	0.75		0.32	mg/kg	10/26/21	10/27/21		
Chromium	6.45		0.32	mg/kg	10/26/21	10/27/21		
Copper	17.6		1.30	mg/kg	10/26/21	10/27/21		
Lead	106		0.32	mg/kg	10/26/21	10/27/21		
Mercury	0.686		0.045	mg/kg	10/28/21	10/28/21		
Nickel	5.15		0.32	mg/kg	10/26/21	10/27/21		
Selenium	ND		0.65	mg/kg	10/26/21	10/27/21		
Silver	ND		0.32	mg/kg	10/26/21	10/27/21		
Zinc	80.8		1.3	mg/kg	10/26/21	10/27/21		
Thallium	ND		0.32	mg/kg	10/26/21	10/27/21		

Results: Total Metals

Sample: SE-102 (0-2) MW Lab Number: 1J25018-03 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	0.57		0.47	mg/kg	10/26/21	10/27/21		
Arsenic	70.2		0.47	mg/kg	10/26/21	10/27/21		
Beryllium	ND		0.23	mg/kg	10/26/21	10/27/21		
Cadmium	0.89		0.23	mg/kg	10/26/21	10/27/21		
Chromium	7.49		0.23	mg/kg	10/26/21	10/27/21		
Copper	26.7		0.94	mg/kg	10/26/21	10/27/21		
Lead	410		0.23	mg/kg	10/26/21	10/27/21		
Mercury	0.168		0.029	mg/kg	10/28/21	10/28/21		
Nickel	5.83		0.23	mg/kg	10/26/21	10/27/21		
Selenium	ND		0.47	mg/kg	10/26/21	10/27/21		
Silver	ND		0.23	mg/kg	10/26/21	10/27/21		
Zinc	63.3		0.9	mg/kg	10/26/21	10/27/21		
Thallium	ND		0.23	mg/kg	10/26/21	10/27/21		

Results: Total Metals

Sample: SE-102 (5-10) MW Lab Number: 1J25018-04 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	ND		0.49	mg/kg	10/26/21	10/27/21		
Arsenic	1.16		0.49	mg/kg	10/26/21	10/27/21		
Beryllium	ND		0.24	mg/kg	10/26/21	10/27/21		
Cadmium	0.48		0.24	mg/kg	10/26/21	10/27/21		
Chromium	3.12		0.24	mg/kg	10/26/21	10/27/21		
Copper	2.98		0.99	mg/kg	10/26/21	10/27/21		
Lead	3.05		0.24	mg/kg	10/26/21	10/27/21		
Mercury	0.029		0.027	mg/kg	10/28/21	10/28/21		
Nickel	2.84		0.24	mg/kg	10/26/21	10/27/21		
Selenium	ND		0.49	mg/kg	10/26/21	10/27/21		
Silver	ND		0.24	mg/kg	10/26/21	10/27/21		
Zinc	27.6		1.0	mg/kg	10/26/21	10/27/21		
Thallium	ND		0.24	mg/kg	10/26/21	10/27/21		

Results: Total Metals

Sample: SE-103 (0-2) MW Lab Number: 1J25018-05 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	ND		0.57	mg/kg	10/26/21	10/27/21		
Arsenic	5.13		0.57	mg/kg	10/26/21	10/27/21		
Beryllium	ND		0.29	mg/kg	10/26/21	10/27/21		
Cadmium	1.13		0.29	mg/kg	10/26/21	10/27/21		
Chromium	8.34		0.29	mg/kg	10/26/21	10/27/21		
Copper	8.39		1.15	mg/kg	10/26/21	10/27/21		
Lead	45.8		0.29	mg/kg	10/26/21	10/27/21		
Mercury	0.080		0.040	mg/kg	10/28/21	10/28/21		
Nickel	5.72		0.29	mg/kg	10/26/21	10/27/21		
Selenium	ND		0.57	mg/kg	10/26/21	10/27/21		
Silver	ND		0.29	mg/kg	10/26/21	10/27/21		
Zinc	37.2		1.2	mg/kg	10/26/21	10/27/21		
Thallium	ND		0.29	mg/kg	10/26/21	10/27/21		

Results: Total Metals

Sample: SE-103 (2-5) MW Lab Number: 1J25018-06 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	ND		0.43	mg/kg	10/26/21	10/27/21		
Arsenic	3.84		0.43	mg/kg	10/26/21	10/27/21		
Beryllium	ND		0.21	mg/kg	10/26/21	10/27/21		
Cadmium	1.00		0.21	mg/kg	10/26/21	10/27/21		
Chromium	6.89		0.21	mg/kg	10/26/21	10/27/21		
Copper	5.79		0.86	mg/kg	10/26/21	10/27/21		
Lead	16.4		0.21	mg/kg	10/26/21	10/27/21		
Mercury	0.034		0.027	mg/kg	10/28/21	10/28/21		
Nickel	5.05		0.21	mg/kg	10/26/21	10/27/21		
Selenium	ND		0.43	mg/kg	10/26/21	10/27/21		
Silver	ND		0.21	mg/kg	10/26/21	10/27/21		
Zinc	23.7		0.9	mg/kg	10/26/21	10/27/21		
Thallium	ND		0.21	mg/kg	10/26/21	10/27/21		

Results: Total Metals

Sample: SE-104 (0-2) Lab Number: 1J25018-07 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	5.11		0.40	mg/kg	10/26/21	10/27/21		
Arsenic	2.56		0.40	mg/kg	10/26/21	10/27/21		
Beryllium	ND		0.20	mg/kg	10/26/21	10/27/21		
Cadmium	1.21		0.20	mg/kg	10/26/21	10/27/21		
Chromium	8.14		0.20	mg/kg	10/26/21	10/27/21		
Copper	12.9		0.81	mg/kg	10/26/21	10/27/21		
Lead	44.7		0.20	mg/kg	10/26/21	10/27/21		
Mercury	0.048		0.045	mg/kg	10/28/21	10/28/21		
Nickel	6.58		0.20	mg/kg	10/26/21	10/27/21		
Selenium	ND		0.40	mg/kg	10/26/21	10/27/21		
Silver	ND		0.20	mg/kg	10/26/21	10/27/21		
Zinc	60.0		0.8	mg/kg	10/26/21	10/27/21		
Thallium	ND		0.20	mg/kg	10/26/21	10/27/21		

Results: Total Metals

Sample: SE-105 (0-2) Lab Number: 1J25018-08 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	17.2		0.38	mg/kg	10/26/21	10/27/21		
Arsenic	7.12		0.38	mg/kg	10/26/21	10/27/21		
Beryllium	ND		0.19	mg/kg	10/26/21	10/27/21		
Cadmium	31.6		0.19	mg/kg	10/26/21	10/27/21		
Chromium	19.5		0.19	mg/kg	10/26/21	10/27/21		
Copper	113		0.76	mg/kg	10/26/21	10/27/21		
Lead	192		0.19	mg/kg	10/26/21	10/27/21		
Mercury	0.174		0.039	mg/kg	10/28/21	10/28/21		
Nickel	30.5		0.19	mg/kg	10/26/21	10/27/21		
Selenium	ND		0.38	mg/kg	10/26/21	10/27/21		
Silver	ND		0.19	mg/kg	10/26/21	10/27/21		
Zinc	216		0.8	mg/kg	10/26/21	10/27/21		
Thallium	ND		0.19	mg/kg	10/26/21	10/27/21		

Results: Total Metals

Sample: SE-106 (0-2) Lab Number: 1J25018-09 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	1.13		0.54	mg/kg	10/26/21	10/27/21		
Arsenic	2.62		0.54	mg/kg	10/26/21	10/27/21		
Beryllium	ND		0.27	mg/kg	10/26/21	10/27/21		
Cadmium	1.39		0.27	mg/kg	10/26/21	10/27/21		
Chromium	9.48		0.27	mg/kg	10/26/21	10/27/21		
Copper	36.5		1.09	mg/kg	10/26/21	10/27/21		
Lead	102		0.27	mg/kg	10/26/21	10/27/21		
Mercury	0.127		0.053	mg/kg	10/28/21	10/28/21		
Nickel	8.10		0.27	mg/kg	10/26/21	10/27/21		
Selenium	ND		0.54	mg/kg	10/26/21	10/27/21		
Silver	ND		0.27	mg/kg	10/26/21	10/27/21		
Zinc	108		1.1	mg/kg	10/26/21	10/27/21		
Thallium	ND		0.27	mg/kg	10/26/21	10/27/21		

Results: Total Metals

Sample: SE-107 (0-2) Lab Number: 1J25018-10 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	1.47		0.50	mg/kg	10/26/21	10/27/21		
Arsenic	4.47		0.50	mg/kg	10/26/21	10/27/21		
Beryllium	ND		0.25	mg/kg	10/26/21	10/27/21		
Cadmium	1.48		0.25	mg/kg	10/26/21	10/27/21		
Chromium	9.65		0.25	mg/kg	10/26/21	10/27/21		
Copper	31.3		1.00	mg/kg	10/26/21	10/27/21		
Lead	125		0.25	mg/kg	10/26/21	10/27/21		
Mercury	0.098		0.041	mg/kg	10/28/21	10/28/21		
Nickel	10.2		0.25	mg/kg	10/26/21	10/27/21		
Selenium	ND		0.50	mg/kg	10/26/21	10/27/21		
Silver	ND		0.25	mg/kg	10/26/21	10/27/21		
Zinc	98.5		1.0	mg/kg	10/26/21	10/27/21		
Thallium	ND		0.25	mg/kg	10/26/21	10/27/21		

Results: Total Metals

Sample: SE-108 (0-2) Lab Number: 1J25018-11 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	ND		0.58	mg/kg	10/26/21	10/27/21		
Arsenic	4.07		0.58	mg/kg	10/26/21	10/27/21		
Beryllium	ND		0.29	mg/kg	10/26/21	10/27/21		
Cadmium	1.45		0.29	mg/kg	10/26/21	10/27/21		
Chromium	9.09		0.29	mg/kg	10/26/21	10/27/21		
Copper	10.1		1.17	mg/kg	10/26/21	10/27/21		
Lead	12.7		0.29	mg/kg	10/26/21	10/27/21		
Mercury	0.028		0.028	mg/kg	10/28/21	10/28/21		
Nickel	10.4		0.29	mg/kg	10/26/21	10/27/21		
Selenium	ND		0.58	mg/kg	10/26/21	10/27/21		
Silver	ND		0.29	mg/kg	10/26/21	10/27/21		
Zinc	36.9		1.2	mg/kg	10/26/21	10/27/21		
Thallium	ND		0.29	mg/kg	10/26/21	10/27/21		

Results: Total Metals

Sample: SE-109 (0-2) Lab Number: 1J25018-12 (Soil)

Reporting								
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed		
Antimony	0.57		0.38	mg/kg	10/26/21	10/27/21		
Arsenic	3.04		0.38	mg/kg	10/26/21	10/27/21		
Beryllium	ND		0.19	mg/kg	10/26/21	10/27/21		
Cadmium	1.69		0.19	mg/kg	10/26/21	10/27/21		
Chromium	11.8		0.19	mg/kg	10/26/21	10/27/21		
Copper	36.3		0.76	mg/kg	10/26/21	10/27/21		
Lead	83.0		0.19	mg/kg	10/26/21	10/27/21		
Mercury	0.154		0.045	mg/kg	10/28/21	10/28/21		
Nickel	8.93		0.19	mg/kg	10/26/21	10/27/21		
Selenium	ND		0.38	mg/kg	10/26/21	10/27/21		
Silver	ND		0.19	mg/kg	10/26/21	10/27/21		
Zinc	79.5		0.8	mg/kg	10/26/21	10/27/21		
Thallium	ND		0.19	mg/kg	10/26/21	10/27/21		

Results: Total Metals

Sample: SE-110 (0-2) Lab Number: 1J25018-13 (Soil)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Antimony	ND		0.51	mg/kg	10/26/21	10/27/21
Arsenic	2.69		0.51	mg/kg	10/26/21	10/27/21
Beryllium	ND		0.26	mg/kg	10/26/21	10/27/21
Cadmium	1.08		0.26	mg/kg	10/26/21	10/27/21
Chromium	7.73		0.26	mg/kg	10/26/21	10/27/21
Copper	16.5		1.04	mg/kg	10/26/21	10/27/21
Lead	30.9		0.26	mg/kg	10/26/21	10/27/21
Mercury	0.059		0.041	mg/kg	10/28/21	10/28/21
Nickel	7.13		0.26	mg/kg	10/26/21	10/27/21
Selenium	ND		0.51	mg/kg	10/26/21	10/27/21
Silver	ND		0.26	mg/kg	10/26/21	10/27/21
Zinc	44.1		1.0	mg/kg	10/26/21	10/27/21
Thallium	ND		0.26	mg/kg	10/26/21	10/27/21

Results: Volatile Organic Compounds

Sample: SE-101 (0-2) MW Lab Number: 1J25018-01 (Soil)

Reporting						
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed	
Acetone	ND	89	ug/kg	10/26/21	10/26/21	
Benzene	ND	5	ug/kg	10/26/21	10/26/21	
Bromobenzene	ND	5	ug/kg	10/26/21	10/26/21	
Bromochloromethane	ND	5	ug/kg	10/26/21	10/26/21	
Bromodichloromethane	ND	5	ug/kg	10/26/21	10/26/21	
Bromoform	ND	5	ug/kg	10/26/21	10/26/21	
Bromomethane	ND	5	ug/kg	10/26/21	10/26/21	
2-Butanone	ND	22	ug/kg	10/26/21	10/26/21	
tert-Butyl alcohol	ND	5	ug/kg	10/26/21	10/26/21	
sec-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21	
n-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21	
tert-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21	
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/26/21	10/26/21	
Carbon Disulfide	ND	5	ug/kg	10/26/21	10/26/21	
Carbon Tetrachloride	ND	5	ug/kg	10/26/21	10/26/21	
Chlorobenzene	ND	5	ug/kg	10/26/21	10/26/21	
Chloroethane	ND	5	ug/kg	10/26/21	10/26/21	
Chloroform	ND	5	ug/kg	10/26/21	10/26/21	
Chloromethane	ND	5	ug/kg	10/26/21	10/26/21	
4-Chlorotoluene	ND	5	ug/kg	10/26/21	10/26/21	
2-Chlorotoluene	ND	5	ug/kg	10/26/21	10/26/21	
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg ug/kg	10/26/21	10/26/21	
Dibromochloromethane	ND	5	ug/kg ug/kg	10/26/21	10/26/21	
1,2-Dibromoethane (EDB)	ND	5	ug/kg ug/kg	10/26/21	10/26/21	
Dibromomethane	ND ND	5	ug/kg ug/kg	10/26/21	10/26/21	
1,2-Dichlorobenzene	ND ND	5	ug/kg ug/kg	10/26/21	10/26/21	
1,3-Dichlorobenzene	ND ND	5		10/26/21		
	ND ND	5	ug/kg		10/26/21	
1,4-Dichlorosensens			ug/kg	10/26/21	10/26/21	
1,1-Dichloroethane	ND	5	ug/kg	10/26/21	10/26/21	
1,2-Dichloroethane	ND	5	ug/kg	10/26/21	10/26/21	
trans-1,2-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21	
cis-1,2-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21	
1,1-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21	
1,2-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21	
2,2-Dichloropropane	ND	5	ug/kg 	10/26/21	10/26/21	
cis-1,3-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21	
trans-1,3-Dichloropropene	ND	5	ug/kg 	10/26/21	10/26/21	
1,1-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21	
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/26/21	10/26/21	
Diethyl ether	ND	5	ug/kg	10/26/21	10/26/21	
1,4-Dioxane	ND	108	ug/kg	10/26/21	10/26/21	
Ethylbenzene	ND	5	ug/kg	10/26/21	10/26/21	
Hexachlorobutadiene	ND	5	ug/kg	10/26/21	10/26/21	
2-Hexanone	ND	5	ug/kg	10/26/21	10/26/21	
Isopropylbenzene	ND	5	ug/kg	10/26/21	10/26/21	
p-Isopropyltoluene	ND	5	ug/kg	10/26/21	10/26/21	
Methylene Chloride	ND	23	ug/kg	10/26/21	10/26/21	
4-Methyl-2-pentanone	ND	5	ug/kg	10/26/21	^{10/2} Page 2	

Results: Volatile Organic Compounds (Continued)

Sample: SE-101 (0-2) MW (Continued)

Lab Number: 1J25018-01 (Soil)

Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed		
Naphthalene	ND	5	ug/kg	10/26/21	10/26/21		
n-Propylbenzene	ND	5	ug/kg	10/26/21	10/26/21		
Styrene	ND	5	ug/kg	10/26/21	10/26/21		
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/26/21	10/26/21		
Tetrachloroethene	ND	5	ug/kg	10/26/21	10/26/21		
Tetrahydrofuran	ND	5	ug/kg	10/26/21	10/26/21		
Toluene	ND	5	ug/kg	10/26/21	10/26/21		
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21		
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21		
1,1,2-Trichloroethane	ND	5	ug/kg	10/26/21	10/26/21		
1,1,1-Trichloroethane	ND	5	ug/kg	10/26/21	10/26/21		
Trichloroethene	ND	5	ug/kg	10/26/21	10/26/21		
1,2,3-Trichloropropane	ND	5	ug/kg	10/26/21	10/26/21		
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/26/21	10/26/21		
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/26/21	10/26/21		
Vinyl Chloride	ND	5	ug/kg	10/26/21	10/26/21		
o-Xylene	ND	5	ug/kg	10/26/21	10/26/21		
m&p-Xylene	ND	11	ug/kg	10/26/21	10/26/21		
Total xylenes	ND	5	ug/kg	10/26/21	10/26/21		
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/26/21	10/26/21		
tert-Amyl methyl ether	ND	5	ug/kg	10/26/21	10/26/21		
1,3-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21		
Ethyl tert-butyl ether	ND	5	ug/kg	10/26/21	10/26/21		
Diisopropyl ether	ND	5	ug/kg	10/26/21	10/26/21		
Trichlorofluoromethane	ND	5	ug/kg	10/26/21	10/26/21		
Dichlorodifluoromethane	ND	5	ug/kg	10/26/21	10/26/21		
Surrogate(s)	Recovery%	Lim	its				
4-Bromofluorobenzene	88.7%	70-i	130	10/26/21	10/26/21		
1,2-Dichloroethane-d4	101%	<i>70-1</i>	1.30	10/26/21	10/26/21		
Toluene-d8	98.4%	<i>70-1</i>	130	10/26/21	10/26/21		

Results: Volatile Organic Compounds

Sample: SE-101 (2-5) MW Lab Number: 1J25018-02 (Soil)

Analyte	Result Q	ual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	162	ug/kg	10/26/21	10/26/21
Benzene	ND	5	ug/kg	10/26/21	10/26/21
Bromobenzene	ND	5	ug/kg	10/26/21	10/26/21
Bromochloromethane	ND	5	ug/kg	10/26/21	10/26/21
Bromodichloromethane	ND	5	ug/kg	10/26/21	10/26/21
Bromoform	ND	5	ug/kg	10/26/21	10/26/21
Bromomethane	ND	5	ug/kg	10/26/21	10/26/21
2-Butanone	ND	43	ug/kg	10/26/21	10/26/21
tert-Butyl alcohol	ND	5	ug/kg	10/26/21	10/26/21
sec-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21
n-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21
tert-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/26/21	10/26/21
Carbon Disulfide	ND	5	ug/kg	10/26/21	10/26/21
Carbon Tetrachloride	ND	5	ug/kg	10/26/21	10/26/21
Chlorobenzene	ND	5	ug/kg	10/26/21	10/26/21
Chloroethane	ND	5	ug/kg	10/26/21	10/26/21
Chloroform	ND	5	ug/kg	10/26/21	10/26/21
Chloromethane	ND	5	ug/kg	10/26/21	10/26/21
4-Chlorotoluene	ND	5	ug/kg	10/26/21	10/26/21
2-Chlorotoluene	ND	5	ug/kg	10/26/21	10/26/21
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg	10/26/21	10/26/21
Dibromochloromethane	ND	5	ug/kg	10/26/21	10/26/21
1,2-Dibromoethane (EDB)	ND	5	ug/kg	10/26/21	10/26/21
Dibromomethane	ND	5	ug/kg	10/26/21	10/26/21
1,2-Dichlorobenzene	ND	5	ug/kg ug/kg	10/26/21	10/26/21
1,3-Dichlorobenzene	ND	5	ug/kg ug/kg	10/26/21	10/26/21
1,4-Dichlorobenzene	ND	5	ug/kg ug/kg	10/26/21	10/26/21
1,1-Dichloroethane	ND	5	ug/kg ug/kg	10/26/21	10/26/21
1,2-Dichloroethane	ND	5	ug/kg ug/kg	10/26/21	10/26/21
	ND ND	5			
trans-1,2-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21
cis-1,2-Dichloroethene		5	ug/kg	10/26/21	10/26/21
1,1-Dichloroethene	ND ND		ug/kg	10/26/21	10/26/21
1,2-Dichloropropane		5	ug/kg	10/26/21	10/26/21
2,2-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21
cis-1,3-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21
trans-1,3-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21
1,1-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/26/21	10/26/21
Diethyl ether	ND	5	ug/kg 	10/26/21	10/26/21
1,4-Dioxane	ND	108	ug/kg	10/26/21	10/26/21
Ethylbenzene	ND	5	ug/kg 	10/26/21	10/26/21
Hexachlorobutadiene	ND	5	ug/kg	10/26/21	10/26/21
2-Hexanone	ND	5	ug/kg	10/26/21	10/26/21
Isopropylbenzene	ND	5	ug/kg	10/26/21	10/26/21
p-Isopropyltoluene	ND	5	ug/kg	10/26/21	10/26/21
Methylene Chloride	ND	22	ug/kg	10/26/21	10/26/21
4-Methyl-2-pentanone	ND	5	ug/kg	10/26/21	^{10/2} Page 25

Results: Volatile Organic Compounds (Continued)

Sample: SE-101 (2-5) MW (Continued)

Lab Number: 1J25018-02 (Soil)

Reporting							
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed		
Naphthalene	ND	5	ug/kg	10/26/21	10/26/21		
n-Propylbenzene	ND	5	ug/kg	10/26/21	10/26/21		
Styrene	ND	5	ug/kg	10/26/21	10/26/21		
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/26/21	10/26/21		
Tetrachloroethene	ND	5	ug/kg	10/26/21	10/26/21		
Tetrahydrofuran	ND	5	ug/kg	10/26/21	10/26/21		
Toluene	ND	5	ug/kg	10/26/21	10/26/21		
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21		
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21		
1,1,2-Trichloroethane	ND	5	ug/kg	10/26/21	10/26/21		
1,1,1-Trichloroethane	ND	5	ug/kg	10/26/21	10/26/21		
Trichloroethene	ND	5	ug/kg	10/26/21	10/26/21		
1,2,3-Trichloropropane	ND	5	ug/kg	10/26/21	10/26/21		
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/26/21	10/26/21		
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/26/21	10/26/21		
Vinyl Chloride	ND	5	ug/kg	10/26/21	10/26/21		
o-Xylene	ND	5	ug/kg	10/26/21	10/26/21		
m&p-Xylene	ND	11	ug/kg	10/26/21	10/26/21		
Total xylenes	ND	5	ug/kg	10/26/21	10/26/21		
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/26/21	10/26/21		
tert-Amyl methyl ether	ND	5	ug/kg	10/26/21	10/26/21		
1,3-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21		
Ethyl tert-butyl ether	ND	5	ug/kg	10/26/21	10/26/21		
Diisopropyl ether	ND	5	ug/kg	10/26/21	10/26/21		
Trichlorofluoromethane	ND	5	ug/kg	10/26/21	10/26/21		
Dichlorodifluoromethane	ND	5	ug/kg	10/26/21	10/26/21		
Surrogate(s)	Recovery%	Limi	ts				
4-Bromofluorobenzene	98.0%	70-1.	30	10/26/21	10/26/21		
1,2-Dichloroethane-d4	104%	70-1	30	10/26/21	10/26/21		
Toluene-d8	102%	70-1	30	10/26/21	10/26/21		

Results: Volatile Organic Compounds

Sample: SE-102 (0-2) MW Lab Number: 1J25018-03 (Soil)

		Reporting					
Analyte	Result Qua	l Limit	Units	Date Prepared	Date Analyzed		
Acetone	ND	5	ug/kg	10/26/21	10/26/21		
Benzene	ND	5	ug/kg	10/26/21	10/26/21		
Bromobenzene	ND	5	ug/kg	10/26/21	10/26/21		
Bromochloromethane	ND	5	ug/kg	10/26/21	10/26/21		
Bromodichloromethane	ND	5	ug/kg	10/26/21	10/26/21		
Bromoform	ND	5	ug/kg	10/26/21	10/26/21		
Bromomethane	ND	5	ug/kg	10/26/21	10/26/21		
2-Butanone	ND	5	ug/kg	10/26/21	10/26/21		
tert-Butyl alcohol	ND	5	ug/kg	10/26/21	10/26/21		
sec-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21		
n-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21		
tert-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21		
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/26/21	10/26/21		
Carbon Disulfide	ND	5	ug/kg	10/26/21	10/26/21		
Carbon Tetrachloride	ND	5	ug/kg	10/26/21	10/26/21		
Chlorobenzene	ND	5	ug/kg	10/26/21	10/26/21		
Chloroethane	ND	5	ug/kg	10/26/21	10/26/21		
Chloroform	ND	5	ug/kg	10/26/21	10/26/21		
Chloromethane	ND	5	ug/kg	10/26/21	10/26/21		
4-Chlorotoluene	ND	5	ug/kg	10/26/21	10/26/21		
2-Chlorotoluene	ND	5	ug/kg	10/26/21	10/26/21		
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg	10/26/21	10/26/21		
Dibromochloromethane	ND	5	ug/kg	10/26/21	10/26/21		
1,2-Dibromoethane (EDB)	ND	5	ug/kg	10/26/21	10/26/21		
Dibromomethane	ND	5	ug/kg	10/26/21	10/26/21		
1,2-Dichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21		
1,3-Dichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21		
1,4-Dichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21		
1,1-Dichloroethane	ND	5	ug/kg	10/26/21	10/26/21		
1,2-Dichloroethane	ND	5	ug/kg	10/26/21	10/26/21		
trans-1,2-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21		
cis-1,2-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21		
1,1-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21		
1,2-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21		
2,2-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21		
cis-1,3-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21		
trans-1,3-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21		
1,1-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21		
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/26/21	10/26/21		
Diethyl ether	ND	5	ug/kg	10/26/21	10/26/21		
1,4-Dioxane	ND	96	ug/kg	10/26/21	10/26/21		
Ethylbenzene	ND	5	ug/kg	10/26/21	10/26/21		
Hexachlorobutadiene	ND	5	ug/kg	10/26/21	10/26/21		
2-Hexanone	ND	5	ug/kg	10/26/21	10/26/21		
Isopropylbenzene	ND	5	ug/kg ug/kg	10/26/21	10/26/21		
p-Isopropyltoluene	ND	5	ug/kg ug/kg	10/26/21	10/26/21		
Methylene Chloride	ND	24	ug/kg ug/kg	10/26/21	10/26/21		
4-Methyl-2-pentanone	ND	5	ug/kg ug/kg	10/26/21	10/26 Page 27		

Sample: SE-102 (0-2) MW (Continued)

Lab Number: 1J25018-03 (Soil)

Analyte	Result	Qual				
72.7.0		Quai	Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND		5	ug/kg	10/26/21	10/26/21
n-Propylbenzene	ND		5	ug/kg	10/26/21	10/26/21
Styrene	ND		5	ug/kg	10/26/21	10/26/21
1,1,1,2-Tetrachloroethane	ND		5	ug/kg	10/26/21	10/26/21
Tetrachloroethene	ND		5	ug/kg	10/26/21	10/26/21
Tetrahydrofuran	ND		5	ug/kg	10/26/21	10/26/21
Toluene	ND		5	ug/kg	10/26/21	10/26/21
1,2,4-Trichlorobenzene	ND		5	ug/kg	10/26/21	10/26/21
1,2,3-Trichlorobenzene	ND		5	ug/kg	10/26/21	10/26/21
1,1,2-Trichloroethane	ND		5	ug/kg	10/26/21	10/26/21
1,1,1-Trichloroethane	ND		5	ug/kg	10/26/21	10/26/21
Trichloroethene	ND		5	ug/kg	10/26/21	10/26/21
1,2,3-Trichloropropane	ND		5	ug/kg	10/26/21	10/26/21
1,3,5-Trimethylbenzene	ND		5	ug/kg	10/26/21	10/26/21
1,2,4-Trimethylbenzene	ND		5	ug/kg	10/26/21	10/26/21
Vinyl Chloride	ND		5	ug/kg	10/26/21	10/26/21
o-Xylene	ND		5	ug/kg	10/26/21	10/26/21
m&p-Xylene	ND		10	ug/kg	10/26/21	10/26/21
Total xylenes	ND		5	ug/kg	10/26/21	10/26/21
1,1,2,2-Tetrachloroethane	ND		5	ug/kg	10/26/21	10/26/21
tert-Amyl methyl ether	ND		5	ug/kg	10/26/21	10/26/21
1,3-Dichloropropane	ND		5	ug/kg	10/26/21	10/26/21
Ethyl tert-butyl ether	ND		5	ug/kg	10/26/21	10/26/21
Diisopropyl ether	ND		5	ug/kg	10/26/21	10/26/21
Trichlorofluoromethane	ND		5	ug/kg	10/26/21	10/26/21
Dichlorodifluoromethane	ND		5	ug/kg	10/26/21	10/26/21
Surrogate(s)	Recovery%		Limit	ts		
4-Bromofluorobenzene	103%		<i>70-13</i>	30	10/26/21	10/26/21
1,2-Dichloroethane-d4	104%		70-13	30	10/26/21	10/26/21
Toluene-d8	104%		70-13	30	10/26/21	10/26/21

Results: Volatile Organic Compounds

Sample: SE-102 (5-10) MW Lab Number: 1J25018-04 (Soil)

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		42	ug/kg	10/26/21	10/26/21
Benzene	ND		7	ug/kg	10/26/21	10/26/21
Bromobenzene	ND		7	ug/kg	10/26/21	10/26/21
Bromochloromethane	ND		7	ug/kg	10/26/21	10/26/21
Bromodichloromethane	ND		7	ug/kg	10/26/21	10/26/21
Bromoform	ND		7	ug/kg	10/26/21	10/26/21
Bromomethane	ND		7	ug/kg	10/26/21	10/26/21
2-Butanone	ND		14	ug/kg	10/26/21	10/26/21
tert-Butyl alcohol	ND		7	ug/kg	10/26/21	10/26/21
sec-Butylbenzene	ND		7	ug/kg	10/26/21	10/26/21
n-Butylbenzene	ND		7	ug/kg	10/26/21	10/26/21
tert-Butylbenzene	ND		7	ug/kg	10/26/21	10/26/21
Methyl t-butyl ether (MTBE)	ND		7	ug/kg	10/26/21	10/26/21
Carbon Disulfide	ND		7	ug/kg	10/26/21	10/26/21
Carbon Tetrachloride	ND		, 7	ug/kg ug/kg	10/26/21	10/26/21
Chlorobenzene	ND		, 7	ug/kg	10/26/21	10/26/21
Chloroethane	ND		, 7	ug/kg ug/kg	10/26/21	10/26/21
Chloroform	ND		, 7	ug/kg ug/kg	10/26/21	10/26/21
Chloromethane	ND		7	ug/kg ug/kg	10/26/21	10/26/21
4-Chlorotoluene	ND		7	ug/kg ug/kg	10/26/21	10/26/21
2-Chlorotoluene	ND ND		7	ug/kg ug/kg	10/26/21	10/26/21
	ND ND		7		10/26/21	
1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane	ND ND		7	ug/kg ug/kg	10/26/21	10/26/21 10/26/21
	ND ND		7			
1,2-Dibromoethane (EDB)	ND ND		7	ug/kg	10/26/21	10/26/21
Dibromomethane	ND ND		7	ug/kg	10/26/21	10/26/21
1,2-Dichlorobenzene				ug/kg	10/26/21	10/26/21
1,3-Dichlorobenzene	ND		7	ug/kg	10/26/21	10/26/21
1,4-Dichlorobenzene	ND		7	ug/kg	10/26/21	10/26/21
1,1-Dichloroethane	ND		7	ug/kg	10/26/21	10/26/21
1,2-Dichloroethane	ND		7	ug/kg	10/26/21	10/26/21
trans-1,2-Dichloroethene	ND		7	ug/kg	10/26/21	10/26/21
cis-1,2-Dichloroethene	ND		7	ug/kg 	10/26/21	10/26/21
1,1-Dichloroethene	ND		7	ug/kg 	10/26/21	10/26/21
1,2-Dichloropropane	ND		7	ug/kg	10/26/21	10/26/21
2,2-Dichloropropane	ND		7	ug/kg	10/26/21	10/26/21
cis-1,3-Dichloropropene	ND		7	ug/kg	10/26/21	10/26/21
trans-1,3-Dichloropropene	ND		7	ug/kg	10/26/21	10/26/21
1,1-Dichloropropene	ND		7	ug/kg	10/26/21	10/26/21
1,3-Dichloropropene (cis + trans)	ND		7	ug/kg	10/26/21	10/26/21
Diethyl ether	ND		7	ug/kg	10/26/21	10/26/21
1,4-Dioxane	ND		139	ug/kg	10/26/21	10/26/21
Ethylbenzene	ND		7	ug/kg	10/26/21	10/26/21
Hexachlorobutadiene	ND		7	ug/kg	10/26/21	10/26/21
2-Hexanone	ND		7	ug/kg	10/26/21	10/26/21
Isopropylbenzene	ND		7	ug/kg	10/26/21	10/26/21
p-Isopropyltoluene	ND		7	ug/kg	10/26/21	10/26/21
Methylene Chloride	ND		35	ug/kg	10/26/21	10/26/21
4-Methyl-2-pentanone	ND		7	ug/kg	10/26/21	^{10/2} Page 29

Sample: SE-102 (5-10) MW (Continued)

Lab Number: 1J25018-04 (Soil)

	- " - "	Reporting Result Qual Limit Units			Data Assalssad
Analyte	Result Qual	Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	7	ug/kg	10/26/21	10/26/21
n-Propylbenzene	ND	7	ug/kg	10/26/21	10/26/21
Styrene	ND	7	ug/kg	10/26/21	10/26/21
1,1,1,2-Tetrachloroethane	ND	7	ug/kg	10/26/21	10/26/21
Tetrachloroethene	ND	7	ug/kg	10/26/21	10/26/21
Tetrahydrofuran	ND	7	ug/kg	10/26/21	10/26/21
Toluene	ND	7	ug/kg	10/26/21	10/26/21
1,2,4-Trichlorobenzene	ND	7	ug/kg	10/26/21	10/26/21
1,2,3-Trichlorobenzene	ND	7	ug/kg	10/26/21	10/26/21
1,1,2-Trichloroethane	ND	7	ug/kg	10/26/21	10/26/21
1,1,1-Trichloroethane	ND	7	ug/kg	10/26/21	10/26/21
Trichloroethene	ND	7	ug/kg	10/26/21	10/26/21
1,2,3-Trichloropropane	ND	7	ug/kg	10/26/21	10/26/21
1,3,5-Trimethylbenzene	ND	7	ug/kg	10/26/21	10/26/21
1,2,4-Trimethylbenzene	ND	7	ug/kg	10/26/21	10/26/21
Vinyl Chloride	ND	7	ug/kg	10/26/21	10/26/21
o-Xylene	ND	7	ug/kg	10/26/21	10/26/21
m&p-Xylene	ND	14	ug/kg	10/26/21	10/26/21
Total xylenes	ND	7	ug/kg	10/26/21	10/26/21
1,1,2,2-Tetrachloroethane	ND	7	ug/kg	10/26/21	10/26/21
tert-Amyl methyl ether	ND	7	ug/kg	10/26/21	10/26/21
1,3-Dichloropropane	ND	7	ug/kg	10/26/21	10/26/21
Ethyl tert-butyl ether	ND	7	ug/kg	10/26/21	10/26/21
Diisopropyl ether	ND	7	ug/kg	10/26/21	10/26/21
Trichlorofluoromethane	ND	7	ug/kg	10/26/21	10/26/21
Dichlorodifluoromethane	ND	7	ug/kg	10/26/21	10/26/21
Surrogate(s)	Recovery%	Lim	its		
4-Bromofluorobenzene	92.3%	70-1	30	10/26/21	10/26/21
1,2-Dichloroethane-d4	101%	70-1	30	10/26/21	10/26/21
Toluene-d8	99.5%	70-1	30	10/26/21	10/26/21

Results: Volatile Organic Compounds

Sample: SE-103 (0-2) MW Lab Number: 1J25018-05 (Soil)

Reporting								
Analyte	Result (Qual Limit	Units	Date Prepared	Date Analyzed			
Acetone	ND	5	ug/kg	10/26/21	10/26/21			
Benzene	ND	5	ug/kg	10/26/21	10/26/21			
Bromobenzene	ND	5	ug/kg	10/26/21	10/26/21			
Bromochloromethane	ND	5	ug/kg	10/26/21	10/26/21			
Bromodichloromethane	ND	5	ug/kg	10/26/21	10/26/21			
Bromoform	ND	5	ug/kg	10/26/21	10/26/21			
Bromomethane	ND	5	ug/kg	10/26/21	10/26/21			
2-Butanone	ND	5	ug/kg	10/26/21	10/26/21			
tert-Butyl alcohol	ND	5	ug/kg	10/26/21	10/26/21			
sec-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21			
n-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21			
tert-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21			
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/26/21	10/26/21			
Carbon Disulfide	ND	5	ug/kg	10/26/21	10/26/21			
Carbon Tetrachloride	ND	5	ug/kg	10/26/21	10/26/21			
Chlorobenzene	ND	5	ug/kg	10/26/21	10/26/21			
Chloroethane	ND	5	ug/kg	10/26/21	10/26/21			
Chloroform	ND	5	ug/kg	10/26/21	10/26/21			
Chloromethane	ND	5	ug/kg	10/26/21	10/26/21			
4-Chlorotoluene	ND	5	ug/kg	10/26/21	10/26/21			
2-Chlorotoluene	ND	5	ug/kg	10/26/21	10/26/21			
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg	10/26/21	10/26/21			
Dibromochloromethane	ND	5	ug/kg	10/26/21	10/26/21			
1,2-Dibromoethane (EDB)	ND	5	ug/kg	10/26/21	10/26/21			
Dibromomethane	ND	5	ug/kg	10/26/21	10/26/21			
1,2-Dichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21			
1,3-Dichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21			
1,4-Dichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21			
1,1-Dichloroethane	ND	5	ug/kg	10/26/21	10/26/21			
1,2-Dichloroethane	ND	5	ug/kg	10/26/21	10/26/21			
trans-1,2-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21			
cis-1,2-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21			
1,1-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21			
1,2-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21			
2,2-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21			
cis-1,3-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21			
trans-1,3-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21			
1,1-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21			
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/26/21	10/26/21			
Diethyl ether	ND	5	ug/kg	10/26/21	10/26/21			
1,4-Dioxane	ND	106	ug/kg	10/26/21	10/26/21			
Ethylbenzene	ND	5	ug/kg	10/26/21	10/26/21			
Hexachlorobutadiene	ND	5	ug/kg	10/26/21	10/26/21			
2-Hexanone	ND	5	ug/kg	10/26/21	10/26/21			
Isopropylbenzene	ND	5	ug/kg	10/26/21	10/26/21			
p-Isopropyltoluene	ND	5	ug/kg	10/26/21	10/26/21			
Methylene Chloride	ND	24	ug/kg	10/26/21	10/26/21			
4-Methyl-2-pentanone	ND	5	ug/kg	10/26/21	^{10/2} Page 31 of			

Sample: SE-103 (0-2) MW (Continued)

Lab Number: 1J25018-05 (Soil)

		Reporting			
Analyte	Result Qual	Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	5	ug/kg	10/26/21	10/26/21
n-Propylbenzene	ND	5	ug/kg	10/26/21	10/26/21
Styrene	ND	5	ug/kg	10/26/21	10/26/21
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/26/21	10/26/21
Tetrachloroethene	ND	5	ug/kg	10/26/21	10/26/21
Tetrahydrofuran	ND	5	ug/kg	10/26/21	10/26/21
Toluene	ND	5	ug/kg	10/26/21	10/26/21
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21
1,1,2-Trichloroethane	ND	5	ug/kg	10/26/21	10/26/21
1,1,1-Trichloroethane	ND	5	ug/kg	10/26/21	10/26/21
Trichloroethene	ND	5	ug/kg	10/26/21	10/26/21
1,2,3-Trichloropropane	ND	5	ug/kg	10/26/21	10/26/21
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/26/21	10/26/21
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/26/21	10/26/21
Vinyl Chloride	ND	5	ug/kg	10/26/21	10/26/21
o-Xylene	ND	5	ug/kg	10/26/21	10/26/21
m&p-Xylene	ND	11	ug/kg	10/26/21	10/26/21
Total xylenes	ND	5	ug/kg	10/26/21	10/26/21
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/26/21	10/26/21
tert-Amyl methyl ether	ND	5	ug/kg	10/26/21	10/26/21
1,3-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21
Ethyl tert-butyl ether	ND	5	ug/kg	10/26/21	10/26/21
Diisopropyl ether	ND	5	ug/kg	10/26/21	10/26/21
Trichlorofluoromethane	ND	5	ug/kg	10/26/21	10/26/21
Dichlorodifluoromethane	ND	5	ug/kg	10/26/21	10/26/21
Surrogate(s)	Recovery%	Limi	ts		
4-Bromofluorobenzene	100%	70-1.	30	10/26/21	10/26/21
1,2-Dichloroethane-d4	99.7%	70-1.	30	10/26/21	10/26/21
Toluene-d8	100%	70-1.	30	10/26/21	10/26/21

Results: Volatile Organic Compounds

Sample: SE-103 (2-5) MW Lab Number: 1J25018-06 (Soil)

		Reporting			
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/kg	10/28/21	10/28/21
Benzene	ND	5	ug/kg	10/28/21	10/28/21
Bromobenzene	ND	5	ug/kg	10/28/21	10/28/21
Bromochloromethane	ND	5	ug/kg	10/28/21	10/28/21
Bromodichloromethane	ND	5	ug/kg	10/28/21	10/28/21
Bromoform	ND	5	ug/kg	10/28/21	10/28/21
Bromomethane	ND	5	ug/kg	10/28/21	10/28/21
2-Butanone	ND	5	ug/kg	10/28/21	10/28/21
tert-Butyl alcohol	ND	5	ug/kg	10/28/21	10/28/21
sec-Butylbenzene	ND	5	ug/kg	10/28/21	10/28/21
n-Butylbenzene	ND	5	ug/kg	10/28/21	10/28/21
tert-Butylbenzene	ND	5	ug/kg	10/28/21	10/28/21
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/28/21	10/28/21
Carbon Disulfide	ND	5	ug/kg	10/28/21	10/28/21
Carbon Tetrachloride	ND	5	ug/kg ug/kg	10/28/21	10/28/21
Chlorobenzene	ND	5	ug/kg ug/kg	10/28/21	10/28/21
Chloroethane	ND	5	ug/kg ug/kg	10/28/21	10/28/21
Chloroform	ND	5	ug/kg ug/kg	10/28/21	10/28/21
Chloromethane	ND	5	ug/kg ug/kg	10/28/21	10/28/21
4-Chlorotoluene	ND	5		10/28/21	
			ug/kg		10/28/21
2-Chlorotoluene	ND	5	ug/kg	10/28/21	10/28/21
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg	10/28/21	10/28/21
Dibromochloromethane (500)	ND	5	ug/kg	10/28/21	10/28/21
1,2-Dibromoethane (EDB)	ND	5	ug/kg	10/28/21	10/28/21
Dibromomethane	ND	5	ug/kg	10/28/21	10/28/21
1,2-Dichlorobenzene	ND	5	ug/kg 	10/28/21	10/28/21
1,3-Dichlorobenzene	ND	5	ug/kg 	10/28/21	10/28/21
1,4-Dichlorobenzene	ND	5	ug/kg	10/28/21	10/28/21
1,1-Dichloroethane	ND	5	ug/kg	10/28/21	10/28/21
1,2-Dichloroethane	ND	5	ug/kg	10/28/21	10/28/21
trans-1,2-Dichloroethene	ND	5	ug/kg	10/28/21	10/28/21
cis-1,2-Dichloroethene	ND	5	ug/kg	10/28/21	10/28/21
1,1-Dichloroethene	ND	5	ug/kg	10/28/21	10/28/21
1,2-Dichloropropane	ND	5	ug/kg	10/28/21	10/28/21
2,2-Dichloropropane	ND	5	ug/kg	10/28/21	10/28/21
cis-1,3-Dichloropropene	ND	5	ug/kg	10/28/21	10/28/21
trans-1,3-Dichloropropene	ND	5	ug/kg	10/28/21	10/28/21
1,1-Dichloropropene	ND	5	ug/kg	10/28/21	10/28/21
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/28/21	10/28/21
Diethyl ether	ND	5	ug/kg	10/28/21	10/28/21
1,4-Dioxane	ND	109	ug/kg	10/28/21	10/28/21
Ethylbenzene	ND	5	ug/kg	10/28/21	10/28/21
Hexachlorobutadiene	ND	5	ug/kg	10/28/21	10/28/21
2-Hexanone	ND	5	ug/kg	10/28/21	10/28/21
Isopropylbenzene	ND	5	ug/kg	10/28/21	10/28/21
p-Isopropyltoluene	ND	5	ug/kg	10/28/21	10/28/21
Methylene Chloride	ND	33	ug/kg	10/28/21	10/28/21
4-Methyl-2-pentanone	ND	5	ug/kg	10/28/21	10/28 Page 33

Sample: SE-103 (2-5) MW (Continued)

Lab Number: 1J25018-06 (Soil)

		Reporting			
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	5	ug/kg	10/28/21	10/28/21
n-Propylbenzene	ND	5	ug/kg	10/28/21	10/28/21
Styrene	ND	5	ug/kg	10/28/21	10/28/21
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/28/21	10/28/21
Tetrachloroethene	ND	5	ug/kg	10/28/21	10/28/21
Tetrahydrofuran	ND	5	ug/kg	10/28/21	10/28/21
Toluene	ND	5	ug/kg	10/28/21	10/28/21
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/28/21	10/28/21
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/28/21	10/28/21
1,1,2-Trichloroethane	ND	5	ug/kg	10/28/21	10/28/21
1,1,1-Trichloroethane	ND	5	ug/kg	10/28/21	10/28/21
Trichloroethene	ND	5	ug/kg	10/28/21	10/28/21
1,2,3-Trichloropropane	ND	5	ug/kg	10/28/21	10/28/21
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/28/21	10/28/21
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/28/21	10/28/21
Vinyl Chloride	ND	5	ug/kg	10/28/21	10/28/21
o-Xylene	ND	5	ug/kg	10/28/21	10/28/21
m&p-Xylene	ND	11	ug/kg	10/28/21	10/28/21
Total xylenes	ND	5	ug/kg	10/28/21	10/28/21
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/28/21	10/28/21
tert-Amyl methyl ether	ND	5	ug/kg	10/28/21	10/28/21
1,3-Dichloropropane	ND	5	ug/kg	10/28/21	10/28/21
Ethyl tert-butyl ether	ND	5	ug/kg	10/28/21	10/28/21
Diisopropyl ether	ND	5	ug/kg	10/28/21	10/28/21
Trichlorofluoromethane	ND	5	ug/kg	10/28/21	10/28/21
Dichlorodifluoromethane	ND	5	ug/kg	10/28/21	10/28/21
Surrogate(s)	Recovery%	Limi	ts		
4-Bromofluorobenzene	101%	70-1.	30	10/28/21	10/28/21
1,2-Dichloroethane-d4	95.4%	70-1.	30	10/28/21	10/28/21
Toluene-d8	99.2%	70-1.	30	10/28/21	10/28/21

Results: Volatile Organic Compounds

Sample: SE-104 (0-2) Lab Number: 1J25018-07 (Soil)

		Reporting			
Analyte	Result (Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	38	ug/kg	10/26/21	10/26/21
Benzene	ND	5	ug/kg	10/26/21	10/26/21
Bromobenzene	ND	5	ug/kg	10/26/21	10/26/21
Bromochloromethane	ND	5	ug/kg	10/26/21	10/26/21
Bromodichloromethane	ND	5	ug/kg	10/26/21	10/26/21
Bromoform	ND	5	ug/kg	10/26/21	10/26/21
Bromomethane	ND	5	ug/kg	10/26/21	10/26/21
2-Butanone	ND	28	ug/kg	10/26/21	10/26/21
tert-Butyl alcohol	ND	5	ug/kg	10/26/21	10/26/21
sec-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21
n-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21
tert-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/26/21	10/26/21
Carbon Disulfide	ND	5	ug/kg	10/26/21	10/26/21
Carbon Tetrachloride	ND	5	ug/kg	10/26/21	10/26/21
Chlorobenzene	ND	5	ug/kg	10/26/21	10/26/21
Chloroethane	ND	5	ug/kg	10/26/21	10/26/21
Chloroform	ND	5	ug/kg	10/26/21	10/26/21
Chloromethane	ND	5	ug/kg	10/26/21	10/26/21
4-Chlorotoluene	ND	5	ug/kg	10/26/21	10/26/21
2-Chlorotoluene	ND	5	ug/kg	10/26/21	10/26/21
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg	10/26/21	10/26/21
Dibromochloromethane	ND	5	ug/kg ug/kg	10/26/21	10/26/21
1,2-Dibromoethane (EDB)	ND	5	ug/kg ug/kg	10/26/21	10/26/21
Dibromomethane	ND	5	ug/kg ug/kg	10/26/21	10/26/21
1,2-Dichlorobenzene	ND	5	ug/kg ug/kg	10/26/21	10/26/21
1,3-Dichlorobenzene	ND ND	5	ug/kg ug/kg	10/26/21	10/26/21
1,4-Dichlorobenzene	ND ND	5	ug/kg ug/kg	10/26/21	10/26/21
	ND ND	5			
1,1-Dichloroethane		5	ug/kg	10/26/21	10/26/21
1,2-Dichloroethane	ND		ug/kg	10/26/21	10/26/21
trans-1,2-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21
cis-1,2-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21
1,1-Dichloroethene	ND	5	ug/kg	10/26/21	10/26/21
1,2-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21
2,2-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21
cis-1,3-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21
trans-1,3-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21
1,1-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/26/21	10/26/21
Diethyl ether	ND	5	ug/kg "	10/26/21	10/26/21
1,4-Dioxane	ND	104	ug/kg 	10/26/21	10/26/21
Ethylbenzene	ND	5	ug/kg 	10/26/21	10/26/21
Hexachlorobutadiene	ND	5	ug/kg	10/26/21	10/26/21
2-Hexanone	ND	5	ug/kg	10/26/21	10/26/21
Isopropylbenzene	ND	5	ug/kg	10/26/21	10/26/21
p-Isopropyltoluene	ND	5	ug/kg	10/26/21	10/26/21
Methylene Chloride	ND	29	ug/kg	10/26/21	10/26/21
I-Methyl-2-pentanone	ND	5	ug/kg	10/26/21	^{10/2} Page 3

Sample: SE-104 (0-2) (Continued)

Lab Number: 1J25018-07 (Soil)

		Reporting			
Analyte	Result Qua	l Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	5	ug/kg	10/26/21	10/26/21
n-Propylbenzene	ND	5	ug/kg	10/26/21	10/26/21
Styrene	ND	5	ug/kg	10/26/21	10/26/21
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/26/21	10/26/21
Tetrachloroethene	ND	5	ug/kg	10/26/21	10/26/21
Tetrahydrofuran	ND	5	ug/kg	10/26/21	10/26/21
Toluene	ND	5	ug/kg	10/26/21	10/26/21
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21
1,1,2-Trichloroethane	ND	5	ug/kg	10/26/21	10/26/21
1,1,1-Trichloroethane	ND	5	ug/kg	10/26/21	10/26/21
Trichloroethene	ND	5	ug/kg	10/26/21	10/26/21
1,2,3-Trichloropropane	ND	5	ug/kg	10/26/21	10/26/21
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/26/21	10/26/21
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/26/21	10/26/21
Vinyl Chloride	ND	5	ug/kg	10/26/21	10/26/21
o-Xylene	ND	5	ug/kg	10/26/21	10/26/21
m&p-Xylene	ND	10	ug/kg	10/26/21	10/26/21
Total xylenes	ND	5	ug/kg	10/26/21	10/26/21
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/26/21	10/26/21
tert-Amyl methyl ether	ND	5	ug/kg	10/26/21	10/26/21
1,3-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21
Ethyl tert-butyl ether	ND	5	ug/kg	10/26/21	10/26/21
Diisopropyl ether	ND	5	ug/kg	10/26/21	10/26/21
Trichlorofluoromethane	ND	5	ug/kg	10/26/21	10/26/21
Dichlorodifluoromethane	ND	5	ug/kg	10/26/21	10/26/21
Surrogate(s)	Recovery%	Lim	its		
4-Bromofluorobenzene	102%	<i>70-1</i>	<i>30</i>	10/26/21	10/26/21
1,2-Dichloroethane-d4	104%	70-1	30	10/26/21	10/26/21
Toluene-d8	99.7%	70-1	30	10/26/21	10/26/21

Results: Volatile Organic Compounds

Sample: SE-105 (0-2) Lab Number: 1J25018-08 (Soil)

		Reporting			
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	6	ug/kg	10/26/21	10/26/21
Benzene	ND	6	ug/kg	10/26/21	10/26/21
Bromobenzene	ND	6	ug/kg	10/26/21	10/26/21
Bromochloromethane	ND	6	ug/kg	10/26/21	10/26/21
Bromodichloromethane	ND	6	ug/kg	10/26/21	10/26/21
Bromoform	ND	6	ug/kg	10/26/21	10/26/21
Bromomethane	ND	6	ug/kg	10/26/21	10/26/21
2-Butanone	ND	6	ug/kg	10/26/21	10/26/21
tert-Butyl alcohol	ND	6	ug/kg	10/26/21	10/26/21
sec-Butylbenzene	ND	6	ug/kg	10/26/21	10/26/21
n-Butylbenzene	ND	6	ug/kg	10/26/21	10/26/21
tert-Butylbenzene	ND	6	ug/kg	10/26/21	10/26/21
Methyl t-butyl ether (MTBE)	ND	6	ug/kg	10/26/21	10/26/21
Carbon Disulfide	ND	6	ug/kg	10/26/21	10/26/21
Carbon Tetrachloride	ND	6	ug/kg	10/26/21	10/26/21
Chlorobenzene	ND	6	ug/kg	10/26/21	10/26/21
Chloroethane	ND	6	ug/kg	10/26/21	10/26/21
Chloroform	ND	6	ug/kg	10/26/21	10/26/21
Chloromethane	ND	6	ug/kg	10/26/21	10/26/21
4-Chlorotoluene	ND	6	ug/kg	10/26/21	10/26/21
2-Chlorotoluene	ND	6	ug/kg	10/26/21	10/26/21
1,2-Dibromo-3-chloropropane (DBCP)	ND	6	ug/kg	10/26/21	10/26/21
Dibromochloromethane	ND	6	ug/kg	10/26/21	10/26/21
1,2-Dibromoethane (EDB)	ND	6	ug/kg	10/26/21	10/26/21
Dibromomethane	ND	6	ug/kg	10/26/21	10/26/21
1,2-Dichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21
1,3-Dichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21
1,4-Dichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21
1,1-Dichloroethane	ND	6	ug/kg	10/26/21	10/26/21
1,2-Dichloroethane	ND	6	ug/kg	10/26/21	10/26/21
trans-1,2-Dichloroethene	ND	6	ug/kg	10/26/21	10/26/21
cis-1,2-Dichloroethene	ND	6	ug/kg	10/26/21	10/26/21
1,1-Dichloroethene	ND	6	ug/kg	10/26/21	10/26/21
1,2-Dichloropropane	ND	6	ug/kg	10/26/21	10/26/21
2,2-Dichloropropane	ND	6	ug/kg	10/26/21	10/26/21
cis-1,3-Dichloropropene	ND	6	ug/kg	10/26/21	10/26/21
trans-1,3-Dichloropropene	ND	6	ug/kg	10/26/21	10/26/21
1,1-Dichloropropene	ND	6	ug/kg	10/26/21	10/26/21
1,3-Dichloropropene (cis + trans)	ND	6	ug/kg	10/26/21	10/26/21
Diethyl ether	ND	6	ug/kg	10/26/21	10/26/21
1,4-Dioxane	ND	111	ug/kg	10/26/21	10/26/21
Ethylbenzene	ND	6	ug/kg	10/26/21	10/26/21
Hexachlorobutadiene	ND	6	ug/kg	10/26/21	10/26/21
2-Hexanone	ND	6	ug/kg	10/26/21	10/26/21
Isopropylbenzene	ND	6	ug/kg	10/26/21	10/26/21
p-Isopropyltoluene	ND	6	ug/kg	10/26/21	10/26/21
Methylene Chloride	ND	24	ug/kg	10/26/21	10/26/21
4-Methyl-2-pentanone	ND	6	ug/kg	10/26/21	^{10/2} Page 37

Sample: SE-105 (0-2) (Continued)

Lab Number: 1J25018-08 (Soil)

		Reporting			
Analyte	Result Qua	l Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	6	ug/kg	10/26/21	10/26/21
n-Propylbenzene	ND	6	ug/kg	10/26/21	10/26/21
Styrene	ND	6	ug/kg	10/26/21	10/26/21
1,1,1,2-Tetrachloroethane	ND	6	ug/kg	10/26/21	10/26/21
Tetrachloroethene	ND	6	ug/kg	10/26/21	10/26/21
Tetrahydrofuran	ND	6	ug/kg	10/26/21	10/26/21
Toluene	ND	6	ug/kg	10/26/21	10/26/21
1,2,4-Trichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21
1,2,3-Trichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21
1,1,2-Trichloroethane	ND	6	ug/kg	10/26/21	10/26/21
1,1,1-Trichloroethane	ND	6	ug/kg	10/26/21	10/26/21
Trichloroethene	ND	6	ug/kg	10/26/21	10/26/21
1,2,3-Trichloropropane	ND	6	ug/kg	10/26/21	10/26/21
1,3,5-Trimethylbenzene	ND	6	ug/kg	10/26/21	10/26/21
1,2,4-Trimethylbenzene	ND	6	ug/kg	10/26/21	10/26/21
Vinyl Chloride	ND	6	ug/kg	10/26/21	10/26/21
o-Xylene	ND	6	ug/kg	10/26/21	10/26/21
m&p-Xylene	ND	11	ug/kg	10/26/21	10/26/21
Total xylenes	ND	6	ug/kg	10/26/21	10/26/21
1,1,2,2-Tetrachloroethane	ND	6	ug/kg	10/26/21	10/26/21
tert-Amyl methyl ether	ND	6	ug/kg	10/26/21	10/26/21
1,3-Dichloropropane	ND	6	ug/kg	10/26/21	10/26/21
Ethyl tert-butyl ether	ND	6	ug/kg	10/26/21	10/26/21
Diisopropyl ether	ND	6	ug/kg	10/26/21	10/26/21
Trichlorofluoromethane	ND	6	ug/kg	10/26/21	10/26/21
Dichlorodifluoromethane	ND	6	ug/kg	10/26/21	10/26/21
Surrogate(s)	Recovery%	Limi	its		
4-Bromofluorobenzene	103%	70-1	30	10/26/21	10/26/21
1,2-Dichloroethane-d4	102%	70-1	30	10/26/21	10/26/21
Toluene-d8	100%	70-1	30	10/26/21	10/26/21

Results: Volatile Organic Compounds

Sample: SE-106 (0-2) Lab Number: 1J25018-09 (Soil)

Analyte	Result	Reporting Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	62	ug/kg	10/26/21	10/26/21
Benzene	ND	6	ug/kg ug/kg	10/26/21	10/26/21
Bromobenzene	ND	6	ug/kg ug/kg	10/26/21	10/26/21
Bromochloromethane	ND	6	ug/kg ug/kg	10/26/21	10/26/21
Bromodichloromethane	ND	6			
Bromoform	ND ND	6	ug/kg	10/26/21	10/26/21
			ug/kg	10/26/21	10/26/21
Bromomethane	ND	6	ug/kg	10/26/21	10/26/21
2-Butanone	ND	10	ug/kg	10/26/21	10/26/21
tert-Butyl alcohol	ND	6	ug/kg	10/26/21	10/26/21
sec-Butylbenzene	ND	6	ug/kg "	10/26/21	10/26/21
n-Butylbenzene	ND	6	ug/kg 	10/26/21	10/26/21
tert-Butylbenzene	ND	6	ug/kg	10/26/21	10/26/21
Methyl t-butyl ether (MTBE)	ND	6	ug/kg	10/26/21	10/26/21
Carbon Disulfide	ND	6	ug/kg	10/26/21	10/26/21
Carbon Tetrachloride	ND	6	ug/kg	10/26/21	10/26/21
Chlorobenzene	ND	6	ug/kg	10/26/21	10/26/21
Chloroethane	ND	6	ug/kg	10/26/21	10/26/21
Chloroform	ND	6	ug/kg	10/26/21	10/26/21
Chloromethane	ND	6	ug/kg	10/26/21	10/26/21
4-Chlorotoluene	ND	6	ug/kg	10/26/21	10/26/21
2-Chlorotoluene	ND	6	ug/kg	10/26/21	10/26/21
1,2-Dibromo-3-chloropropane (DBCP)	ND	6	ug/kg	10/26/21	10/26/21
Dibromochloromethane	ND	6	ug/kg	10/26/21	10/26/21
.,2-Dibromoethane (EDB)	ND	6	ug/kg	10/26/21	10/26/21
Dibromomethane	ND	6	ug/kg	10/26/21	10/26/21
1,2-Dichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21
1,3-Dichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21
1,4-Dichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21
I,1-Dichloroethane	ND	6	ug/kg	10/26/21	10/26/21
1,2-Dichloroethane	ND	6	ug/kg	10/26/21	10/26/21
trans-1,2-Dichloroethene	ND	6	ug/kg	10/26/21	10/26/21
cis-1,2-Dichloroethene	ND	6	ug/kg	10/26/21	10/26/21
1,1-Dichloroethene	ND	6	ug/kg	10/26/21	10/26/21
1,2-Dichloropropane	ND	6	ug/kg	10/26/21	10/26/21
2,2-Dichloropropane	ND	6	ug/kg	10/26/21	10/26/21
cis-1,3-Dichloropropene	ND	6	ug/kg	10/26/21	10/26/21
rans-1,3-Dichloropropene	ND	6	ug/kg	10/26/21	10/26/21
I,1-Dichloropropene	ND	6	ug/kg	10/26/21	10/26/21
1,3-Dichloropropene (cis + trans)	ND	6	ug/kg	10/26/21	10/26/21
Diethyl ether	ND	6	ug/kg	10/26/21	10/26/21
1,4-Dioxane	ND	124	ug/kg	10/26/21	10/26/21
Ethylbenzene	ND	6	ug/kg	10/26/21	10/26/21
Hexachlorobutadiene	ND	6	ug/kg ug/kg	10/26/21	10/26/21
2-Hexanone	ND	6	ug/kg ug/kg	10/26/21	10/26/21
Isopropylbenzene	ND	6	ug/kg ug/kg	10/26/21	10/26/21
p-Isopropyltoluene	ND	6	ug/kg ug/kg	10/26/21	10/26/21
Methylene Chloride	ND ND	25	ug/kg ug/kg	10/26/21	10/26/21
4-Methyl-2-pentanone	ND ND	6	ug/кg ug/kg	10/26/21	10/26/21 10/26 Page

Sample: SE-106 (0-2) (Continued)

Lab Number: 1J25018-09 (Soil)

Reporting								
Analyte	Result Qual	Limit	Units	Date Prepared	Date Analyzed			
Naphthalene	ND	6	ug/kg	10/26/21	10/26/21			
n-Propylbenzene	ND	6	ug/kg	10/26/21	10/26/21			
Styrene	ND	6	ug/kg	10/26/21	10/26/21			
1,1,1,2-Tetrachloroethane	ND	6	ug/kg	10/26/21	10/26/21			
Tetrachloroethene	ND	6	ug/kg	10/26/21	10/26/21			
Tetrahydrofuran	ND	6	ug/kg	10/26/21	10/26/21			
Toluene	ND	6	ug/kg	10/26/21	10/26/21			
1,2,4-Trichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21			
1,2,3-Trichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21			
1,1,2-Trichloroethane	ND	6	ug/kg	10/26/21	10/26/21			
1,1,1-Trichloroethane	ND	6	ug/kg	10/26/21	10/26/21			
Trichloroethene	ND	6	ug/kg	10/26/21	10/26/21			
1,2,3-Trichloropropane	ND	6	ug/kg	10/26/21	10/26/21			
1,3,5-Trimethylbenzene	ND	6	ug/kg	10/26/21	10/26/21			
1,2,4-Trimethylbenzene	ND	6	ug/kg	10/26/21	10/26/21			
Vinyl Chloride	ND	6	ug/kg	10/26/21	10/26/21			
o-Xylene	ND	6	ug/kg	10/26/21	10/26/21			
m&p-Xylene	ND	12	ug/kg	10/26/21	10/26/21			
Total xylenes	ND	6	ug/kg	10/26/21	10/26/21			
1,1,2,2-Tetrachloroethane	ND	6	ug/kg	10/26/21	10/26/21			
tert-Amyl methyl ether	ND	6	ug/kg	10/26/21	10/26/21			
1,3-Dichloropropane	ND	6	ug/kg	10/26/21	10/26/21			
Ethyl tert-butyl ether	ND	6	ug/kg	10/26/21	10/26/21			
Diisopropyl ether	ND	6	ug/kg	10/26/21	10/26/21			
Trichlorofluoromethane	ND	6	ug/kg	10/26/21	10/26/21			
Dichlorodifluoromethane	ND	6	ug/kg	10/26/21	10/26/21			
Surrogate(s)	Recovery%	Limi	its					
4-Bromofluorobenzene	89.3%	70-1.	30	10/26/21	10/26/21			
1,2-Dichloroethane-d4	101%	70-1.	30	10/26/21	10/26/21			
Toluene-d8	98.4%	70-1.	30	10/26/21	10/26/21			

Results: Volatile Organic Compounds

Sample: SE-107 (0-2) Lab Number: 1J25018-10 (Soil)

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		16	ug/kg	10/26/21	10/26/21
Benzene	ND		6	ug/kg	10/26/21	10/26/21
Bromobenzene	ND		6	ug/kg	10/26/21	10/26/21
Bromochloromethane	ND		6	ug/kg	10/26/21	10/26/21
Bromodichloromethane	ND		6	ug/kg	10/26/21	10/26/21
Bromoform	ND		6	ug/kg	10/26/21	10/26/21
Bromomethane	ND		6	ug/kg	10/26/21	10/26/21
2-Butanone	ND		6	ug/kg	10/26/21	10/26/21
ert-Butyl alcohol	ND		6	ug/kg	10/26/21	10/26/21
sec-Butylbenzene	ND		6	ug/kg	10/26/21	10/26/21
n-Butylbenzene	ND		6	ug/kg	10/26/21	10/26/21
ert-Butylbenzene	ND		6	ug/kg	10/26/21	10/26/21
Methyl t-butyl ether (MTBE)	ND		6	ug/kg	10/26/21	10/26/21
Carbon Disulfide	ND		6	ug/kg	10/26/21	10/26/21
Carbon Tetrachloride	ND		6	ug/kg ug/kg	10/26/21	10/26/21
Chlorobenzene	ND ND		6	ug/kg ug/kg	10/26/21	10/26/21
Chloroethane	ND ND		6			
				ug/kg	10/26/21	10/26/21
Chloroform	ND		6	ug/kg	10/26/21	10/26/21
Chloromethane	ND		6	ug/kg	10/26/21	10/26/21
4-Chlorotoluene	ND		6	ug/kg	10/26/21	10/26/21
2-Chlorotoluene	ND		6	ug/kg 	10/26/21	10/26/21
1,2-Dibromo-3-chloropropane (DBCP)	ND		6	ug/kg	10/26/21	10/26/21
Dibromochloromethane	ND		6	ug/kg	10/26/21	10/26/21
1,2-Dibromoethane (EDB)	ND		6	ug/kg	10/26/21	10/26/21
Dibromomethane	ND		6	ug/kg	10/26/21	10/26/21
1,2-Dichlorobenzene	ND		6	ug/kg	10/26/21	10/26/21
1,3-Dichlorobenzene	ND		6	ug/kg	10/26/21	10/26/21
1,4-Dichlorobenzene	ND		6	ug/kg	10/26/21	10/26/21
1,1-Dichloroethane	ND		6	ug/kg	10/26/21	10/26/21
1,2-Dichloroethane	ND		6	ug/kg	10/26/21	10/26/21
rans-1,2-Dichloroethene	ND		6	ug/kg	10/26/21	10/26/21
cis-1,2-Dichloroethene	ND		6	ug/kg	10/26/21	10/26/21
1,1-Dichloroethene	ND		6	ug/kg	10/26/21	10/26/21
1,2-Dichloropropane	ND		6	ug/kg	10/26/21	10/26/21
2,2-Dichloropropane	ND		6	ug/kg	10/26/21	10/26/21
cis-1,3-Dichloropropene	ND		6	ug/kg	10/26/21	10/26/21
rans-1,3-Dichloropropene	ND		6	ug/kg	10/26/21	10/26/21
1,1-Dichloropropene	ND		6	ug/kg	10/26/21	10/26/21
1,3-Dichloropropene (cis + trans)	ND		6	ug/kg	10/26/21	10/26/21
Diethyl ether	ND		6	ug/kg	10/26/21	10/26/21
1,4-Dioxane	ND		117	ug/kg	10/26/21	10/26/21
Ethylbenzene	ND		6	ug/kg	10/26/21	10/26/21
Hexachlorobutadiene	ND		6	ug/kg	10/26/21	10/26/21
2-Hexanone	ND		6	ug/kg ug/kg	10/26/21	10/26/21
z-nexalione (sopropylbenzene	ND ND		6	ug/kg ug/kg	10/26/21	10/26/21
,						10/26/21
o-Isopropyltoluene	ND ND		6 23	ug/kg	10/26/21	• •
Methylene Chloride	ND		23	ug/kg	10/26/21	10/26/21

Sample: SE-107 (0-2) (Continued)

Lab Number: 1J25018-10 (Soil)

		Reporting			
Analyte	Result Qua	al Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	6	ug/kg	10/26/21	10/26/21
n-Propylbenzene	ND	6	ug/kg	10/26/21	10/26/21
Styrene	ND	6	ug/kg	10/26/21	10/26/21
1,1,1,2-Tetrachloroethane	ND	6	ug/kg	10/26/21	10/26/21
Tetrachloroethene	ND	6	ug/kg	10/26/21	10/26/21
Tetrahydrofuran	ND	6	ug/kg	10/26/21	10/26/21
Toluene	ND	6	ug/kg	10/26/21	10/26/21
1,2,4-Trichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21
1,2,3-Trichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21
1,1,2-Trichloroethane	ND	6	ug/kg	10/26/21	10/26/21
1,1,1-Trichloroethane	ND	6	ug/kg	10/26/21	10/26/21
Trichloroethene	ND	6	ug/kg	10/26/21	10/26/21
1,2,3-Trichloropropane	ND	6	ug/kg	10/26/21	10/26/21
1,3,5-Trimethylbenzene	ND	6	ug/kg	10/26/21	10/26/21
1,2,4-Trimethylbenzene	ND	6	ug/kg	10/26/21	10/26/21
Vinyl Chloride	ND	6	ug/kg	10/26/21	10/26/21
o-Xylene	ND	6	ug/kg	10/26/21	10/26/21
m&p-Xylene	ND	12	ug/kg	10/26/21	10/26/21
Total xylenes	ND	6	ug/kg	10/26/21	10/26/21
1,1,2,2-Tetrachloroethane	ND	6	ug/kg	10/26/21	10/26/21
tert-Amyl methyl ether	ND	6	ug/kg	10/26/21	10/26/21
1,3-Dichloropropane	ND	6	ug/kg	10/26/21	10/26/21
Ethyl tert-butyl ether	ND	6	ug/kg	10/26/21	10/26/21
Diisopropyl ether	ND	6	ug/kg	10/26/21	10/26/21
Trichlorofluoromethane	ND	6	ug/kg	10/26/21	10/26/21
Dichlorodifluoromethane	ND	6	ug/kg	10/26/21	10/26/21
Surrogate(s)	Recovery%	Limi	its		
4-Bromofluorobenzene	102%	70-1	30	10/26/21	10/26/21
1,2-Dichloroethane-d4	101%	70-1	30	10/26/21	10/26/21
Toluene-d8	101%	70-1	30	10/26/21	10/26/21

Results: Volatile Organic Compounds

Sample: SE-108 (0-2) Lab Number: 1J25018-11 (Soil)

		Reporting			
Analyte	Result Qua	l Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	7	ug/kg	10/26/21	10/26/21
Benzene	ND	7	ug/kg	10/26/21	10/26/21
Bromobenzene	ND	7	ug/kg	10/26/21	10/26/21
Bromochloromethane	ND	7	ug/kg	10/26/21	10/26/21
Bromodichloromethane	ND	7	ug/kg	10/26/21	10/26/21
Bromoform	ND	7	ug/kg	10/26/21	10/26/21
Bromomethane	ND	7	ug/kg	10/26/21	10/26/21
2-Butanone	ND	7	ug/kg	10/26/21	10/26/21
ert-Butyl alcohol	ND	7	ug/kg	10/26/21	10/26/21
sec-Butylbenzene	ND	7	ug/kg	10/26/21	10/26/21
n-Butylbenzene	ND	7	ug/kg	10/26/21	10/26/21
ert-Butylbenzene	ND	7	ug/kg	10/26/21	10/26/21
Methyl t-butyl ether (MTBE)	ND	7	ug/kg	10/26/21	10/26/21
Carbon Disulfide	ND	7	ug/kg	10/26/21	10/26/21
Carbon Tetrachloride	ND	7	ug/kg	10/26/21	10/26/21
Chlorobenzene	ND	7	ug/kg	10/26/21	10/26/21
Chloroethane	ND	7	ug/kg	10/26/21	10/26/21
Chloroform	ND	7	ug/kg	10/26/21	10/26/21
Chloromethane	ND	7	ug/kg	10/26/21	10/26/21
I-Chlorotoluene	ND	7	ug/kg	10/26/21	10/26/21
2-Chlorotoluene	ND	, 7	ug/kg	10/26/21	10/26/21
1,2-Dibromo-3-chloropropane (DBCP)	ND	, 7	ug/kg	10/26/21	10/26/21
Dibromochloromethane	ND	, 7	ug/kg	10/26/21	10/26/21
1,2-Dibromoethane (EDB)	ND	, 7	ug/kg	10/26/21	10/26/21
Dibromomethane (200)	ND	, 7	ug/kg	10/26/21	10/26/21
1,2-Dichlorobenzene	ND	7	ug/kg ug/kg	10/26/21	10/26/21
1,3-Dichlorobenzene	ND	7	ug/kg ug/kg	10/26/21	10/26/21
1,4-Dichlorobenzene	ND	7	ug/kg ug/kg	10/26/21	10/26/21
1,1-Dichloroethane	ND	7	ug/kg ug/kg	10/26/21	10/26/21
1,2-Dichloroethane	ND	7	ug/kg ug/kg	10/26/21	10/26/21
rans-1,2-Dichloroethene	ND	7	ug/kg ug/kg	10/26/21	10/26/21
cis-1,2-Dichloroethene	ND	7	ug/kg ug/kg	10/26/21	10/26/21
	ND	7			
1,1-Dichloroethene 1,2-Dichloropropane	ND ND	7	ug/kg ug/kg	10/26/21 10/26/21	10/26/21 10/26/21
	ND ND	7			10/26/21
2,2-Dichloropropane cis-1,3-Dichloropropene	ND ND	7	ug/kg	10/26/21	10/26/21
		•	ug/kg	10/26/21	
rans-1,3-Dichloropropene	ND ND	7	ug/kg	10/26/21	10/26/21
1,1-Dichloropropene	ND	7	ug/kg	10/26/21	10/26/21
1,3-Dichloropropene (cis + trans)	ND ND	7	ug/kg	10/26/21	10/26/21
Diethyl ether	ND	7	ug/kg	10/26/21	10/26/21
.,4-Dioxane	ND	131	ug/kg	10/26/21	10/26/21
Ethylbenzene	ND	7	ug/kg	10/26/21	10/26/21
Hexachlorobutadiene	ND	7	ug/kg	10/26/21	10/26/21
2-Hexanone	ND	7	ug/kg	10/26/21	10/26/21
sopropylbenzene	ND	7	ug/kg	10/26/21	10/26/21
o-Isopropyltoluene	ND	7	ug/kg	10/26/21	10/26/21
Methylene Chloride	ND	26	ug/kg	10/26/21	10/26/21 10/2 Page 43

Sample: SE-108 (0-2) (Continued)

Lab Number: 1J25018-11 (Soil)

Aluk-	Bassile Assal	Reporting Result Qual Limit Units			Data Analysis
Analyte	Result Qual	Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	7	ug/kg	10/26/21	10/26/21
n-Propylbenzene	ND	7	ug/kg	10/26/21	10/26/21
Styrene	ND	7	ug/kg	10/26/21	10/26/21
1,1,1,2-Tetrachloroethane	ND	7	ug/kg	10/26/21	10/26/21
Tetrachloroethene	ND	7	ug/kg	10/26/21	10/26/21
Tetrahydrofuran	ND	7	ug/kg	10/26/21	10/26/21
Toluene	ND	7	ug/kg	10/26/21	10/26/21
1,2,4-Trichlorobenzene	ND	7	ug/kg	10/26/21	10/26/21
1,2,3-Trichlorobenzene	ND	7	ug/kg	10/26/21	10/26/21
1,1,2-Trichloroethane	ND	7	ug/kg	10/26/21	10/26/21
1,1,1-Trichloroethane	ND	7	ug/kg	10/26/21	10/26/21
Trichloroethene	ND	7	ug/kg	10/26/21	10/26/21
1,2,3-Trichloropropane	ND	7	ug/kg	10/26/21	10/26/21
1,3,5-Trimethylbenzene	ND	7	ug/kg	10/26/21	10/26/21
1,2,4-Trimethylbenzene	ND	7	ug/kg	10/26/21	10/26/21
Vinyl Chloride	ND	7	ug/kg	10/26/21	10/26/21
o-Xylene	ND	7	ug/kg	10/26/21	10/26/21
m&p-Xylene	ND	13	ug/kg	10/26/21	10/26/21
Total xylenes	ND	7	ug/kg	10/26/21	10/26/21
1,1,2,2-Tetrachloroethane	ND	7	ug/kg	10/26/21	10/26/21
tert-Amyl methyl ether	ND	7	ug/kg	10/26/21	10/26/21
1,3-Dichloropropane	ND	7	ug/kg	10/26/21	10/26/21
Ethyl tert-butyl ether	ND	7	ug/kg	10/26/21	10/26/21
Diisopropyl ether	ND	7	ug/kg	10/26/21	10/26/21
Trichlorofluoromethane	ND	7	ug/kg	10/26/21	10/26/21
Dichlorodifluoromethane	ND	7	ug/kg	10/26/21	10/26/21
Surrogate(s)	Recovery%	Limi	its		
4-Bromofluorobenzene	101%	70-1	30	10/26/21	10/26/21
1,2-Dichloroethane-d4	102%	70-1	30	10/26/21	10/26/21
Toluene-d8	98.1%	70-1	30	10/26/21	10/26/21

Results: Volatile Organic Compounds

Sample: SE-109 (0-2) Lab Number: 1J25018-12 (Soil)

Analyte	Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		6	ug/kg	10/26/21	10/26/21
Benzene	ND		6	ug/kg	10/26/21	10/26/21
Bromobenzene	ND		6	ug/kg	10/26/21	10/26/21
Bromochloromethane	ND		6	ug/kg	10/26/21	10/26/21
Bromodichloromethane	ND		6	ug/kg	10/26/21	10/26/21
Bromoform	ND		6	ug/kg	10/26/21	10/26/21
Bromomethane	ND		6	ug/kg	10/26/21	10/26/21
2-Butanone	ND		6	ug/kg	10/26/21	10/26/21
tert-Butyl alcohol	ND		6	ug/kg	10/26/21	10/26/21
sec-Butylbenzene	ND		6	ug/kg	10/26/21	10/26/21
n-Butylbenzene	ND		6	ug/kg	10/26/21	10/26/21
tert-Butylbenzene	ND		6	ug/kg	10/26/21	10/26/21
Methyl t-butyl ether (MTBE)	ND		6	ug/kg	10/26/21	10/26/21
Carbon Disulfide	ND		6	ug/kg	10/26/21	10/26/21
Carbon Tetrachloride	ND		6	ug/kg	10/26/21	10/26/21
Chlorobenzene	ND		6	ug/kg	10/26/21	10/26/21
Chloroethane	ND		6	ug/kg	10/26/21	10/26/21
Chloroform	ND		6	ug/kg	10/26/21	10/26/21
Chloromethane	ND		6	ug/kg ug/kg	10/26/21	10/26/21
4-Chlorotoluene	ND		6	ug/kg ug/kg	10/26/21	10/26/21
2-Chlorotoluene	ND		6	ug/kg ug/kg	10/26/21	10/26/21
1,2-Dibromo-3-chloropropane (DBCP)	ND		6	ug/kg	10/26/21	10/26/21
Dibromochloromethane	ND		6	ug/kg ug/kg	10/26/21	10/26/21
1,2-Dibromoethane (EDB)	ND		6	ug/kg ug/kg	10/26/21	10/26/21
Dibromomethane	ND ND		6	ug/kg ug/kg	10/26/21	10/26/21
1,2-Dichlorobenzene	ND		6	ug/kg ug/kg	10/26/21	10/26/21
	ND		6			
1,3-Dichlorobenzene	ND ND		6	ug/kg	10/26/21	10/26/21
1,4-Dichlorobenzene				ug/kg	10/26/21	10/26/21
1,1-Dichloroethane	ND		6	ug/kg	10/26/21	10/26/21
1,2-Dichloroethane	ND		6	ug/kg	10/26/21	10/26/21
trans-1,2-Dichloroethene	ND		6	ug/kg	10/26/21	10/26/21
cis-1,2-Dichloroethene	ND		6	ug/kg	10/26/21	10/26/21
1,1-Dichloroethene	ND		6	ug/kg	10/26/21	10/26/21
1,2-Dichloropropane	ND		6	ug/kg	10/26/21	10/26/21
2,2-Dichloropropane	ND		6	ug/kg	10/26/21	10/26/21
cis-1,3-Dichloropropene	ND		6	ug/kg	10/26/21	10/26/21
trans-1,3-Dichloropropene	ND		6	ug/kg 	10/26/21	10/26/21
1,1-Dichloropropene	ND		6	ug/kg	10/26/21	10/26/21
1,3-Dichloropropene (cis + trans)	ND		6	ug/kg	10/26/21	10/26/21
Diethyl ether	ND		6	ug/kg	10/26/21	10/26/21
1,4-Dioxane	ND		121	ug/kg	10/26/21	10/26/21
Ethylbenzene	ND		6	ug/kg	10/26/21	10/26/21
Hexachlorobutadiene	ND		6	ug/kg	10/26/21	10/26/21
2-Hexanone	ND		6	ug/kg	10/26/21	10/26/21
Isopropylbenzene	ND		6	ug/kg	10/26/21	10/26/21
p-Isopropyltoluene	ND		6	ug/kg	10/26/21	10/26/21
Methylene Chloride	ND		24	ug/kg	10/26/21	10/26/21
4-Methyl-2-pentanone	ND		6	ug/kg	10/26/21	^{10/2} Page 45 of

Sample: SE-109 (0-2) (Continued)

Lab Number: 1J25018-12 (Soil)

Reporting								
Analyte	Result Qual	Limit	Units	Date Prepared	Date Analyzed			
Naphthalene	ND	6	ug/kg	10/26/21	10/26/21			
n-Propylbenzene	ND	6	ug/kg	10/26/21	10/26/21			
Styrene	ND	6	ug/kg	10/26/21	10/26/21			
1,1,1,2-Tetrachloroethane	ND	6	ug/kg	10/26/21	10/26/21			
Tetrachloroethene	ND	6	ug/kg	10/26/21	10/26/21			
Tetrahydrofuran	ND	6	ug/kg	10/26/21	10/26/21			
Toluene	ND	6	ug/kg	10/26/21	10/26/21			
1,2,4-Trichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21			
1,2,3-Trichlorobenzene	ND	6	ug/kg	10/26/21	10/26/21			
1,1,2-Trichloroethane	ND	6	ug/kg	10/26/21	10/26/21			
1,1,1-Trichloroethane	ND	6	ug/kg	10/26/21	10/26/21			
Trichloroethene	ND	6	ug/kg	10/26/21	10/26/21			
1,2,3-Trichloropropane	ND	6	ug/kg	10/26/21	10/26/21			
1,3,5-Trimethylbenzene	ND	6	ug/kg	10/26/21	10/26/21			
1,2,4-Trimethylbenzene	ND	6	ug/kg	10/26/21	10/26/21			
Vinyl Chloride	ND	6	ug/kg	10/26/21	10/26/21			
o-Xylene	ND	6	ug/kg	10/26/21	10/26/21			
m&p-Xylene	ND	12	ug/kg	10/26/21	10/26/21			
Total xylenes	ND	6	ug/kg	10/26/21	10/26/21			
1,1,2,2-Tetrachloroethane	ND	6	ug/kg	10/26/21	10/26/21			
tert-Amyl methyl ether	ND	6	ug/kg	10/26/21	10/26/21			
1,3-Dichloropropane	ND	6	ug/kg	10/26/21	10/26/21			
Ethyl tert-butyl ether	ND	6	ug/kg	10/26/21	10/26/21			
Diisopropyl ether	ND	6	ug/kg	10/26/21	10/26/21			
Trichlorofluoromethane	ND	6	ug/kg	10/26/21	10/26/21			
Dichlorodifluoromethane	ND	6	ug/kg	10/26/21	10/26/21			
Surrogate(s)	Recovery%	Limi	its					
4-Bromofluorobenzene	102%	70-1.	30	10/26/21	10/26/21			
1,2-Dichloroethane-d4	102%	70-1.	30	10/26/21	10/26/21			
Toluene-d8	100%	70-1.	30	10/26/21	10/26/21			

Results: Volatile Organic Compounds

Sample: SE-110 (0-2) Lab Number: 1J25018-13 (Soil)

		Reporting			
Analyte	Result Qu	al Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	36	ug/kg	10/26/21	10/26/21
Benzene	ND	5	ug/kg	10/26/21	10/26/21
Bromobenzene	ND	5	ug/kg	10/26/21	10/26/21
Bromochloromethane	ND	5	ug/kg	10/26/21	10/26/21
Bromodichloromethane	ND	5	ug/kg	10/26/21	10/26/21
Bromoform	ND	5	ug/kg	10/26/21	10/26/21
Bromomethane	ND	5	ug/kg	10/26/21	10/26/21
2-Butanone	ND	11	ug/kg	10/26/21	10/26/21
tert-Butyl alcohol	ND	5	ug/kg	10/26/21	10/26/21
sec-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21
n-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21
tert-Butylbenzene	ND	5	ug/kg	10/26/21	10/26/21
Methyl t-butyl ether (MTBE)	ND	5	ug/kg	10/26/21	10/26/21
Carbon Disulfide	ND	5	ug/kg	10/26/21	10/26/21
Carbon Tetrachloride	ND	5	ug/kg	10/26/21	10/26/21
Chlorobenzene	ND	5	ug/kg	10/26/21	10/26/21
Chloroethane	ND	5	ug/kg	10/26/21	10/26/21
Chloroform	ND	5	ug/kg	10/26/21	10/26/21
Chloromethane	ND	5	ug/kg	10/26/21	10/26/21
4-Chlorotoluene	ND	5	ug/kg	10/26/21	10/26/21
2-Chlorotoluene	ND	5	ug/kg ug/kg	10/26/21	10/26/21
1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg ug/kg	10/26/21	10/26/21
Dibromochloromethane	ND	5	ug/kg ug/kg	10/26/21	10/26/21
1,2-Dibromoethane (EDB)	ND	5	ug/kg ug/kg	10/26/21	10/26/21
Dibromomethane	ND ND	5	ug/kg ug/kg	10/26/21	10/26/21
1,2-Dichlorobenzene	ND ND	5	ug/kg ug/kg	10/26/21	10/26/21
	ND ND			10/26/21	
1,3-Dichlorobenzene	ND ND	5 5	ug/kg		10/26/21
1,4-Dichlorosensens			ug/kg	10/26/21	10/26/21
1,1-Dichloroethane	ND	5	ug/kg	10/26/21	10/26/21
1,2-Dichloroethane	ND	5	ug/kg	10/26/21	10/26/21
trans-1,2-Dichloroethene	ND	5	ug/kg "	10/26/21	10/26/21
cis-1,2-Dichloroethene	ND	5	ug/kg 	10/26/21	10/26/21
1,1-Dichloroethene	ND	5	ug/kg 	10/26/21	10/26/21
1,2-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21
2,2-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21
cis-1,3-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21
trans-1,3-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21
1,1-Dichloropropene	ND	5	ug/kg	10/26/21	10/26/21
1,3-Dichloropropene (cis + trans)	ND	5	ug/kg	10/26/21	10/26/21
Diethyl ether	ND	5	ug/kg	10/26/21	10/26/21
1,4-Dioxane	ND	104	ug/kg	10/26/21	10/26/21
Ethylbenzene	ND	5	ug/kg	10/26/21	10/26/21
Hexachlorobutadiene	ND	5	ug/kg	10/26/21	10/26/21
2-Hexanone	ND	5	ug/kg	10/26/21	10/26/21
Isopropylbenzene	ND	5	ug/kg	10/26/21	10/26/21
p-Isopropyltoluene	ND	5	ug/kg	10/26/21	10/26/21
Methylene Chloride	ND	22	ug/kg	10/26/21	10/26/21
4-Methyl-2-pentanone	ND	5	ug/kg	10/26/21	^{10/2} Page 47

Sample: SE-110 (0-2) (Continued)

Lab Number: 1J25018-13 (Soil)

		Reporting			
Analyte	Result Qual	Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	5	ug/kg	10/26/21	10/26/21
n-Propylbenzene	ND	5	ug/kg	10/26/21	10/26/21
Styrene	ND	5	ug/kg	10/26/21	10/26/21
1,1,1,2-Tetrachloroethane	ND	5	ug/kg	10/26/21	10/26/21
Tetrachloroethene	ND	5	ug/kg	10/26/21	10/26/21
Tetrahydrofuran	ND	5	ug/kg	10/26/21	10/26/21
Toluene	8	5	ug/kg	10/26/21	10/26/21
1,2,4-Trichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21
1,2,3-Trichlorobenzene	ND	5	ug/kg	10/26/21	10/26/21
1,1,2-Trichloroethane	ND	5	ug/kg	10/26/21	10/26/21
1,1,1-Trichloroethane	ND	5	ug/kg	10/26/21	10/26/21
Trichloroethene	ND	5	ug/kg	10/26/21	10/26/21
1,2,3-Trichloropropane	ND	5	ug/kg	10/26/21	10/26/21
1,3,5-Trimethylbenzene	ND	5	ug/kg	10/26/21	10/26/21
1,2,4-Trimethylbenzene	ND	5	ug/kg	10/26/21	10/26/21
Vinyl Chloride	ND	5	ug/kg	10/26/21	10/26/21
o-Xylene	ND	5	ug/kg	10/26/21	10/26/21
m&p-Xylene	ND	10	ug/kg	10/26/21	10/26/21
Total xylenes	ND	5	ug/kg	10/26/21	10/26/21
1,1,2,2-Tetrachloroethane	ND	5	ug/kg	10/26/21	10/26/21
tert-Amyl methyl ether	ND	5	ug/kg	10/26/21	10/26/21
1,3-Dichloropropane	ND	5	ug/kg	10/26/21	10/26/21
Ethyl tert-butyl ether	ND	5	ug/kg	10/26/21	10/26/21
Diisopropyl ether	ND	5	ug/kg	10/26/21	10/26/21
Trichlorofluoromethane	ND	5	ug/kg	10/26/21	10/26/21
Dichlorodifluoromethane	ND	5	ug/kg	10/26/21	10/26/21
Surrogate(s)	Recovery%	Limi	ts		
4-Bromofluorobenzene	104%	70-1.	30	10/26/21	10/26/21
1,2-Dichloroethane-d4	103%	70-1.	30	10/26/21	10/26/21
Toluene-d8	101%	70-1.	30	10/26/21	10/26/21

Results: Semivolatile organic compounds

Sample: SE-101 (0-2) MW Lab Number: 1J25018-01 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		274	ug/kg	10/26/21	10/28/21			
Acenaphthene	ND		274	ug/kg	10/26/21	10/28/21			
Acenaphthylene	ND		274	ug/kg	10/26/21	10/28/21			
Anthracene	317		274	ug/kg	10/26/21	10/28/21			
Benzo(a)anthracene	1120		274	ug/kg	10/26/21	10/28/21			
Benzo(a)pyrene	1170		274	ug/kg	10/26/21	10/28/21			
Benzo(b)fluoranthene	1600		274	ug/kg	10/26/21	10/28/21			
Benzo(g,h,i)perylene	986		274	ug/kg	10/26/21	10/28/21			
Benzo(k)fluoranthene	556		274	ug/kg	10/26/21	10/28/21			
Chrysene	1160		274	ug/kg	10/26/21	10/28/21			
Dibenz(a,h)anthracene	ND		274	ug/kg	10/26/21	10/28/21			
Dibenzofuran	ND		274	ug/kg	10/26/21	10/28/21			
Fluoranthene	2150		274	ug/kg	10/26/21	10/28/21			
Fluorene	ND		274	ug/kg	10/26/21	10/28/21			
Indeno(1,2,3-cd)pyrene	1000		274	ug/kg	10/26/21	10/28/21			
Naphthalene	ND		274	ug/kg	10/26/21	10/28/21			
Phenanthrene	1440		274	ug/kg	10/26/21	10/28/21			
Pyrene	2420		274	ug/kg	10/26/21	10/28/21			
Surrogate(s)	Recovery%		Limi	ts					
Nitrobenzene-d5	66.7%		30-12	26	10/26/21	10/28/21			
p-Terphenyl-d14	98.9%		47-13	30	10/26/21	10/28/21			
2-Fluorobiphenyl	74.9%		34-13	30	10/26/21	10/28/21			

Results: Semivolatile organic compounds

Sample: SE-101 (2-5) MW Lab Number: 1J25018-02 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		291	ug/kg	10/26/21	10/28/21			
Acenaphthene	ND		291	ug/kg	10/26/21	10/28/21			
Acenaphthylene	ND		291	ug/kg	10/26/21	10/28/21			
Anthracene	442		291	ug/kg	10/26/21	10/28/21			
Benzo(a)anthracene	1350		291	ug/kg	10/26/21	10/28/21			
Benzo(a)pyrene	1430		291	ug/kg	10/26/21	10/28/21			
Benzo(b)fluoranthene	2090		291	ug/kg	10/26/21	10/28/21			
Benzo(g,h,i)perylene	1150		291	ug/kg	10/26/21	10/28/21			
Benzo(k)fluoranthene	759		291	ug/kg	10/26/21	10/28/21			
Chrysene	1610		291	ug/kg	10/26/21	10/28/21			
Dibenz(a,h)anthracene	ND		291	ug/kg	10/26/21	10/28/21			
Dibenzofuran	ND		291	ug/kg	10/26/21	10/28/21			
Fluoranthene	3030		291	ug/kg	10/26/21	10/28/21			
Fluorene	ND		291	ug/kg	10/26/21	10/28/21			
Indeno(1,2,3-cd)pyrene	1210		291	ug/kg	10/26/21	10/28/21			
Naphthalene	ND		291	ug/kg	10/26/21	10/28/21			
Phenanthrene	1790		291	ug/kg	10/26/21	10/28/21			
Pyrene	3310		291	ug/kg	10/26/21	10/28/21			
Surrogate(s)	Recovery%		Limi	ts					
Nitrobenzene-d5	63.8%		30-12	26	10/26/21	10/28/21			
p-Terphenyl-d14	102%		47-1.	30	10/26/21	10/28/21			
2-Fluorobiphenyl	72.9%		34-1.	30	10/26/21	10/28/21			

Results: Semivolatile organic compounds

Sample: SE-102 (0-2) MW Lab Number: 1J25018-03 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		134	ug/kg	10/26/21	10/28/21			
Acenaphthene	ND		134	ug/kg	10/26/21	10/28/21			
Acenaphthylene	166		134	ug/kg	10/26/21	10/28/21			
Anthracene	ND		134	ug/kg	10/26/21	10/28/21			
Benzo(a)anthracene	540		134	ug/kg	10/26/21	10/28/21			
Benzo(a)pyrene	660		134	ug/kg	10/26/21	10/28/21			
Benzo(b)fluoranthene	824		134	ug/kg	10/26/21	10/28/21			
Benzo(g,h,i)perylene	553		134	ug/kg	10/26/21	10/28/21			
Benzo(k)fluoranthene	335		134	ug/kg	10/26/21	10/28/21			
Chrysene	639		134	ug/kg	10/26/21	10/28/21			
Dibenz(a,h)anthracene	147		134	ug/kg	10/26/21	10/28/21			
Dibenzofuran	ND		134	ug/kg	10/26/21	10/28/21			
Fluoranthene	972		134	ug/kg	10/26/21	10/28/21			
Fluorene	ND		134	ug/kg	10/26/21	10/28/21			
Indeno(1,2,3-cd)pyrene	575		134	ug/kg	10/26/21	10/28/21			
Naphthalene	ND		134	ug/kg	10/26/21	10/28/21			
Phenanthrene	483		134	ug/kg	10/26/21	10/28/21			
Pyrene	1290		134	ug/kg	10/26/21	10/28/21			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	73.2%		30-12	26	10/26/21	10/28/21			
p-Terphenyl-d14	120%		47-12	30	10/26/21	10/28/21			
2-Fluorobiphenyl	79.2%		34-13	30	10/26/21	10/28/21			

Results: Semivolatile organic compounds

Sample: SE-102 (5-10) MW Lab Number: 1J25018-04 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		183	ug/kg	10/26/21	10/28/21			
Acenaphthene	ND		183	ug/kg	10/26/21	10/28/21			
Acenaphthylene	ND		183	ug/kg	10/26/21	10/28/21			
Anthracene	297		183	ug/kg	10/26/21	10/28/21			
Benzo(a)anthracene	807		183	ug/kg	10/26/21	10/28/21			
Benzo(a)pyrene	815		183	ug/kg	10/26/21	10/28/21			
Benzo(b)fluoranthene	1130		183	ug/kg	10/26/21	10/28/21			
Benzo(g,h,i)perylene	648		183	ug/kg	10/26/21	10/28/21			
Benzo(k)fluoranthene	412		183	ug/kg	10/26/21	10/28/21			
Chrysene	939		183	ug/kg	10/26/21	10/28/21			
Dibenz(a,h)anthracene	ND		183	ug/kg	10/26/21	10/28/21			
Dibenzofuran	ND		183	ug/kg	10/26/21	10/28/21			
Fluoranthene	1950		183	ug/kg	10/26/21	10/28/21			
Fluorene	ND		183	ug/kg	10/26/21	10/28/21			
Indeno(1,2,3-cd)pyrene	697		183	ug/kg	10/26/21	10/28/21			
Naphthalene	ND		183	ug/kg	10/26/21	10/28/21			
Phenanthrene	1460		183	ug/kg	10/26/21	10/28/21			
Pyrene	2090		183	ug/kg	10/26/21	10/28/21			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	62.9%		30-12	26	10/26/21	10/28/21			
p-Terphenyl-d14	87.3%		47-12	30	10/26/21	10/28/21			
2-Fluorobiphenyl	66.9%		34-13	30	10/26/21	10/28/21			

Results: Semivolatile organic compounds

Sample: SE-103 (0-2) MW Lab Number: 1J25018-05 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		138	ug/kg	10/26/21	10/28/21			
Acenaphthene	ND		138	ug/kg	10/26/21	10/28/21			
Acenaphthylene	ND		138	ug/kg	10/26/21	10/28/21			
Anthracene	ND		138	ug/kg	10/26/21	10/28/21			
Benzo(a)anthracene	226		138	ug/kg	10/26/21	10/28/21			
Benzo(a)pyrene	272		138	ug/kg	10/26/21	10/28/21			
Benzo(b)fluoranthene	395		138	ug/kg	10/26/21	10/28/21			
Benzo(g,h,i)perylene	226		138	ug/kg	10/26/21	10/28/21			
Benzo(k)fluoranthene	ND		138	ug/kg	10/26/21	10/28/21			
Chrysene	288		138	ug/kg	10/26/21	10/28/21			
Dibenz(a,h)anthracene	ND		138	ug/kg	10/26/21	10/28/21			
Dibenzofuran	ND		138	ug/kg	10/26/21	10/28/21			
Fluoranthene	410		138	ug/kg	10/26/21	10/28/21			
Fluorene	ND		138	ug/kg	10/26/21	10/28/21			
Indeno(1,2,3-cd)pyrene	255		138	ug/kg	10/26/21	10/28/21			
Naphthalene	ND		138	ug/kg	10/26/21	10/28/21			
Phenanthrene	204		138	ug/kg	10/26/21	10/28/21			
Pyrene	503		138	ug/kg	10/26/21	10/28/21			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	71.5%		30-12	26	10/26/21	10/28/21			
p-Terphenyl-d14	121%		47-13	30	10/26/21	10/28/21			
2-Fluorobiphenyl	83.8%		34-12	30	10/26/21	10/28/21			

Results: Semivolatile organic compounds

Sample: SE-103 (2-5) MW Lab Number: 1J25018-06 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		150	ug/kg	10/26/21	10/28/21			
Acenaphthene	ND		150	ug/kg	10/26/21	10/28/21			
Acenaphthylene	ND		150	ug/kg	10/26/21	10/28/21			
Anthracene	ND		150	ug/kg	10/26/21	10/28/21			
Benzo(a)anthracene	370		150	ug/kg	10/26/21	10/28/21			
Benzo(a)pyrene	356		150	ug/kg	10/26/21	10/28/21			
Benzo(b)fluoranthene	537		150	ug/kg	10/26/21	10/28/21			
Benzo(g,h,i)perylene	234		150	ug/kg	10/26/21	10/28/21			
Benzo(k)fluoranthene	209		150	ug/kg	10/26/21	10/28/21			
Chrysene	386		150	ug/kg	10/26/21	10/28/21			
Dibenz(a,h)anthracene	ND		150	ug/kg	10/26/21	10/28/21			
Dibenzofuran	ND		150	ug/kg	10/26/21	10/28/21			
Fluoranthene	868		150	ug/kg	10/26/21	10/28/21			
Fluorene	ND		150	ug/kg	10/26/21	10/28/21			
Indeno(1,2,3-cd)pyrene	262		150	ug/kg	10/26/21	10/28/21			
Naphthalene	ND		150	ug/kg	10/26/21	10/28/21			
Phenanthrene	645		150	ug/kg	10/26/21	10/28/21			
Pyrene	836		150	ug/kg	10/26/21	10/28/21			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	64.6%		30-1.	26	10/26/21	10/28/21			
p-Terphenyl-d14	101%		47-1.	30	10/26/21	10/28/21			
2-Fluorobiphenyl	71.7%		34-1.	30	10/26/21	10/28/21			

Results: Semivolatile organic compounds

Sample: SE-104 (0-2) Lab Number: 1J25018-07 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		141	ug/kg	10/26/21	10/28/21			
Acenaphthene	ND		141	ug/kg	10/26/21	10/28/21			
Acenaphthylene	ND		141	ug/kg	10/26/21	10/28/21			
Anthracene	ND		141	ug/kg	10/26/21	10/28/21			
Benzo(a)anthracene	404		141	ug/kg	10/26/21	10/28/21			
Benzo(a)pyrene	408		141	ug/kg	10/26/21	10/28/21			
Benzo(b)fluoranthene	561		141	ug/kg	10/26/21	10/28/21			
Benzo(g,h,i)perylene	339		141	ug/kg	10/26/21	10/28/21			
Benzo(k)fluoranthene	187		141	ug/kg	10/26/21	10/28/21			
Chrysene	434		141	ug/kg	10/26/21	10/28/21			
Dibenz(a,h)anthracene	ND		141	ug/kg	10/26/21	10/28/21			
Dibenzofuran	ND		141	ug/kg	10/26/21	10/28/21			
Fluoranthene	798		141	ug/kg	10/26/21	10/28/21			
Fluorene	ND		141	ug/kg	10/26/21	10/28/21			
Indeno(1,2,3-cd)pyrene	357		141	ug/kg	10/26/21	10/28/21			
Naphthalene	ND		141	ug/kg	10/26/21	10/28/21			
Phenanthrene	460		141	ug/kg	10/26/21	10/28/21			
Pyrene	984		141	ug/kg	10/26/21	10/28/21			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	59.1%		30-12	26	10/26/21	10/28/21			
p-Terphenyl-d14	112%		47-13	30	10/26/21	10/28/21			
2-Fluorobiphenyl	74.2%		34-13	30	10/26/21	10/28/21			

Results: Semivolatile organic compounds

Sample: SE-105 (0-2) Lab Number: 1J25018-08 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		140	ug/kg	10/26/21	10/28/21			
Acenaphthene	ND		140	ug/kg	10/26/21	10/28/21			
Acenaphthylene	ND		140	ug/kg	10/26/21	10/28/21			
Anthracene	297		140	ug/kg	10/26/21	10/28/21			
Benzo(a)anthracene	1020		140	ug/kg	10/26/21	10/28/21			
Benzo(a)pyrene	1020		140	ug/kg	10/26/21	10/28/21			
Benzo(b)fluoranthene	1260		140	ug/kg	10/26/21	10/28/21			
Benzo(g,h,i)perylene	703		140	ug/kg	10/26/21	10/28/21			
Benzo(k)fluoranthene	457		140	ug/kg	10/26/21	10/28/21			
Chrysene	1070		140	ug/kg	10/26/21	10/28/21			
Dibenz(a,h)anthracene	179		140	ug/kg	10/26/21	10/28/21			
Dibenzofuran	ND		140	ug/kg	10/26/21	10/28/21			
Fluoranthene	2070		140	ug/kg	10/26/21	10/28/21			
Fluorene	ND		140	ug/kg	10/26/21	10/28/21			
Indeno(1,2,3-cd)pyrene	771		140	ug/kg	10/26/21	10/28/21			
Naphthalene	ND		140	ug/kg	10/26/21	10/28/21			
Phenanthrene	1680		140	ug/kg	10/26/21	10/28/21			
Pyrene	2350		140	ug/kg	10/26/21	10/28/21			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	70.9%		30-12	26	10/26/21	10/28/21			
p-Terphenyl-d14	113%		47-1.	30	10/26/21	10/28/21			
2-Fluorobiphenyl	82.3%		34-1.	30	10/26/21	10/28/21			

Results: Semivolatile organic compounds

Sample: SE-106 (0-2) Lab Number: 1J25018-09 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
2-Methylnaphthalene	ND		292	ug/kg	10/26/21	10/28/21				
Acenaphthene	ND		292	ug/kg	10/26/21	10/28/21				
Acenaphthylene	398		292	ug/kg	10/26/21	10/28/21				
Anthracene	312		292	ug/kg	10/26/21	10/28/21				
Benzo(a)anthracene	1230		292	ug/kg	10/26/21	10/28/21				
Benzo(a)pyrene	1550		292	ug/kg	10/26/21	10/28/21				
Benzo(b)fluoranthene	1960		292	ug/kg	10/26/21	10/28/21				
Benzo(g,h,i)perylene	1260		292	ug/kg	10/26/21	10/28/21				
Benzo(k)fluoranthene	643		292	ug/kg	10/26/21	10/28/21				
Chrysene	1310		292	ug/kg	10/26/21	10/28/21				
Dibenz(a,h)anthracene	335		292	ug/kg	10/26/21	10/28/21				
Dibenzofuran	ND		292	ug/kg	10/26/21	10/28/21				
Fluoranthene	1980		292	ug/kg	10/26/21	10/28/21				
Fluorene	ND		292	ug/kg	10/26/21	10/28/21				
Indeno(1,2,3-cd)pyrene	1370		292	ug/kg	10/26/21	10/28/21				
Naphthalene	ND		292	ug/kg	10/26/21	10/28/21				
Phenanthrene	1030		292	ug/kg	10/26/21	10/28/21				
Pyrene	2170		292	ug/kg	10/26/21	10/28/21				
Surrogate(s)	Recovery%		Limits							
Nitrobenzene-d5	59.8%		30-1.	26	10/26/21	10/28/21				
p-Terphenyl-d14	89.4%		47-1.	30	10/26/21	10/28/21				
2-Fluorobiphenyl	72.6%		34-1.	30	10/26/21	10/28/21				

Results: Semivolatile organic compounds

Sample: SE-107 (0-2) Lab Number: 1J25018-10 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		149	ug/kg	10/26/21	10/28/21			
Acenaphthene	ND		149	ug/kg	10/26/21	10/28/21			
Acenaphthylene	ND		149	ug/kg	10/26/21	10/28/21			
Anthracene	276		149	ug/kg	10/26/21	10/28/21			
Benzo(a)anthracene	893		149	ug/kg	10/26/21	10/28/21			
Benzo(a)pyrene	854		149	ug/kg	10/26/21	10/28/21			
Benzo(b)fluoranthene	1140		149	ug/kg	10/26/21	10/28/21			
Benzo(g,h,i)perylene	604		149	ug/kg	10/26/21	10/28/21			
Benzo(k)fluoranthene	416		149	ug/kg	10/26/21	10/28/21			
Chrysene	919		149	ug/kg	10/26/21	10/28/21			
Dibenz(a,h)anthracene	177		149	ug/kg	10/26/21	10/28/21			
Dibenzofuran	ND		149	ug/kg	10/26/21	10/28/21			
Fluoranthene	1680		149	ug/kg	10/26/21	10/28/21			
Fluorene	ND		149	ug/kg	10/26/21	10/28/21			
Indeno(1,2,3-cd)pyrene	671		149	ug/kg	10/26/21	10/28/21			
Naphthalene	ND		149	ug/kg	10/26/21	10/28/21			
Phenanthrene	1230		149	ug/kg	10/26/21	10/28/21			
Pyrene	1820		149	ug/kg	10/26/21	10/28/21			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	54.4%		30-12	26	10/26/21	10/28/21			
p-Terphenyl-d14	103%		47-13	30	10/26/21	10/28/21			
2-Fluorobiphenyl	71.4%		34-13	30	10/26/21	10/28/21			

Results: Semivolatile organic compounds

Sample: SE-108 (0-2) Lab Number: 1J25018-11 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
2-Methylnaphthalene	ND		141	ug/kg	10/26/21	10/28/21				
Acenaphthene	ND		141	ug/kg	10/26/21	10/28/21				
Acenaphthylene	ND		141	ug/kg	10/26/21	10/28/21				
Anthracene	ND		141	ug/kg	10/26/21	10/28/21				
Benzo(a)anthracene	ND		141	ug/kg	10/26/21	10/28/21				
Benzo(a)pyrene	ND		141	ug/kg	10/26/21	10/28/21				
Benzo(b)fluoranthene	ND		141	ug/kg	10/26/21	10/28/21				
Benzo(g,h,i)perylene	ND		141	ug/kg	10/26/21	10/28/21				
Benzo(k)fluoranthene	ND		141	ug/kg	10/26/21	10/28/21				
Chrysene	ND		141	ug/kg	10/26/21	10/28/21				
Dibenz(a,h)anthracene	ND		141	ug/kg	10/26/21	10/28/21				
Dibenzofuran	ND		141	ug/kg	10/26/21	10/28/21				
Fluoranthene	ND		141	ug/kg	10/26/21	10/28/21				
Fluorene	ND		141	ug/kg	10/26/21	10/28/21				
Indeno(1,2,3-cd)pyrene	ND		141	ug/kg	10/26/21	10/28/21				
Naphthalene	ND		141	ug/kg	10/26/21	10/28/21				
Phenanthrene	ND		141	ug/kg	10/26/21	10/28/21				
Pyrene	ND		141	ug/kg	10/26/21	10/28/21				
Surrogate(s)	Recovery%		Limits							
Nitrobenzene-d5	64.3%		30-12	26	10/26/21	10/28/21				
p-Terphenyl-d14	109%		47-13	30	10/26/21	10/28/21				
2-Fluorobiphenyl	71.9%		34-13	30	10/26/21	10/28/21				

Results: Semivolatile organic compounds

Sample: SE-109 (0-2) Lab Number: 1J25018-12 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
2-Methylnaphthalene	ND		270	ug/kg	10/26/21	10/28/21			
Acenaphthene	ND		270	ug/kg	10/26/21	10/28/21			
Acenaphthylene	ND		270	ug/kg	10/26/21	10/28/21			
Anthracene	ND		270	ug/kg	10/26/21	10/28/21			
Benzo(a)anthracene	ND		270	ug/kg	10/26/21	10/28/21			
Benzo(a)pyrene	ND		270	ug/kg	10/26/21	10/28/21			
Benzo(b)fluoranthene	ND		270	ug/kg	10/26/21	10/28/21			
Benzo(g,h,i)perylene	ND		270	ug/kg	10/26/21	10/28/21			
Benzo(k)fluoranthene	ND		270	ug/kg	10/26/21	10/28/21			
Chrysene	ND		270	ug/kg	10/26/21	10/28/21			
Dibenz(a,h)anthracene	ND		270	ug/kg	10/26/21	10/28/21			
Dibenzofuran	ND		270	ug/kg	10/26/21	10/28/21			
Fluoranthene	319		270	ug/kg	10/26/21	10/28/21			
Fluorene	ND		270	ug/kg	10/26/21	10/28/21			
Indeno(1,2,3-cd)pyrene	ND		270	ug/kg	10/26/21	10/28/21			
Naphthalene	ND		270	ug/kg	10/26/21	10/28/21			
Phenanthrene	ND		270	ug/kg	10/26/21	10/28/21			
Pyrene	346		270	ug/kg	10/26/21	10/28/21			
Surrogate(s)	Recovery%		Limits						
Nitrobenzene-d5	52.4%		30-12	26	10/26/21	10/28/21			
p-Terphenyl-d14	67.6%		47-13	30	10/26/21	10/28/21			
2-Fluorobiphenyl	56.8%		34-13	30	10/26/21	10/28/21			

Results: Semivolatile organic compounds

Sample: SE-110 (0-2) Lab Number: 1J25018-13 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
2-Methylnaphthalene	ND		143	ug/kg	10/26/21	10/28/21				
Acenaphthene	ND		143	ug/kg	10/26/21	10/28/21				
Acenaphthylene	ND		143	ug/kg	10/26/21	10/28/21				
Anthracene	ND		143	ug/kg	10/26/21	10/28/21				
Benzo(a)anthracene	342		143	ug/kg	10/26/21	10/28/21				
Benzo(a)pyrene	312		143	ug/kg	10/26/21	10/28/21				
Benzo(b)fluoranthene	405		143	ug/kg	10/26/21	10/28/21				
Benzo(g,h,i)perylene	221		143	ug/kg	10/26/21	10/28/21				
Benzo(k)fluoranthene	ND		143	ug/kg	10/26/21	10/28/21				
Chrysene	331		143	ug/kg	10/26/21	10/28/21				
Dibenz(a,h)anthracene	ND		143	ug/kg	10/26/21	10/28/21				
Dibenzofuran	ND		143	ug/kg	10/26/21	10/28/21				
Fluoranthene	560		143	ug/kg	10/26/21	10/28/21				
Fluorene	ND		143	ug/kg	10/26/21	10/28/21				
Indeno(1,2,3-cd)pyrene	245		143	ug/kg	10/26/21	10/28/21				
Naphthalene	ND		143	ug/kg	10/26/21	10/28/21				
Phenanthrene	361		143	ug/kg	10/26/21	10/28/21				
Pyrene	639		143	ug/kg	10/26/21	10/28/21				
Surrogate(s)	Recovery%		Limits							
Nitrobenzene-d5	52.2%		30-12	26	10/26/21	10/28/21				
p-Terphenyl-d14	93.2%		47-13	30	10/26/21	10/28/21				
2-Fluorobiphenyl	62.7%		34-13	30	10/26/21	10/28/21				

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-101 (0-2) MW Lab Number: 1J25018-01 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Aroclor-1016	ND		67	ug/kg	10/26/21	10/29/21				
Aroclor-1221	ND		67	ug/kg	10/26/21	10/29/21				
Aroclor-1232	ND		67	ug/kg	10/26/21	10/29/21				
Aroclor-1242	ND		67	ug/kg	10/26/21	10/29/21				
Aroclor-1248	ND		67	ug/kg	10/26/21	10/29/21				
Aroclor-1254	ND		67	ug/kg	10/26/21	10/29/21				
Aroclor-1260	ND		67	ug/kg	10/26/21	10/29/21				
Aroclor-1262	ND		67	ug/kg	10/26/21	10/29/21				
Aroclor-1268	ND		67	ug/kg	10/26/21	10/29/21				
PCBs (Total)	ND		67	ug/kg	10/26/21	10/29/21				
Surrogate(s)	Recovery%		Limi	ts						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	59.9%		36.2-	130	10/26/21	10/29/21				
Decachlorobiphenyl (DCBP)	63.9%		43.3-	130	10/26/21	10/29/21				

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-101 (2-5) MW Lab Number: 1J25018-02 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Aroclor-1016	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1221	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1232	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1242	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1248	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1254	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1260	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1262	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1268	ND		74	ug/kg	10/26/21	10/29/21				
PCBs (Total)	ND		74	ug/kg	10/26/21	10/29/21				
Surrogate(s)	Recovery%		Limi	ts						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	65.7%		36.2-	130	10/26/21	10/29/21				
Decachlorobiphenyl (DCBP)	58.6%		43.3-	130	10/26/21	10/29/21				

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-102 (0-2) MW Lab Number: 1J25018-03 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Aroclor-1016	ND		71	ug/kg	10/26/21	10/29/21				
Aroclor-1221	ND		71	ug/kg	10/26/21	10/29/21				
Aroclor-1232	ND		71	ug/kg	10/26/21	10/29/21				
Aroclor-1242	ND		71	ug/kg	10/26/21	10/29/21				
Aroclor-1248	ND		71	ug/kg	10/26/21	10/29/21				
Aroclor-1254	ND		71	ug/kg	10/26/21	10/29/21				
Aroclor-1260	ND		71	ug/kg	10/26/21	10/29/21				
Aroclor-1262	ND		71	ug/kg	10/26/21	10/29/21				
Aroclor-1268	ND		71	ug/kg	10/26/21	10/29/21				
PCBs (Total)	ND		71	ug/kg	10/26/21	10/29/21				
Surrogate(s)	Recovery%		Limi	ts						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	45.9%		36.2-	130	10/26/21	10/29/21				
Decachlorobiphenyl (DCBP)	54.4%		43.3-	130	10/26/21	10/29/21				

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-102 (5-10) MW Lab Number: 1J25018-04 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Aroclor-1016	ND		92	ug/kg	10/26/21	10/29/21			
Aroclor-1221	ND		92	ug/kg	10/26/21	10/29/21			
Aroclor-1232	ND		92	ug/kg	10/26/21	10/29/21			
Aroclor-1242	ND		92	ug/kg	10/26/21	10/29/21			
Aroclor-1248	ND		92	ug/kg	10/26/21	10/29/21			
Aroclor-1254	ND		92	ug/kg	10/26/21	10/29/21			
Aroclor-1260	ND		92	ug/kg	10/26/21	10/29/21			
Aroclor-1262	ND		92	ug/kg	10/26/21	10/29/21			
Aroclor-1268	ND		92	ug/kg	10/26/21	10/29/21			
PCBs (Total)	ND		92	ug/kg	10/26/21	10/29/21			
Surrogate(s)	Recovery%		Limi	ts					
2,4,5,6-Tetrachloro-m-xylene (TCMX)	75.3%		36.2-	130	10/26/21	10/29/21			
Decachlorobiphenyl (DCBP)	75.9%		43.3-	130	10/26/21	10/29/21			

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-103 (0-2) MW Lab Number: 1J25018-05 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Aroclor-1016	ND		70	ug/kg	10/26/21	10/29/21			
Aroclor-1221	ND		70	ug/kg	10/26/21	10/29/21			
Aroclor-1232	ND		70	ug/kg	10/26/21	10/29/21			
Aroclor-1242	ND		70	ug/kg	10/26/21	10/29/21			
Aroclor-1248	ND		70	ug/kg	10/26/21	10/29/21			
Aroclor-1254	ND		70	ug/kg	10/26/21	10/29/21			
Aroclor-1260	ND		70	ug/kg	10/26/21	10/29/21			
Aroclor-1262	ND		70	ug/kg	10/26/21	10/29/21			
Aroclor-1268	ND		70	ug/kg	10/26/21	10/29/21			
PCBs (Total)	ND		70	ug/kg	10/26/21	10/29/21			
Surrogate(s)	Recovery%		Limi	ts					
2,4,5,6-Tetrachloro-m-xylene (TCMX)	56.8%		36.2-	130	10/26/21	10/29/21			
Decachlorobiphenyl (DCBP)	60.1%		43.3-	130	10/26/21	10/29/21			

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-103 (2-5) MW Lab Number: 1J25018-06 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Aroclor-1016	ND		78	ug/kg	10/26/21	10/29/21				
Aroclor-1221	ND		78	ug/kg	10/26/21	10/29/21				
Aroclor-1232	ND		78	ug/kg	10/26/21	10/29/21				
Aroclor-1242	ND		78	ug/kg	10/26/21	10/29/21				
Aroclor-1248	ND		78	ug/kg	10/26/21	10/29/21				
Aroclor-1254	ND		78	ug/kg	10/26/21	10/29/21				
Aroclor-1260	ND		78	ug/kg	10/26/21	10/29/21				
Aroclor-1262	ND		78	ug/kg	10/26/21	10/29/21				
Aroclor-1268	ND		78	ug/kg	10/26/21	10/29/21				
PCBs (Total)	ND		78	ug/kg	10/26/21	10/29/21				
Surrogate(s)	Recovery%		Limi	its						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	74.1%		36.2-	130	10/26/21	10/29/21				
Decachlorobiphenyl (DCBP)	43.3%		43.3-	130	10/26/21	10/29/21				

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-104 (0-2) Lab Number: 1J25018-07 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Aroclor-1016	ND		72	ug/kg	10/26/21	10/29/21				
Aroclor-1221	ND		72	ug/kg	10/26/21	10/29/21				
Aroclor-1232	ND		72	ug/kg	10/26/21	10/29/21				
Aroclor-1242	ND		72	ug/kg	10/26/21	10/29/21				
Aroclor-1248	ND		72	ug/kg	10/26/21	10/29/21				
Aroclor-1254	ND		72	ug/kg	10/26/21	10/29/21				
Aroclor-1260	ND		72	ug/kg	10/26/21	10/29/21				
Aroclor-1262	ND		72	ug/kg	10/26/21	10/29/21				
Aroclor-1268	ND		72	ug/kg	10/26/21	10/29/21				
PCBs (Total)	ND		72	ug/kg	10/26/21	10/29/21				
Surrogate(s)	Recovery%		Limi	ts						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	49.3%		36.2-	130	10/26/21	10/29/21				
Decachlorobiphenyl (DCBP)	47.5%		43.3	130	10/26/21	10/29/21				

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-105 (0-2) Lab Number: 1J25018-08 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Aroclor-1016	ND		69	ug/kg	10/26/21	10/29/21			
Aroclor-1221	ND		69	ug/kg	10/26/21	10/29/21			
Aroclor-1232	ND		69	ug/kg	10/26/21	10/29/21			
Aroclor-1242	ND		69	ug/kg	10/26/21	10/29/21			
Aroclor-1248	ND		69	ug/kg	10/26/21	10/29/21			
Aroclor-1254	ND		69	ug/kg	10/26/21	10/29/21			
Aroclor-1260	ND		69	ug/kg	10/26/21	10/29/21			
Aroclor-1262	ND		69	ug/kg	10/26/21	10/29/21			
Aroclor-1268	100		69	ug/kg	10/26/21	10/29/21			
PCBs (Total)	100		69	ug/kg	10/26/21	10/29/21			
Surrogate(s)	Recovery%		Limi	ts					
2,4,5,6-Tetrachloro-m-xylene (TCMX)	58.0%		36.2-1	130	10/26/21	10/29/21			
Decachlorobiphenyl (DCBP)	87.4%		43.3-1	1.30	10/26/21	10/29/21			

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-106 (0-2) Lab Number: 1J25018-09 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Aroclor-1016	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1221	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1232	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1242	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1248	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1254	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1260	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1262	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1268	ND		73	ug/kg	10/26/21	10/29/21				
PCBs (Total)	ND		73	ug/kg	10/26/21	10/29/21				
Surrogate(s)	Recovery%		Limi	ts						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	51.1%		36.2-	130	10/26/21	10/29/21				
Decachlorobiphenyl (DCBP)	55.4%		43.3	130	10/26/21	10/29/21				

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-107 (0-2) Lab Number: 1J25018-10 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Aroclor-1016	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1221	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1232	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1242	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1248	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1254	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1260	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1262	ND		74	ug/kg	10/26/21	10/29/21				
Aroclor-1268	ND		74	ug/kg	10/26/21	10/29/21				
PCBs (Total)	ND		74	ug/kg	10/26/21	10/29/21				
Surrogate(s)	Recovery%		Limi	its						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	74.2%		36.2-	130	10/26/21	10/29/21				
Decachlorobiphenyl (DCBP)	73.3%		43.3-1	130	10/26/21	10/29/21				

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-108 (0-2) Lab Number: 1J25018-11 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Aroclor-1016	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1221	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1232	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1242	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1248	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1254	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1260	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1262	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1268	ND		73	ug/kg	10/26/21	10/29/21				
PCBs (Total)	ND		73	ug/kg	10/26/21	10/29/21				
Surrogate(s)	Recovery%		Limi	ts						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	87.2%		36.2-	130	10/26/21	10/29/21				
Decachlorobiphenyl (DCBP)	54.6%		43.3-1	130	10/26/21	10/29/21				

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-109 (0-2) Lab Number: 1J25018-12 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Aroclor-1016	ND		69	ug/kg	10/26/21	10/29/21				
Aroclor-1221	ND		69	ug/kg	10/26/21	10/29/21				
Aroclor-1232	ND		69	ug/kg	10/26/21	10/29/21				
Aroclor-1242	ND		69	ug/kg	10/26/21	10/29/21				
Aroclor-1248	ND		69	ug/kg	10/26/21	10/29/21				
Aroclor-1254	ND		69	ug/kg	10/26/21	10/29/21				
Aroclor-1260	ND		69	ug/kg	10/26/21	10/29/21				
Aroclor-1262	ND		69	ug/kg	10/26/21	10/29/21				
Aroclor-1268	ND		69	ug/kg	10/26/21	10/29/21				
PCBs (Total)	ND		69	ug/kg	10/26/21	10/29/21				
Surrogate(s)	Recovery%		Limi	ts						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	72.2%		36.2-	130	10/26/21	10/29/21				
Decachlorobiphenyl (DCBP)	56.6%		43.3-1	130	10/26/21	10/29/21				

Results: Polychlorinated Biphenyls (PCBs)

Sample: SE-110 (0-2) Lab Number: 1J25018-13 (Soil)

Reporting										
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Aroclor-1016	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1221	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1232	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1242	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1248	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1254	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1260	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1262	ND		73	ug/kg	10/26/21	10/29/21				
Aroclor-1268	ND		73	ug/kg	10/26/21	10/29/21				
PCBs (Total)	ND		73	ug/kg	10/26/21	10/29/21				
Surrogate(s)	Recovery%		Limi	ts						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	58.8%		36.2	130	10/26/21	10/29/21				
Decachlorobiphenyl (DCBP)	63.7%		43.3	130	10/26/21	10/29/21				

Results: Total Petroleum Hydrocarbons

Sample: SE-101 (0-2) MW Lab Number: 1J25018-01 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Total Petroleum Hydrocarbons	356		139	mg/kg	10/25/21	10/27/21			
Surrogate(s)	Recovery%		Limi	ts					
Chlorooctadecane	70.2%		56.5-1	114	10/25/21	10/27/21			

Results: Total Petroleum Hydrocarbons

Sample: SE-101 (2-5) MW Lab Number: 1J25018-02 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	250		31	mg/kg	10/25/21	10/27/21
Surrogate(s)	Recovery%	Recovery%		ts		
Chlorooctadecane	68.3%		56.5-	114	10/25/21	10/27/21

Results: Total Petroleum Hydrocarbons

Sample: SE-102 (0-2) MW Lab Number: 1J25018-03 (Soil)

	Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed				
Total Petroleum Hydrocarbons	880		143	mg/kg	10/25/21	10/27/21				
Surrogate(s)	Recovery%		Limi	ts						
Chlorooctadecane	74.3%		56.5-1	114	10/25/21	10/27/21				

Results: Total Petroleum Hydrocarbons

Sample: SE-102 (5-10) MW Lab Number: 1J25018-04 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	ND		38	mg/kg	10/25/21	10/28/21
Surrogate(s)	Recovery%	Recovery%		ts		
Chlorooctadecane	67.4%		56.5-	114	10/25/21	10/28/21

Results: Total Petroleum Hydrocarbons

Sample: SE-103 (0-2) MW Lab Number: 1J25018-05 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	91		29	mg/kg	10/25/21	10/28/21
Surrogate(s)	Recovery%		Limi	its		
Chlorooctadecane	72.6%		56.5	114	10/25/21	10/28/21

Results: Total Petroleum Hydrocarbons

Sample: SE-103 (2-5) MW Lab Number: 1J25018-06 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	ND		31	mg/kg	10/25/21	10/27/21
Surrogate(s)	Recovery%	Recovery%		ts		
Chlorooctadecane	63.1%		56.5-	114	10/25/21	10/27/21

Results: Total Petroleum Hydrocarbons

Sample: SE-104 (0-2) Lab Number: 1J25018-07 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	111		29	mg/kg	10/25/21	10/28/21
Surrogate(s)	Recovery%	Recovery%		ts		
Chlorooctadecane	64.3%		56.5-	114	10/25/21	10/28/21

Results: Total Petroleum Hydrocarbons

Sample: SE-105 (0-2) Lab Number: 1J25018-08 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	190		29	mg/kg	10/25/21	10/28/21
Surrogate(s)	Recovery%	Recovery%		its		
Chlorooctadecane	70.9%		56.5-	114	10/25/21	10/28/21

Results: Total Petroleum Hydrocarbons

Sample: SE-106 (0-2) Lab Number: 1J25018-09 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	364		30	mg/kg	10/25/21	10/28/21
Surrogate(s)	Recovery%	Recovery%		its		
Chlorooctadecane	86.6%		56.5-	114	10/25/21	10/28/21

Results: Total Petroleum Hydrocarbons

Sample: SE-107 (0-2) Lab Number: 1J25018-10 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	122		30	mg/kg	10/25/21	10/28/21
Surrogate(s)	Recovery%		Limi	its		
Chlorooctadecane	73.6%		56.5	114	10/25/21	10/28/21

Results: Total Petroleum Hydrocarbons

Sample: SE-108 (0-2) Lab Number: 1J25018-11 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	ND		29	mg/kg	10/25/21	10/28/21
Surrogate(s)	Recovery%	Recovery%		its		
Chlorooctadecane	59.9%		56.5-	114	10/25/21	10/28/21

Results: Total Petroleum Hydrocarbons

Sample: SE-109 (0-2) Lab Number: 1J25018-12 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	560		56	mg/kg	10/25/21	10/28/21
Surrogate(s)	Recovery%	Recovery%		ts		
Chlorooctadecane	89.4%		56.5-	114	10/25/21	10/28/21

Results: Total Petroleum Hydrocarbons

Sample: SE-110 (0-2) Lab Number: 1J25018-13 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Total Petroleum Hydrocarbons	62		29	mg/kg	10/25/21	10/28/21
Surrogate(s)	Recovery%		Limi	its		
Chlorooctadecane	57.7%		56.5-	114	10/25/21	10/28/21

Quality Control

Total Metals

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1J1232 - Metals Dig	restion Soils									
Blank (B1J1232-BLK1)	Jestion Sons			Pr	enared: 10/2	6/21 Analyze	d: 10/27/21			
Zinc	ND		1.3	mg/kg	opu. ou. 10, 1	0,22 /,20	u. 10/1//11			
Selenium	ND		0.66	mg/kg						
Antimony	ND		0.66	mg/kg						
Lead	ND		0.33	mg/kg						
Nickel	ND		0.33	mg/kg						
Copper	ND		1.33	mg/kg						
Chromium	ND		0.33	mg/kg						
Arsenic	ND		0.66	mg/kg						
Cadmium	ND		0.33	mg/kg						
Silver	ND		0.33	mg/kg						
Beryllium	ND		0.33	mg/kg						
Thallium	ND		0.33	mg/kg						
LCS (B1J1232-BS1)				Pr	epared: 10/2	6/21 Analyze	d: 10/27/21			
Zinc	106		1.3	mg/kg	100		106	85-115		
Selenium	20.5		0.66	mg/kg	20.0		103	85-115		
Silver	41.1		0.33	mg/kg	40.0		103	85-115		
Cadmium	103		0.33	mg/kg	100		103	85-115		
Lead	111		0.33	mg/kg	100		111	85-115		
Arsenic	20.8		0.66	mg/kg	20.0		104	85-115		
Nickel	101		0.33	mg/kg	100		101	85-112		
Copper	98.5		1.33	mg/kg	100		98.5	85-115		
Beryllium	21.3		0.33	mg/kg	20.0		106	85-115		
Chromium	102		0.33	mg/kg	100		102	85-115		
Antimony	101		0.66	mg/kg	100		101	85-115		
Thallium	106		0.33	mg/kg	100		106	85-115		

			-	Control						
Total Metals (Continued)										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B1J1358 - Metals Co	ld-Vapor Mercui	ry								
Blank (B1J1358-BLK1)	•	•			Prepared 8	& Analyzed: 1	0/28/21			
Mercury	ND		0.035	mg/kg						
LCS (B1J1358-BS1)					Prepared 8	& Analyzed: 1	0/28/21			
Mercury	0.071		0.035	ma/ka	0.0714		99.8	93-114		

Volatile Organic Compounds

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
Batch: B1J1251 - EPA 5035									_	
Blank (B1J1251-BLK1)					Prepared 8	& Analyzed: 1	0/26/21			
Acetone	ND		5	ug/kg		, ,	-, -,			
Benzene	ND		5	ug/kg						
Bromobenzene	ND		5	ug/kg						
Bromochloromethane	ND		5	ug/kg						
Bromodichloromethane	ND		5	ug/kg						
Bromoform	ND		5	ug/kg						
Bromomethane	ND		5	ug/kg						
2-Butanone	ND		5	ug/kg						
tert-Butyl alcohol	ND		5	ug/kg						
sec-Butylbenzene	ND		5	ug/kg						
n-Butylbenzene	ND		5	ug/kg						
tert-Butylbenzene	ND		5	ug/kg ug/kg						
Methyl t-butyl ether (MTBE)	ND		5	ug/kg ug/kg						
Carbon Disulfide	ND		5	ug/kg ug/kg						
Carbon Tetrachloride	ND		5							
Chlorobenzene	ND ND		5	ug/kg						
Chloroethane	ND ND		5	ug/kg						
Chloroform	ND ND		5	ug/kg						
				ug/kg						
Chloroteluses	ND		5	ug/kg						
4-Chlorotoluene	ND		5	ug/kg						
2-Chlorotoluene	ND		5	ug/kg						
1,2-Dibromo-3-chloropropane (DBCP)	ND		5	ug/kg						
Dibromochloromethane	ND		5	ug/kg						
1,2-Dibromoethane (EDB)	ND		5	ug/kg						
Dibromomethane	ND		5	ug/kg						
1,2-Dichlorobenzene	ND		5	ug/kg						
1,3-Dichlorobenzene	ND		5	ug/kg						
1,4-Dichlorobenzene	ND		5	ug/kg						
1,1-Dichloroethane	ND		5	ug/kg						
1,2-Dichloroethane	ND		5	ug/kg						
trans-1,2-Dichloroethene	ND		5	ug/kg						
cis-1,2-Dichloroethene	ND		5	ug/kg						
1,1-Dichloroethene	ND		5	ug/kg						
1,2-Dichloropropane	ND		5	ug/kg						
2,2-Dichloropropane	ND		5	ug/kg						
cis-1,3-Dichloropropene	ND		5	ug/kg						
trans-1,3-Dichloropropene	ND		5	ug/kg						
1,1-Dichloropropene	ND		5	ug/kg						
1,3-Dichloropropene (cis + trans)	ND		5	ug/kg						
Diethyl ether	ND		5	ug/kg						
1,4-Dioxane	ND		100	ug/kg						
Ethylbenzene	ND		5	ug/kg						
Hexachlorobutadiene	ND		5	ug/kg						
2-Hexanone	ND		5	ug/kg						
Isopropylbenzene	ND		5	ug/kg						
p-Isopropyltoluene	ND		5	ug/kg						
Methylene Chloride	ND		30	ug/kg						
4-Methyl-2-pentanone	ND		5	ug/kg						
Naphthalene	ND		5	ug/kg						
n-Propylbenzene	ND		5	ug/kg						
Styrene	ND		5	ug/kg						
1,1,1,2-Tetrachloroethane	ND		5	ug/kg						
Tetrachloroethene	ND		5	ug/kg						
Tetrahydrofuran	ND		5	ug/kg						
Toluene	ND		5	ug/kg						
1,2,4-Trichlorobenzene	ND		5	ug/kg						
1,2,3-Trichlorobenzene	ND		5	ug/kg					Page	

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
Batch: B1J1251 - EPA 5035 (Co	ontinued)									
Blank (B1J1251-BLK1)	-				Prepared 8	& Analyzed: 1	0/26/21			
1,1,2-Trichloroethane	ND		5	ug/kg						
1,1,1-Trichloroethane	ND		5	ug/kg						
Trichloroethene	ND		5	ug/kg						
1,2,3-Trichloropropane	ND		5	ug/kg						
1,3,5-Trimethylbenzene	ND		5	ug/kg						
1,2,4-Trimethylbenzene	ND		5	ug/kg						
Vinyl Chloride	ND		5	ug/kg						
o-Xylene	ND		5	ug/kg						
m&p-Xylene	ND		10	ug/kg						
Total xylenes	ND		5	ug/kg						
1,1,2,2-Tetrachloroethane	ND		5	ug/kg						
tert-Amyl methyl ether	ND		5	ug/kg						
1,3-Dichloropropane	ND		5	ug/kg						
Ethyl tert-butyl ether	ND		5	ug/kg						
Diisopropyl ether	ND		5	ug/kg						
Trichlorofluoromethane	ND		5	ug/kg						
Dichlorodifluoromethane	ND		5	ug/kg ug/kg						
								70 420		
Surrogate: 4-Bromofluorobenzene			<i>50.4</i>	ug/kg	50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4			49.5	ug/kg	50.0		99.0	70-130		
Surrogate: Toluene-d8			50.6	ug/kg	50.0		101	70-130		
LCS (B1J1251-BS1)					-	& Analyzed: 1				
Acetone	73			ug/kg	50.0		146	60-140		
Benzene	50			ug/kg	50.0		99.2	70-130		
Bromobenzene	47			ug/kg	50.0		94.2	70-130		
Bromochloromethane	46			ug/kg	50.0		91.4	70-130		
Bromodichloromethane	52			ug/kg	50.0		103	70-130		
Bromoform	49			ug/kg	50.0		98.8	70-130		
Bromomethane	56			ug/kg	50.0		113	60-140		
2-Butanone	54			ug/kg	50.0		108	60-140		
tert-Butyl alcohol	57			ug/kg	50.0		114	70-130		
sec-Butylbenzene	47			ug/kg	50.0		93.2	70-130		
n-Butylbenzene	54			ug/kg	50.0		108	70-130		
tert-Butylbenzene	50			ug/kg	50.0		100	70-130		
Methyl t-butyl ether (MTBE)	46			ug/kg	50.0		92.8	70-130		
Carbon Disulfide	49			ug/kg	50.0		97.3	50-150		
Carbon Tetrachloride	49			ug/kg	50.0		97.3	70-130		
Chlorobenzene	52			ug/kg	50.0		103	70-130		
Chloroethane	57			ug/kg	50.0		113	60-140		
Chloroform	47			ug/kg	50.0		94.3	70-130		
Chloromethane	59			ug/kg	50.0		119	60-140		
4-Chlorotoluene	53			ug/kg	50.0		106	70-130		
2-Chlorotoluene	51			ug/kg	50.0		101	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	51			ug/kg	50.0		102	70-130		
Dibromochloromethane	50			ug/kg	50.0		99.3	70-130		
1,2-Dibromoethane (EDB)	50			ug/kg	50.0		99.4	70-130		
Dibromomethane	49			ug/kg	50.0		98.3	60-140		
1,2-Dichlorobenzene	49			ug/kg	50.0		97.9	70-130		
1,3-Dichlorobenzene	50			ug/kg	50.0		99.9	70-130		
1,4-Dichlorobenzene	50			ug/kg	50.0		99.8	70-130		
1,1-Dichloroethane	58			ug/kg	50.0		116	70-130		
1,2-Dichloroethane	49			ug/kg	50.0		98.2	70-130		
trans-1,2-Dichloroethene	48			ug/kg	50.0		96.6	70-130		
cis-1,2-Dichloroethene	46			ug/kg	50.0		92.0	70-130		
1,1-Dichloroethene	49			ug/kg	50.0		97.4	70-130		
1,2-Dichloropropane	52			ug/kg	50.0		104	70-130		
				JJ						

Page 91 of 104

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPI
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Lim
atch: B1J1251 - EPA 5035 (C	Continued)									
LCS (B1J1251-BS1)	-				Prepared 8	& Analyzed: 10	0/26/21			
cis-1,3-Dichloropropene	52			ug/kg	50.0		104	70-130		
trans-1,3-Dichloropropene	53			ug/kg	50.0		107	70-130		
1,1-Dichloropropene	49			ug/kg	50.0		97.5	70-130		
Diethyl ether	49			ug/kg	50.0		98.8	60-140		
1,4-Dioxane	265			ug/kg	250		106	0-200		
Ethylbenzene	50			ug/kg	50.0		99.6	70-130		
Hexachlorobutadiene	48			ug/kg	50.0		96.2	70-130		
2-Hexanone	55			ug/kg	50.0		110	70-130		
Isopropylbenzene	51			ug/kg	50.0		101	70-130		
p-Isopropyltoluene	51			ug/kg	50.0		102	70-130		
Methylene Chloride	59			ug/kg	50.0		118	60-140		
4-Methyl-2-pentanone	46			ug/kg	50.0		92.3	70-130		
Naphthalene	48			ug/kg	50.0		96.7	70-130		
n-Propylbenzene	52			ug/kg	50.0		105	70-130		
Styrene	49			ug/kg	50.0		98.3	70-130		
1,1,1,2-Tetrachloroethane	48			ug/kg	50.0		95.9	70-130		
Tetrachloroethene	50			ug/kg	50.0		99.9	70-130		
Tetrahydrofuran	49			ug/kg	50.0		97.5	50-150		
Toluene	49			ug/kg	50.0		99.0	70-130		
1,2,4-Trichlorobenzene	50			ug/kg	50.0		99.4	70-130		
1,2,3-Trichlorobenzene	48			ug/kg	50.0		95.4	70-130		
1,1,2-Trichloroethane	50			ug/kg	50.0		99.7	70-130		
1,1,1-Trichloroethane	48			ug/kg	50.0		96.2	70-130		
Trichloroethene	48			ug/kg	50.0		96.6	70-130		
1,2,3-Trichloropropane	49			ug/kg	50.0		97.2	70-130		
1,3,5-Trimethylbenzene	51			ug/kg	50.0		102	70-130		
1,2,4-Trimethylbenzene	50			ug/kg ug/kg	50.0		100	70-130		
Vinyl Chloride	52			ug/kg ug/kg	50.0		105	60-140		
o-Xylene	49			ug/kg ug/kg	50.0		98.7	70-130		
m&p-Xylene	99			ug/kg ug/kg	100		99.2	70-130		
1,1,2,2-Tetrachloroethane	51			ug/kg ug/kg	50.0		103	70-130		
tert-Amyl methyl ether	45			ug/kg ug/kg	50.0		89.7	70-130		
1,3-Dichloropropane	50			ug/kg ug/kg	50.0		101	70-130		
Ethyl tert-butyl ether	42			ug/kg ug/kg	50.0		84.5	70-130		
Trichlorofluoromethane	49			ug/kg ug/kg	50.0		97.8	70-130		
Dichlorodifluoromethane	59			ug/kg ug/kg	50.0		119	60-140		
Surrogate: 4-Bromofluorobenzene			<i>50.1</i>	ug/kg	50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4			50.9	ug/kg ug/kg	50.0		102	70-130		
Surrogate: Toluene-d8			50.8	ug/kg ug/kg	50.0		102	70-130		

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1J1251 - EPA 5035 (Co	ontinued)									
LCS Dup (B1J1251-BSD1)					Prepared 8	& Analyzed: 1	0/26/21			
Acetone	54			ug/kg	50.0		108	60-140	30.1	30
Benzene	49			ug/kg	50.0		98.3	70-130	0.911	20
Bromobenzene	49			ug/kg	50.0		97.4	70-130	3.32	20
Bromochloromethane	48			ug/kg	50.0		95.8	70-130	4.79	20
Bromodichloromethane	50			ug/kg	50.0		100	70-130	3.12	20
Bromoform	49			ug/kg	50.0		99.0	70-130	0.202	20
Bromomethane	58			ug/kg	50.0		116	60-140	2.43	30
2-Butanone	51			ug/kg	50.0		102	60-140	5.40	30
tert-Butyl alcohol	57			ug/kg	50.0		113	70-130	0.580	20
sec-Butylbenzene	48			ug/kg	50.0		96.7	70-130	3.64	20
n-Butylbenzene	55			ug/kg	50.0		110	70-130	2.03	20
tert-Butylbenzene	51			ug/kg	50.0		103	70-130	2.74	20
Methyl t-butyl ether (MTBE)	44			ug/kg	50.0		87.6	70-130	5.81	20
Carbon Disulfide	49			ug/kg	50.0		98.3	50-150	0.982	40
Carbon Tetrachloride	48			ug/kg	50.0		96.2	70-130	1.12	20
Chlorobenzene	52			ug/kg ug/kg	50.0		104	70-130	0.792	20
Chloroethane	53			ug/kg ug/kg	50.0		105	60-140	7.35	30
Chloroform	48			ug/kg ug/kg	50.0		96.9	70-130	2.66	20
Chloromethane	59			ug/kg ug/kg	50.0		118	60-140	0.964	30
4-Chlorotoluene	5 9				50.0		108	70-130	2.21	20
2-Chlorotoluene	52			ug/kg	50.0		103	70-130	2.48	20
	52 52			ug/kg						
1,2-Dibromo-3-chloropropane (DBCP)				ug/kg	50.0		103	70-130	1.39	20
Dibromochloromethane	49			ug/kg	50.0		97.8	70-130	1.54	20
1,2-Dibromoethane (EDB)	51			ug/kg	50.0		102	70-130	2.11	20
Dibromomethane	48			ug/kg	50.0		95.9	60-140	2.43	30
1,2-Dichlorobenzene	51			ug/kg	50.0		102	70-130	4.24	20
1,3-Dichlorobenzene	51			ug/kg	50.0		102	70-130	2.43	20
1,4-Dichlorobenzene	52			ug/kg	50.0		103	70-130	3.54	20
1,1-Dichloroethane	49			ug/kg	50.0		98.0	70-130	17.0	20
1,2-Dichloroethane	50			ug/kg	50.0		100	70-130	1.82	20
trans-1,2-Dichloroethene	48			ug/kg	50.0		96.2	70-130	0.498	20
cis-1,2-Dichloroethene	49			ug/kg	50.0		97.5	70-130	5.81	20
1,1-Dichloroethene	50			ug/kg	50.0		99.6	70-130	2.19	20
1,2-Dichloropropane	50			ug/kg	50.0		99.8	70-130	4.22	20
2,2-Dichloropropane	51			ug/kg	50.0		103	70-130	0.743	20
cis-1,3-Dichloropropene	52			ug/kg	50.0		104	70-130	0.693	20
trans-1,3-Dichloropropene	52			ug/kg	50.0		104	70-130	3.01	20
1,1-Dichloropropene	48			ug/kg	50.0		95.4	70-130	2.18	20
Diethyl ether	49			ug/kg	50.0		98.2	60-140	0.589	30
1,4-Dioxane	270			ug/kg	250		108	0-200	1.92	50
Ethylbenzene	51			ug/kg	50.0		101	70-130	1.46	20
Hexachlorobutadiene	50			ug/kg	50.0		100	70-130	4.15	20
2-Hexanone	52			ug/kg	50.0		104	70-130	5.19	20
Isopropylbenzene	52			ug/kg	50.0		104	70-130	2.26	20
p-Isopropyltoluene	52			ug/kg	50.0		105	70-130	2.67	20
Methylene Chloride	74			ug/kg	50.0		148	60-140	22.7	30
4-Methyl-2-pentanone	44			ug/kg	50.0		88.8	70-130	3.89	20
Naphthalene	51			ug/kg ug/kg	50.0		102	70-130	4.86	20
n-Propylbenzene	54			ug/kg ug/kg	50.0		108	70-130	2.91	20
Styrene	50			ug/kg ug/kg	50.0		101	70-130	2.29	20
1,1,1,2-Tetrachloroethane	49			ug/kg ug/kg	50.0		98.9	70-130	3.14	20
Tetrachloroethene	49			ug/kg ug/kg	50.0		98.5	70-130	1.37	20
Tetrahydrofuran	50				50.0		99.0	50-150	1.55	40
,	50 49			ug/kg						
Toluene				ug/kg	50.0		97.4	70-130	1.57	20
1,2,4-Trichlorobenzene	51			ug/kg	50.0		102	70-130	2.48	20
1,2,3-Trichlorobenzene 1,1,2-Trichloroethane	50 51			ug/kg ug/kg	50.0 50.0		100 103	70-130 70-130	5.05	20

Page 93 of 104

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1J1251 - EPA 5035 (C	Continued)									
LCS Dup (B1J1251-BSD1)					Prepared 8	& Analyzed: 1	0/26/21			
1,1,1-Trichloroethane	47			ug/kg	50.0		94.6	70-130	1.66	20
Trichloroethene	48			ug/kg	50.0		96.1	70-130	0.560	20
1,2,3-Trichloropropane	49			ug/kg	50.0		97.6	70-130	0.452	20
1,3,5-Trimethylbenzene	52			ug/kg	50.0		103	70-130	1.44	20
1,2,4-Trimethylbenzene	52			ug/kg	50.0		104	70-130	3.59	20
Vinyl Chloride	54			ug/kg	50.0		109	60-140	3.45	30
o-Xylene	51			ug/kg	50.0		101	70-130	2.72	20
m&p-Xylene	100			ug/kg	100		100	70-130	1.18	20
1,1,2,2-Tetrachloroethane	51			ug/kg	50.0		102	70-130	1.17	20
tert-Amyl methyl ether	44			ug/kg	50.0		88.6	70-130	1.14	20
1,3-Dichloropropane	50			ug/kg	50.0		99.9	70-130	0.718	20
Ethyl tert-butyl ether	46			ug/kg	50.0		91.4	70-130	7.80	20
Trichlorofluoromethane	50			ug/kg	50.0		100	70-130	2.30	20
Dichlorodifluoromethane	59			ug/kg	50.0		119	60-140	0.0674	30
Surrogate: 4-Bromofluorobenzene			50.6	ug/kg	50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4			48.0	ug/kg	50.0		96.0	70-130		
Surrogate: Toluene-d8			49.4	ug/kg	50.0		98.9	70-130		

Batch: B1J1359 - EPA 5035

			_		_	_	_	_
Blank (B1)	13!	59-	BLK1	L)				

Acetone	Diaini (D191999 D1111)			
Bromobenzene ND 5 ug/kg Bromochloromethane ND 5 ug/kg Bromodichloromethane ND 5 ug/kg Bromoform ND 5 ug/kg Bromomethane ND 5 ug/kg 2-Butanone ND 5 ug/kg tert-Butyl alcohol ND 5 ug/kg sec-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg dert-Butylbenzene ND 5 ug/kg Methyl t-butyl ether (MTBE) ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chlorothane ND 5 ug/kg<	Acetone	ND	5	ug/kg
Bromochloromethane ND 5 ug/kg Bromodichloromethane ND 5 ug/kg Bromoform ND 5 ug/kg Bromomethane ND 5 ug/kg 2-Butanone ND 5 ug/kg tert-Butyl alcohol ND 5 ug/kg sec-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg tert-Butylbenzene ND 5 ug/kg Methyl t-butyl ether (MTBE) ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chloroform ND 5 ug/kg Chloroform ND 5 ug/kg Chlorotoluene ND 5 ug/kg	Benzene	ND	5	ug/kg
Bromodichloromethane ND 5 ug/kg Bromoform ND 5 ug/kg Bromomethane ND 5 ug/kg 2-Butanone ND 5 ug/kg 2-Butanone ND 5 ug/kg tert-Butyl alcohol ND 5 ug/kg sec-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg dert-Butylbenzene ND 5 ug/kg Methyl t-butyl ether (MTBE) ND 5 ug/kg Methyl t-butyl ether (MTBE) ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chlorothane ND 5 ug/kg Chlorothane ND 5 <t< td=""><td>Bromobenzene</td><td>ND</td><td>5</td><td>ug/kg</td></t<>	Bromobenzene	ND	5	ug/kg
Bromoform ND 5 ug/kg Bromomethane ND 5 ug/kg 2-Butanone ND 5 ug/kg tert-Butyl alcohol ND 5 ug/kg sec-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg tert-Butylbenzene ND 5 ug/kg Methyl t-butyl ether (MTBE) ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chlorothane ND 5 ug/kg Chlorotorme ND 5 ug/kg Chlorotoluene ND 5 ug/kg 4-Chlorotoluene ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg 1,2-Dibromochane (EDB) ND 5 <td>Bromochloromethane</td> <td>ND</td> <td>5</td> <td>ug/kg</td>	Bromochloromethane	ND	5	ug/kg
Bromomethane ND 5 ug/kg 2-Butanone ND 5 ug/kg tert-Butyl alcohol ND 5 ug/kg sec-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg Methyl t-butyl ether (MTBE) ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Chlorotethane ND 5 ug/kg Chlorotoform ND 5 ug/kg Chlorotofuluene ND 5 ug/kg 4-Chlorotoluene ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg 1,2-Dibromoethane ND 5 ug/kg 1,2-Dibromoethane (EDB)	Bromodichloromethane	ND	5	ug/kg
2-Butanone ND 5 ug/kg tert-Butyl alcohol ND 5 ug/kg sec-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg Methyl t-butyl ether (MTBE) ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chlorotethane ND 5 ug/kg Chloroform ND 5 ug/kg Chlorotoluene ND 5 ug/kg 4-Chlorotoluene ND 5 ug/kg 2-Chlorotoluene ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg 1,2-Dibromochloromethane ND 5 ug/kg 1,2-Dibromochloromethane ND	Bromoform	ND	5	ug/kg
tert-Butyl alcohol ND 5 ug/kg sec-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg tert-Butylbenzene ND 5 ug/kg Methyl t-butyl ether (MTBE) ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Chlorotene ND 5 ug/kg Chlorotenane ND 5 ug/kg Chloroform ND 5 ug/kg Chlorotoluene ND 5 ug/kg 4-Chlorotoluene ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg 1,2-Dibromoethane (EDB) ND 5 ug/kg 1,2-Dibromoethane (EDB) ND 5 ug/kg 1,2-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene	Bromomethane	ND	5	ug/kg
sec-Butylbenzene ND 5 ug/kg n-Butylbenzene ND 5 ug/kg tert-Butylbenzene ND 5 ug/kg tert-Butylbenzene ND 5 ug/kg Methyl t-butyl ether (MTBE) ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chloroethane ND 5 ug/kg Chloroform ND 5 ug/kg Chloroform ND 5 ug/kg Chloroform ND 5 ug/kg Chlorotoluene ND 5 ug/kg Chlorotoluene ND 5 ug/kg 4-Chlorotoluene ND 5 ug/kg 4-Chlorotoluene ND 5 ug/kg 2-Chlorotoluene ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg 1,2-Dibromoethane ND 5 ug/kg 1,2-Dibromoethane ND 5 ug/kg 1,2-Dichlorobenzene ND 5 ug/kg 1,3-Dichlorobenzene ND 5 ug/kg 1,3-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene ND 5 ug/kg 1,2-Dichlorobenzene ND 5 ug/kg 1,3-Dichlorobenzene ND 5 ug/kg 1,3	2-Butanone	ND	5	ug/kg
n-Butylbenzene	tert-Butyl alcohol	ND	5	ug/kg
tert-Butylbenzene ND 5 ug/kg Methyl t-butyl ether (MTBE) ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chlorotethane ND 5 ug/kg Chloroform ND 5 ug/kg Chlorotoluene ND 5 ug/kg 4-Chlorotoluene ND 5 ug/kg 2-Chlorotoluene ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg 1,2-Dibromoethane (EDB) ND 5 ug/kg 1,2-Dibromoethane (EDB) ND 5 ug/kg 1,2-Dichlorobenzene ND 5 ug/kg 1,3-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene ND 5 ug/kg 1,2-Dichloroethane ND 5 ug/kg 1,2-Dichloroethene	sec-Butylbenzene	ND	5	ug/kg
Methyl t-butyl ether (MTBE) ND 5 ug/kg Carbon Disulfide ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chloroform ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chlorotoluene ND 5 ug/kg 4-Chlorotoluene ND 5 ug/kg 2-Chlorotoluene ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg 1,2-Dibromoethane ND 5 ug/kg 1,2-Dibromoethane (EDB) ND 5 ug/kg 1,2-Dichlorobenzene ND 5 ug/kg 1,3-Dichlorobenzene ND 5 ug/kg 1,1-Dichloroethane ND 5 ug/kg 1,2-Dichloroethane ND 5 ug/kg trans-1,2-Dichloroethene	n-Butylbenzene	ND	5	ug/kg
Carbon Disulfide ND 5 ug/kg Carbon Tetrachloride ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chloroethane ND 5 ug/kg Chloroform ND 5 ug/kg Chlorotoluene ND 5 ug/kg 4-Chlorotoluene ND 5 ug/kg 2-Chlorotoluene ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg 1,2-Dibromo-3-chloropropane ND 5 ug/kg 1,2-Dibromo-3-chloropropane ND 5 ug/kg 1,2-Dichloropropane ND 5	tert-Butylbenzene	ND	5	ug/kg
Carbon Tetrachloride ND 5 ug/kg Chlorobenzene ND 5 ug/kg Chloroethane ND 5 ug/kg Chloroform ND 5 ug/kg Chloromethane ND 5 ug/kg Chlorotoluene ND 5 ug/kg 4-Chlorotoluene ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg 1,2-Dibromo-3-chloropropane ND 5 ug/kg 1,2-Dibromo-3-chloropropane ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg	Methyl t-butyl ether (MTBE)	ND	5	ug/kg
Chlorobenzene Chloroethane Chloroethane ND Sug/kg Chloroform ND Sug/kg Chloromethane ND Sug/kg Chloromethane ND Sug/kg Chloromethane ND Sug/kg 4-Chlorotoluene ND Sug/kg 2-Chlorotoluene ND Sug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND Sug/kg Dibromochloromethane ND Sug/kg 1,2-Dibromoethane (EDB) ND Sug/kg 1,2-Dichlorobenzene ND Sug/kg 1,3-Dichlorobenzene ND Sug/kg 1,4-Dichlorobenzene ND Sug/kg 1,1-Dichloroethane ND Sug/kg 1,1-Dichloroethene ND Sug/kg 1,2-Dichloroethene ND Sug/kg 1,2-Dichloropropane ND Sug/kg 1,2-Dichloropropane ND Sug/kg 1,3-Dichloropropane ND Sug/kg 1,3-Dichloropropane ND Sug/kg 1,3-Dichloropropane ND Sug/kg 1,3-Dichloropropane ND Sug/kg	Carbon Disulfide	ND	5	ug/kg
Chloroethane Chloroform Chloroform ND S Ug/kg Chloromethane ND S Ug/kg Chloromethane ND S Ug/kg 4-Chlorotoluene ND S Ug/kg 2-Chlorotoluene ND S Ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND S Ug/kg Dibromochloromethane ND S Ug/kg 1,2-Dibromoethane (EDB) ND S Ug/kg Dibromomethane ND S Ug/kg 1,2-Dichlorobenzene ND S Ug/kg 1,3-Dichlorobenzene ND S Ug/kg 1,4-Dichlorobenzene ND S Ug/kg 1,4-Dichloroethane ND S Ug/kg 1,1-Dichloroethane ND S Ug/kg 1,1-Dichloroethane ND S Ug/kg 1,1-Dichloroethane ND S Ug/kg 1,1-Dichloroethane ND S Ug/kg 1,2-Dichloroethene ND S Ug/kg 1,1-Dichloroethene ND S Ug/kg 1,2-Dichloroethene ND S Ug/kg 1,2-Dichloropropane ND S Ug/kg 1,2-Dichloropropane ND S Ug/kg 1,2-Dichloropropane ND S Ug/kg 1,2-Dichloropropane ND S Ug/kg 1,3-Dichloropropane	Carbon Tetrachloride	ND	5	ug/kg
Chloroform Chloroform ND Sug/kg Chloromethane ND Sug/kg 4-Chlorotoluene ND Sug/kg 2-Chlorotoluene ND Sug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND Sug/kg Dibromochloromethane ND Sug/kg 1,2-Dibromoethane (EDB) ND Sug/kg Dibromomethane ND Sug/kg 1,2-Dichlorobenzene ND Sug/kg 1,3-Dichlorobenzene ND Sug/kg 1,4-Dichlorobenzene ND Sug/kg 1,1-Dichlorothane ND Sug/kg 1,2-Dichlorothane ND Sug/kg 1,3-Dichlorothane ND Sug/kg	Chlorobenzene	ND	5	ug/kg
Chloromethane A-Chlorotoluene ND S ug/kg 4-Chlorotoluene ND S ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND S ug/kg 1,2-Dibromoethane ND S ug/kg 1,2-Dibromoethane (EDB) ND S ug/kg 1,2-Dichlorobenzene ND S ug/kg 1,2-Dichlorobenzene ND S ug/kg 1,3-Dichlorobenzene ND S ug/kg 1,4-Dichlorobenzene ND S ug/kg 1,4-Dichlorothane ND S ug/kg 1,1-Dichlorothane ND S ug/kg 1,1-Dichlorothane ND S ug/kg 1,2-Dichlorothane ND S ug/kg 1,1-Dichlorothane ND S ug/kg 1,2-Dichlorothane ND S ug/kg 1,2-Dichlorothane ND S ug/kg 1,1-Dichlorothane ND S ug/kg 1,1-Dichlorothane ND S ug/kg 1,1-Dichlorothane ND S ug/kg 1,1-Dichlorothane ND S ug/kg 1,2-Dichlorothane ND S ug/kg 1,2-Dichlorothane ND S ug/kg 1,2-Dichlorothane ND S ug/kg 1,3-Dichlorothane ND S ug/kg	Chloroethane	ND	5	ug/kg
4-Chlorotoluene 2-Chlorotoluene ND 5 ug/kg 2-Chlorotoluene ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg Dibromochloromethane ND 5 ug/kg 1,2-Dibromoethane (EDB) ND 5 ug/kg Dibromomethane ND 5 ug/kg 1,2-Dichlorobenzene ND 5 ug/kg 1,3-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene ND 5 ug/kg 1,1-Dichlorobenzene ND 5 ug/kg 1,1-Dichloroethane ND 5 ug/kg 1,1-Dichloroethane ND 5 ug/kg 1,2-Dichloroethane ND 5 ug/kg 1,2-Dichloroethene ND 5 ug/kg 1,2-Dichloroethene ND 5 ug/kg 1,1-Dichloroethene ND 5 ug/kg 1,1-Dichloropropane ND 5 ug/kg	Chloroform	ND	5	ug/kg
2-Chlorotoluene ND 5 ug/kg 1,2-Dibromo-3-chloropropane (DBCP) ND 5 ug/kg Dibromochloromethane ND 5 ug/kg 1,2-Dibromoethane (EDB) ND 5 ug/kg Dibromomethane ND 5 ug/kg 1,2-Dichlorobenzene ND 5 ug/kg 1,3-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene ND 5 ug/kg 1,1-Dichloroethane ND 5 ug/kg 1,2-Dichloroethane ND 5 ug/kg trans-1,2-Dichloroethene ND 5 ug/kg 1,1-Dichloroethene ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 2,2-Dichloropropane ND 5 ug/kg 1,3-Dichloropropane ND 5 ug/kg 1,3-Dichloropropane ND 5 ug/kg 1,3-Dichloropropane ND 5 ug/kg 1,3-	Chloromethane	ND	5	ug/kg
1,2-Dibromo-3-chloropropane (DBCP) Dibromochloromethane ND 1,2-Dibromochloromethane ND 5 Ug/kg 1,2-Dibromoethane (EDB) ND 5 Ug/kg Dibromomethane ND 5 Ug/kg 1,2-Dichlorobenzene ND 5 Ug/kg 1,3-Dichlorobenzene ND 5 Ug/kg 1,4-Dichlorobenzene ND 5 Ug/kg 1,1-Dichloroethane ND 5 Ug/kg 1,2-Dichloroethane ND 5 Ug/kg 1,1-Dichloroethane ND 5 Ug/kg 1,2-Dichloroethane ND 5 Ug/kg 1,2-Dichloroethane ND 5 Ug/kg 1,1-Dichloroethene ND 5 Ug/kg 1,1-Dichloroethene ND 5 Ug/kg 1,1-Dichloroethene ND 5 Ug/kg 1,2-Dichloroethene ND 5 Ug/kg 1,2-Dichloropropane ND 5 Ug/kg 1,3-Dichloropropane ND 5 Ug/kg	4-Chlorotoluene	ND	5	ug/kg
Dibromochloromethane ND 5 ug/kg 1,2-Dibromoethane (EDB) ND 5 ug/kg Dibromomethane ND 5 ug/kg 1,2-Dichlorobenzene ND 5 ug/kg 1,3-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene ND 5 ug/kg 1,1-Dichloroethane ND 5 ug/kg 1,2-Dichloroethane ND 5 ug/kg trans-1,2-Dichloroethene ND 5 ug/kg 1,1-Dichloroethene ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 2,2-Dichloropropane ND 5 ug/kg cis-1,3-Dichloropropene ND 5 ug/kg	2-Chlorotoluene	ND	5	ug/kg
1,2-Dibromoethane (EDB) ND 5 ug/kg Dibromomethane ND 5 ug/kg 1,2-Dichlorobenzene ND 5 ug/kg 1,3-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene ND 5 ug/kg 1,1-Dichloroethane ND 5 ug/kg 1,2-Dichloroethane ND 5 ug/kg trans-1,2-Dichloroethene ND 5 ug/kg 1,1-Dichloroethene ND 5 ug/kg 1,2-Dichloroethene ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 2,2-Dichloropropane ND 5 ug/kg cis-1,3-Dichloropropene ND 5 ug/kg	1,2-Dibromo-3-chloropropane (DBCP)	ND	5	ug/kg
Dibromomethane ND 5 ug/kg 1,2-Dichlorobenzene ND 5 ug/kg 1,3-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene ND 5 ug/kg 1,1-Dichloroethane ND 5 ug/kg 1,2-Dichloroethane ND 5 ug/kg trans-1,2-Dichloroethene ND 5 ug/kg cis-1,2-Dichloroethene ND 5 ug/kg 1,1-Dichloroethene ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 2,2-Dichloropropane ND 5 ug/kg cis-1,3-Dichloropropene ND 5 ug/kg	Dibromochloromethane	ND	5	ug/kg
1,2-Dichlorobenzene ND 5 ug/kg 1,3-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene ND 5 ug/kg 1,1-Dichloroethane ND 5 ug/kg 1,2-Dichloroethane ND 5 ug/kg trans-1,2-Dichloroethene ND 5 ug/kg cis-1,2-Dichloroethene ND 5 ug/kg 1,1-Dichloroethene ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 2,2-Dichloropropane ND 5 ug/kg cis-1,3-Dichloropropene ND 5 ug/kg	1,2-Dibromoethane (EDB)	ND	5	ug/kg
1,3-Dichlorobenzene ND 5 ug/kg 1,4-Dichlorobenzene ND 5 ug/kg 1,1-Dichloroethane ND 5 ug/kg 1,2-Dichloroethane ND 5 ug/kg trans-1,2-Dichloroethene ND 5 ug/kg cis-1,2-Dichloroethene ND 5 ug/kg 1,1-Dichloroethene ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 2,2-Dichloropropane ND 5 ug/kg cis-1,3-Dichloropropene ND 5 ug/kg	Dibromomethane	ND	5	ug/kg
1,4-Dichlorobenzene ND 5 ug/kg 1,1-Dichloroethane ND 5 ug/kg 1,2-Dichloroethane ND 5 ug/kg trans-1,2-Dichloroethene ND 5 ug/kg cis-1,2-Dichloroethene ND 5 ug/kg 1,1-Dichloroethene ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 2,2-Dichloropropane ND 5 ug/kg cis-1,3-Dichloropropene ND 5 ug/kg	1,2-Dichlorobenzene	ND	5	ug/kg
1,1-Dichloroethane ND 5 ug/kg 1,2-Dichloroethane ND 5 ug/kg trans-1,2-Dichloroethene ND 5 ug/kg cis-1,2-Dichloroethene ND 5 ug/kg 1,1-Dichloroethene ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 2,2-Dichloropropane ND 5 ug/kg cis-1,3-Dichloropropene ND 5 ug/kg	1,3-Dichlorobenzene	ND	5	ug/kg
1,2-Dichloroethane ND 5 ug/kg trans-1,2-Dichloroethene ND 5 ug/kg cis-1,2-Dichloroethene ND 5 ug/kg 1,1-Dichloroethene ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 2,2-Dichloropropane ND 5 ug/kg cis-1,3-Dichloropropene ND 5 ug/kg	1,4-Dichlorobenzene	ND	5	ug/kg
trans-1,2-Dichloroethene ND 5 ug/kg cis-1,2-Dichloroethene ND 5 ug/kg 1,1-Dichloroethene ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 2,2-Dichloropropane ND 5 ug/kg cis-1,3-Dichloropropene ND 5 ug/kg	1,1-Dichloroethane	ND	5	ug/kg
cis-1,2-Dichloroethene ND 5 ug/kg 1,1-Dichloroethene ND 5 ug/kg 1,2-Dichloropropane ND 5 ug/kg 2,2-Dichloropropane ND 5 ug/kg cis-1,3-Dichloropropene ND 5 ug/kg	1,2-Dichloroethane	ND	5	ug/kg
1,1-DichloroetheneND5ug/kg1,2-DichloropropaneND5ug/kg2,2-DichloropropaneND5ug/kgcis-1,3-DichloropropeneND5ug/kg	trans-1,2-Dichloroethene	ND	5	ug/kg
1,2-Dichloropropane ND 5 ug/kg 2,2-Dichloropropane ND 5 ug/kg cis-1,3-Dichloropropene ND 5 ug/kg	cis-1,2-Dichloroethene	ND	5	ug/kg
2,2-Dichloropropane ND 5 ug/kg cis-1,3-Dichloropropene ND 5 ug/kg	1,1-Dichloroethene	ND	5	ug/kg
cis-1,3-Dichloropropene ND 5 ug/kg	1,2-Dichloropropane	ND	5	ug/kg
J 3 3	2,2-Dichloropropane	ND	5	ug/kg
trans-1,3-Dichloropropene ND 5 ug/kg	cis-1,3-Dichloropropene	ND	5	ug/kg
	trans-1,3-Dichloropropene	ND	5	ug/kg

Prepared & Analyzed: 10/28/21

Page 94 of 104

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1J1359 - EPA 5035 (C	Continued)									
Blank (B1J1359-BLK1)	onemacaj				Prepared 8	& Analyzed: 1	0/28/21			
1,1-Dichloropropene	ND		5	ug/kg	r repared (x Analyzea. I	0/20/21			
1,3-Dichloropropene (cis + trans)	ND		5	ug/kg ug/kg						
Diethyl ether	ND		5	ug/kg						
1,4-Dioxane	ND		100	ug/kg						
Ethylbenzene	ND		5	ug/kg						
Hexachlorobutadiene	ND		5	ug/kg						
2-Hexanone	ND		5	ug/kg						
Isopropylbenzene	ND		5	ug/kg						
p-Isopropyltoluene	ND		5	ug/kg						
Methylene Chloride	ND		20	ug/kg						
4-Methyl-2-pentanone	ND		5	ug/kg						
Naphthalene	ND		5	ug/kg						
n-Propylbenzene	ND		5	ug/kg						
Styrene	ND		5	ug/kg						
1,1,1,2-Tetrachloroethane	ND		5	ug/kg ug/kg						
Tetrachloroethene	ND		5	ug/kg ug/kg						
Tetrahydrofuran	ND		5	ug/kg ug/kg						
Toluene	ND		5	ug/kg						
1,2,4-Trichlorobenzene	ND		5	ug/kg ug/kg						
1,2,3-Trichlorobenzene	ND		5	ug/kg ug/kg						
1,1,2-Trichloroethane	ND		5	ug/kg ug/kg						
1,1,1-Trichloroethane	ND		5	ug/kg ug/kg						
Trichloroethene	ND		5	ug/kg ug/kg						
1,2,3-Trichloropropane	ND		5	ug/kg ug/kg						
1,3,5-Trimethylbenzene	ND		5	ug/kg						
1,2,4-Trimethylbenzene	ND		5	ug/kg						
Vinyl Chloride	ND		5	ug/kg ug/kg						
o-Xylene	ND		5	ug/kg ug/kg						
m&p-Xylene	ND		10	ug/kg ug/kg						
Total xylenes	ND		5	ug/kg ug/kg						
1,1,2,2-Tetrachloroethane	ND		5	ug/kg ug/kg						
tert-Amyl methyl ether	ND		5	ug/kg ug/kg						
1,3-Dichloropropane	ND		5	ug/kg ug/kg						
Ethyl tert-butyl ether	ND		5	ug/kg ug/kg						
Diisopropyl ether	ND ND		5	ug/kg ug/kg						
Trichlorofluoromethane	ND ND		5	ug/kg ug/kg						
Dichlorodifluoromethane	ND ND		5	ug/kg ug/kg						
Surrogate: 4-Bromofluorobenzene			51.4	ug/kg ug/kg	50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4			51.7 51.6	ug/kg ug/kg	50.0		103	70-130		
Surrogate: Toluene-d8			50.0	ug/kg ug/kg	50.0		99.9	70-130		

Volatile Organic Compounds (Continued)

		. .	Reporting	,	Spike	Source	A	%REC		RPI
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Lim
Batch: B1J1359 - EPA 5035 (Co	ontinued)									
LCS (B1J1359-BS1)	-				Prepared 8	& Analyzed: 1	0/28/21			
Acetone	54			ug/kg	50.0		108	60-140		
Benzene	48			ug/kg	50.0		96.3	70-130		
Bromobenzene	45			ug/kg	50.0		89.9	70-130		
Bromochloromethane	44			ug/kg	50.0		87.8	70-130		
Bromodichloromethane	51			ug/kg	50.0		101	70-130		
Bromoform	46			ug/kg	50.0		92.8	70-130		
Bromomethane	54			ug/kg	50.0		108	60-140		
2-Butanone	51			ug/kg	50.0		102	60-140		
tert-Butyl alcohol	58			ug/kg	50.0		115	70-130		
sec-Butylbenzene	47			ug/kg	50.0		93.7	70-130		
n-Butylbenzene	54			ug/kg	50.0		109	70-130		
tert-Butylbenzene	49			ug/kg	50.0		98.0	70-130		
Methyl t-butyl ether (MTBE)	43			ug/kg	50.0		86.9	70-130		
Carbon Disulfide	47			ug/kg	50.0		94.9	50-150		
Carbon Tetrachloride	48			ug/kg	50.0		95.5	70-130		
Chlorobenzene	50			ug/kg	50.0		100	70-130		
Chloroethane	56			ug/kg	50.0		111	60-140		
Chloroform	47			ug/kg	50.0		93.8	70-130		
Chloromethane	59			ug/kg	50.0		117	60-140		
4-Chlorotoluene	53			ug/kg	50.0		106	70-130		
2-Chlorotoluene	50			ug/kg	50.0		100	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	47			ug/kg	50.0		94.8	70-130		
Dibromochloromethane	46			ug/kg	50.0		92.4	70-130		
1,2-Dibromoethane (EDB)	47			ug/kg	50.0		93.2	70-130		
Dibromomethane	48			ug/kg	50.0		95.7	60-140		
1,2-Dichlorobenzene	47			ug/kg	50.0		94.4	70-130		
1,3-Dichlorobenzene	48			ug/kg	50.0		96.6	70-130		
1,4-Dichlorobenzene	49			ug/kg	50.0		97.9	70-130		
1,1-Dichloroethane	49			ug/kg	50.0		98.7	70-130		
1,2-Dichloroethane	49			ug/kg	50.0		98.2	70-130		
trans-1,2-Dichloroethene	47			ug/kg	50.0		93.1	70-130		
cis-1,2-Dichloroethene	48			ug/kg	50.0		95.5	70-130		
1,1-Dichloroethene	49			ug/kg	50.0		97.1	70-130		
1,2-Dichloropropane	49			ug/kg	50.0		97.4	70-130		
2,2-Dichloropropane	54			ug/kg	50.0		107	70-130		
cis-1,3-Dichloropropene	51			ug/kg	50.0		102	70-130		
trans-1,3-Dichloropropene	52			ug/kg	50.0		103	70-130		
1,1-Dichloropropene	48			ug/kg	50.0		95.3	70-130		
Diethyl ether	46			ug/kg	50.0		92.6	60-140		
1,4-Dioxane	205			ug/kg	250		82.1	0-200		
Ethylbenzene	50			ug/kg	50.0		100	70-130		
Hexachlorobutadiene	44			ug/kg	50.0		88.4	70-130		
2-Hexanone	48			ug/kg	50.0		96.4	70-130		
Isopropylbenzene	51			ug/kg	50.0		101	70-130		
p-Isopropyltoluene	50			ug/kg	50.0		101	70-130		
Methylene Chloride	58			ug/kg	50.0		117	60-140		
4-Methyl-2-pentanone	44			ug/kg	50.0		88.6	70-130		
Naphthalene	46			ug/kg	50.0		92.9	70-130		
n-Propylbenzene	52			ug/kg	50.0		105	70-130		
Styrene	48			ug/kg	50.0		96.4	70-130		
1,1,1,2-Tetrachloroethane	47			ug/kg	50.0		94.4	70-130		
Tetrachloroethene	45			ug/kg	50.0		90.5	70-130		
Tetrahydrofuran	45			ug/kg	50.0		91.0	50-150		
Toluene	48			ug/kg	50.0		96.5	70-130		
1,2,4-Trichlorobenzene	48			ug/kg	50.0		96.4	70-130		
1,2,3-Trichlorobenzene	45			ug/kg	50.0		90.8	70-130		
1,1,2-Trichloroethane	48			ug/kg	50.0		96.4	70-130		

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B1J1359 - EPA 5035 (Co	ntinued)									
LCS (B1J1359-BS1)	nemacaj				Prenared	& Analyzed: 1	N/28/21			
1,1,1-Trichloroethane	48			ualka	50.0	x Analyzeu. 1	96.9	70-130		
Trichloroethene	47			ug/kg ug/kg	50.0		93.1	70-130		
1,2,3-Trichloropropane	46			ug/kg ug/kg	50.0		92.7	70-130		
1,3,5-Trimethylbenzene	50				50.0			70-130		
1,2,4-Trimethylbenzene	50			ug/kg	50.0		101 100	70-130		
Vinyl Chloride	53			ug/kg	50.0		107	60-140		
, , , , , , , , , , , , , , , , , , ,	49			ug/kg						
o-Xylene	49 97			ug/kg	50.0		98.0	70-130 70-130		
m&p-Xylene				ug/kg	100		97.3			
1,1,2,2-Tetrachloroethane	51			ug/kg	50.0		101	70-130		
tert-Amyl methyl ether	48			ug/kg	50.0		96.1	70-130		
1,3-Dichloropropane	47			ug/kg	50.0		95.0	70-130		
Ethyl tert-butyl ether	46			ug/kg	50.0		92.9	70-130		
Trichlorofluoromethane	49			ug/kg	50.0		98.0	70-130		
Dichlorodifluoromethane	59			ug/kg	50.0		118	60-140		
Surrogate: 4-Bromofluorobenzene			51.0	ug/kg	50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4			48.1	ug/kg	50.0		96.1	70-130		
Surrogate: Toluene-d8			49.0	ug/kg	50.0		98.0	70-130		
LCS Dup (B1J1359-BSD1)					Prepared	& Analyzed: 1	0/28/21			
Acetone	55			ug/kg	50.0		110	60-140	2.40	30
Benzene	50			ug/kg	50.0		99.0	70-130	2.76	20
Bromobenzene	46			ug/kg ug/kg	50.0		92.8	70-130	3.24	20
Bromochloromethane	47			ug/kg ug/kg	50.0		93.6	70-130	6.46	20
Bromodichloromethane	51			ug/kg ug/kg	50.0		102	70-130	0.454	20
Bromoform	47			ug/kg ug/kg	50.0		94.5	70-130	1.79	20
Bromomethane	54			ug/kg ug/kg	50.0		109	60-140	0.608	30
2-Butanone	51			ug/kg ug/kg	50.0		102	60-140	0.510	30
tert-Butyl alcohol	57			ug/kg ug/kg	50.0		113	70-130	1.51	20
sec-Butylbenzene	46				50.0		92.9	70-130	0.836	20
n-Butylbenzene	55			ug/kg	50.0		110	70-130	1.01	20
tert-Butylbenzene	50			ug/kg	50.0		99.8	70-130	1.86	20
<i>'</i>	45			ug/kg						
Methyl t-butyl ether (MTBE) Carbon Disulfide				ug/kg	50.0		89.2	70-130	2.66	20
	48			ug/kg	50.0		95.4	50-150	0.610	40
Carbon Tetrachloride	48			ug/kg	50.0		95.7	70-130	0.293	20
Chlorobenzene	51			ug/kg	50.0		101	70-130	0.893	20
Chloroethane	56			ug/kg	50.0		111	60-140	0.234	30
Chloroform	48			ug/kg	50.0		95.3	70-130	1.59	20
Chloromethane	59			ug/kg	50.0		118	60-140	1.14	30
4-Chlorotoluene	53			ug/kg	50.0		106	70-130	0.302	20
2-Chlorotoluene	51			ug/kg	50.0		102	70-130	2.04	20
1,2-Dibromo-3-chloropropane (DBCP)	50			ug/kg	50.0		99.3	70-130	4.68	20
Dibromochloromethane	48			ug/kg	50.0		95.4	70-130	3.13	20
1,2-Dibromoethane (EDB)	48			ug/kg	50.0		95.4	70-130	2.35	20
Dibromomethane	49			ug/kg	50.0		97.3	60-140	1.74	30
1,2-Dichlorobenzene	49			ug/kg	50.0		97.8	70-130	3.54	20
1,3-Dichlorobenzene	50			ug/kg	50.0		99.3	70-130	2.72	20
1,4-Dichlorobenzene	51			ug/kg	50.0		101	70-130	3.47	20
1,1-Dichloroethane	49			ug/kg	50.0		97.0	70-130	1.74	20
1,2-Dichloroethane	50			ug/kg	50.0		99.2	70-130	0.973	20
trans-1,2-Dichloroethene	46			ug/kg	50.0		92.8	70-130	0.258	20
cis-1,2-Dichloroethene	48			ug/kg	50.0		95.4	70-130	0.0629	20
1,1-Dichloroethene	50			ug/kg	50.0		99.9	70-130	2.82	20
1,2-Dichloropropane	51			ug/kg	50.0		102	70-130	5.01	20
2,2-Dichloropropane	52			ug/kg	50.0		103	70-130	3.44	20
cis-1,3-Dichloropropene	51			ug/kg	50.0		103	70-130	0.234	20
trans-1,3-Dichloropropene	55			ug/kg	50.0		109	70-130	5.70	20
1,1-Dichloropropene	48			ug/kg	50.0		96.0	70-130	0.690	20

Page 97 of 104

Volatile Organic Compounds (Continued)

Analyte	Reporti				Spike	Source		%REC		RPD
	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B1J1359 - EPA 5035 (Continued)									
LCS Dup (B1J1359-BSD1)	Prepared & Analyzed: 10/28/21									
Diethyl ether	47			ug/kg	50.0	•	94.8	60-140	2.37	30
1,4-Dioxane	238			ug/kg	250		95.3	0-200	14.9	50
Ethylbenzene	50			ug/kg	50.0		99.9	70-130	0.220	20
Hexachlorobutadiene	46			ug/kg	50.0		92.9	70-130	4.94	20
2-Hexanone	48			ug/kg	50.0		97.0	70-130	0.558	20
Isopropylbenzene	50			ug/kg	50.0		100	70-130	0.635	20
p-Isopropyltoluene	51			ug/kg	50.0		101	70-130	0.654	20
Methylene Chloride	58			ug/kg	50.0		115	60-140	1.02	30
4-Methyl-2-pentanone	46			ug/kg	50.0		91.9	70-130	3.63	20
Naphthalene	49			ug/kg	50.0		98.4	70-130	5.67	20
n-Propylbenzene	53			ug/kg	50.0		106	70-130	1.25	20
Styrene	49			ug/kg	50.0		97.4	70-130	0.949	20
1,1,1,2-Tetrachloroethane	48			ug/kg	50.0		96.3	70-130	1.95	20
Tetrachloroethene	47			ug/kg	50.0		93.4	70-130	3.11	20
Tetrahydrofuran	46			ug/kg	50.0		92.7	50-150	1.92	40
Toluene	49			ug/kg	50.0		97.7	70-130	1.32	20
1,2,4-Trichlorobenzene	50			ug/kg	50.0		100	70-130	4.01	20
1,2,3-Trichlorobenzene	48			ug/kg	50.0		95.6	70-130	5.22	20
1,1,2-Trichloroethane	49			ug/kg	50.0		97.5	70-130	1.13	20
1,1,1-Trichloroethane	49			ug/kg	50.0		98.3	70-130	1.48	20
Trichloroethene	46			ug/kg	50.0		92.3	70-130	0.863	20
1,2,3-Trichloropropane	48			ug/kg	50.0		95.2	70-130	2.70	20
1,3,5-Trimethylbenzene	50			ug/kg	50.0		99.4	70-130	1.36	20
1,2,4-Trimethylbenzene	50			ug/kg	50.0		100	70-130	0.220	20
Vinyl Chloride	53			ug/kg	50.0		107	60-140	0.0375	30
o-Xylene	49			ug/kg	50.0		97.8	70-130	0.143	20
m&p-Xylene	98			ug/kg	100		97.8	70-130	0.523	20
1,1,2,2-Tetrachloroethane	52			ug/kg	50.0		103	70-130	1.76	20
tert-Amyl methyl ether	46			ug/kg	50.0		92.2	70-130	4.14	20
1,3-Dichloropropane	49			ug/kg	50.0		98.7	70-130	3.84	20
Ethyl tert-butyl ether	47			ug/kg	50.0		93.7	70-130	0.857	20
Trichlorofluoromethane	49			ug/kg	50.0		97.8	70-130	0.123	20
Dichlorodifluoromethane	59			ug/kg	50.0		118	60-140	0.186	3
Surrogate: 4-Bromofluorobenzene			50.8	ug/kg	50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4			<i>50.7</i>	ug/kg	50.0		101	70-130		
Surrogate: Toluene-d8			50.0	ug/kg	50.0		100	70-130		

Semivolatile organic compounds

Applieto	D · · lu	Out	Reporting	l leit-	Spike	Source	0/ 050	%REC	DDD	RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limi
Batch: B1J1209 - EPA 3546										
Blank (B1J1209-BLK1)				Pr	epared: 10/2	6/21 Analyze	ed: 10/28/21			
2-Methylnaphthalene	ND		130	ug/kg						
Acenaphthene	ND		130	ug/kg						
Acenaphthylene	ND		130	ug/kg						
Anthracene	ND		130	ug/kg						
Benzo(a)anthracene	ND		130	ug/kg						
Benzo(a)pyrene	ND		130	ug/kg						
Benzo(b)fluoranthene	ND		130	ug/kg						
Benzo(g,h,i)perylene	ND		130	ug/kg						
Benzo(k)fluoranthene	ND		130	ug/kg						
Chrysene	ND		130	ug/kg						
Dibenz(a,h)anthracene	ND		130	ug/kg						
Dibenzofuran	ND		130	ug/kg						
Fluoranthene	ND		130	ug/kg						
Fluorene	ND		130	ug/kg						
Indeno(1,2,3-cd)pyrene	ND		130	ug/kg						
Naphthalene	ND		130	ug/kg						
Phenanthrene	ND		130	ug/kg						
Pyrene	ND		130	ug/kg						
Surrogate: Nitrobenzene-d5			<i>2480</i>	ug/kg	3330		74.3	30-126		
Surrogate: p-Terphenyl-d14			<i>3760</i>	ug/kg ug/kg	3330		113	<i>47-130</i>		
Surrogate: 2-Fluorobiphenyl			2660	ug/kg ug/kg	3330		79.9	34-130		
LCS (B1J1209-BS1)				Pr	epared: 10/2	6/21 Analyze	ed: 10/28/21			
2-Methylnaphthalene	2680		130	ug/kg	3330		80.4	40-140		
Acenaphthene	2530		130	ug/kg	3330		76.0	40-140		
Acenaphthylene	2670		130	ug/kg	3330		80.2	40-140		
Anthracene	2770		130	ug/kg	3330		83.1	40-140		
Benzo(a)anthracene	2750		130	ug/kg	3330		82.4	40-140		
Benzo(a)pyrene	3060		130	ug/kg	3330		91.8	40-140		
Benzo(b)fluoranthene	3160		130	ug/kg	3330		94.8	40-140		
Benzo(g,h,i)perylene	2710		130	ug/kg	3330		81.4	40-140		
Benzo(k)fluoranthene	3260		130	ug/kg	3330		97.9	40-140		
Chrysene	3010		130	ug/kg	3330		90.2	40-140		
Dibenz(a,h)anthracene	2900		130	ug/kg	3330		86.9	40-140		
Dibenzofuran	2700		130	ug/kg	3330		80.9	40-140		
Fluoranthene	2890		130	ug/kg	3330		86.8	40-140		
Fluorene	2990		130	ug/kg	3330		89.8	40-140		
Indeno(1,2,3-cd)pyrene	2870		130	ug/kg	3330		86.2	40-140		
Naphthalene	2520		130	ug/kg	3330		75.7	40-140		
Phenanthrene	2850		130	ug/kg	3330		85.6	40-140		
Pyrene	3160		130	ug/kg	3330		94.9	40-140		
Surrogate: Nitrobenzene-d5			2300	ug/kg	3330		68.9	<i>30-126</i>		
Surrogate: p-Terphenyl-d14			3470	ug/kg	3330		104	47-130		
Surrogate: 2-Fluorobiphenyl			2670	ug/kg	3330		80.1	<i>34-130</i>		

Semivolatile organic compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1J1209 - EPA 3546 (Continued)									
LCS Dup (B1J1209-BSD1)				Pro	epared: 10/2	26/21 Analyze	ed: 10/28/21			
2-Methylnaphthalene	2390		130	ug/kg	3330		71.6	40-140	11.7	30
Acenaphthene	2230		130	ug/kg	3330		66.8	40-140	12.9	30
Acenaphthylene	2390		130	ug/kg	3330		71.8	40-140	11.0	30
Anthracene	2490		130	ug/kg	3330		74.7	40-140	10.7	30
Benzo(a)anthracene	2470		130	ug/kg	3330		74.1	40-140	10.5	30
Benzo(a)pyrene	2770		130	ug/kg	3330		83.2	40-140	9.83	30
Benzo(b)fluoranthene	2840		130	ug/kg	3330		85.3	40-140	10.6	30
Benzo(g,h,i)perylene	2500		130	ug/kg	3330		75.0	40-140	8.21	30
Benzo(k)fluoranthene	3040		130	ug/kg	3330		91.2	40-140	7.09	30
Chrysene	2670		130	ug/kg	3330		80.2	40-140	11.8	30
Dibenz(a,h)anthracene	2640		130	ug/kg	3330		79.2	40-140	9.30	30
Dibenzofuran	2430		130	ug/kg	3330		73.0	40-140	10.3	30
Fluoranthene	2610		130	ug/kg	3330		78.2	40-140	10.5	30
Fluorene	2670		130	ug/kg	3330		80.1	40-140	11.4	30
Indeno(1,2,3-cd)pyrene	2640		130	ug/kg	3330		79.2	40-140	8.42	30
Naphthalene	2260		130	ug/kg	3330		67.7	40-140	11.1	30
Phenanthrene	2600		130	ug/kg	3330		77.9	40-140	9.39	30
Pyrene	2810		130	ug/kg	3330		84.4	40-140	11.7	30
Surrogate: Nitrobenzene-d5			2100	ug/kg	3330		62.9	30-126		
Surrogate: p-Terphenyl-d14			3110	ug/kg	3330		93.2	<i>47-130</i>		
Surrogate: 2-Fluorobiphenyl			2350	ug/kg	3330		70.5	<i>34-130</i>		

Polychlorinated Biphenyls (PCBs)

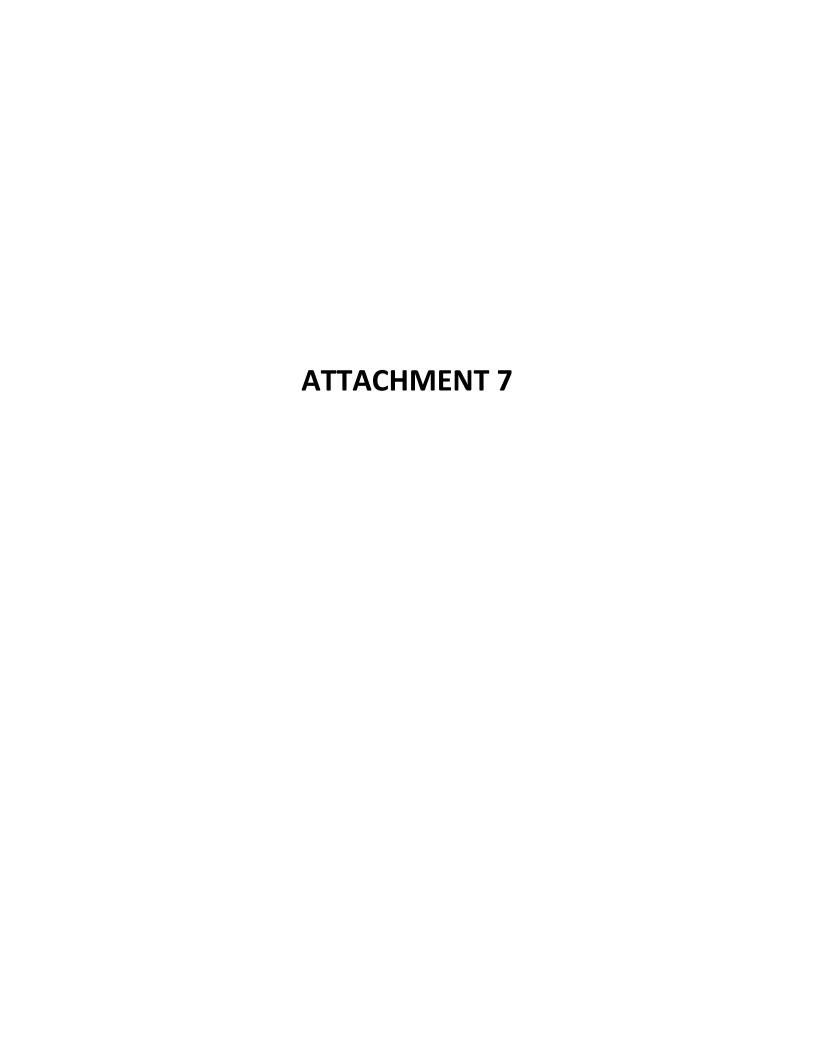
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1J1248 - EPA 3546										
Blank (B1J1248-BLK1)				Pr	epared: 10/2	6/21 Analyze	d: 10/28/21			
Aroclor-1016	ND		66	ug/kg						
Aroclor-1221	ND		66	ug/kg						
Aroclor-1232	ND		66	ug/kg						
Aroclor-1242	ND		66	ug/kg						
Aroclor-1248	ND		66	ug/kg						
Aroclor-1254	ND		66	ug/kg						
Aroclor-1260	ND		66	ug/kg						
Aroclor-1262	ND		66	ug/kg						
Aroclor-1268	ND		66	ug/kg						
PCBs (Total)	ND		66	ug/kg						
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			11.6	ug/kg	13.3		87.4	36.2-130		
Surrogate: Decachlorobiphenyl (DCBP)			11.0	ug/kg	13.3		82.7	43.3-130		
LCS (B1J1248-BS1)				Pr	epared: 10/2	6/21 Analyze	d: 10/28/21			
Aroclor-1016	169		66	ug/kg	167		102	58.2-125		
Aroclor-1260	172		66	ug/kg	167		103	65.5-130		
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			13.0	ug/kg	13.3		97.5	36.2-130		
Surrogate: Decachlorobiphenyl (DCBP)			12.5	ug/kg	13.3		93.5	43.3-130		
LCS Dup (B1J1248-BSD1)				Pr	epared: 10/2	6/21 Analyze	d: 10/28/21			
Aroclor-1016	160		66	ug/kg	167		96.0	58.2-125	5.69	20
Aroclor-1260	175		66	ug/kg	167		105	65.5-130	1.23	20
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			12.5	ug/kg	13.3		93.7	36.2-130		
Surrogate: Decachlorobiphenyl (DCBP)			13.0	ug/kg	13.3		97.7	43.3-130		

			-	Control						
Total Petroleum Hydrocarbons										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1J1136 - EPA 3546					Durananada	2 A l l - 1	0/25/24			
Blank (B1J1136-BLK1) Total Petroleum Hydrocarbons	ND		27	mg/kg	Prepared (& Analyzed: 1	0/25/21			
Surrogate: Chlorooctadecane			6.68	mg/kg	<i>8.33</i>		80.2	56.5-114		
LCS (B1J1136-BS1)					Prepared 8	& Analyzed: 1	0/25/21			
Total Petroleum Hydrocarbons	646		27	mg/kg	667		96.9	44.7-125		
Surrogate: Chlorooctadecane			6.89	mg/kg	8.33		82.7	56.5-114		
LCS Dup (B1J1136-BSD1)					Prepared 8	& Analyzed: 1	0/25/21			
Total Petroleum Hydrocarbons	703		27	mg/kg	667		105	44.7-125	8.46	200
Surrogate: Chlorooctadecane			7.44	mg/kg	8.33		89.3	56.5-114		

Notes and Definitions

<u>Item</u>	<u>Definition</u>
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

New England Testing Laboratory 59 Greenhill Street


West Warwick, RI 02893

1-888-863-8522

Chain of Custody Record

Project No. S3969	110 Hia	alh	50	on Aulo Counal Falk	21									Т,	ests	**		- H H.
Client: SP	GEE	الام	M,	nmental, inc.	1	/latri	¥			-	Γ				5313	, 		
Report To:	sage a	Sa	ge	-enviro.com	 				Preservative		9	र् व ू	78	3	,			
Invoice To:	apa) <u>Sa</u>	ge	-enviro. com				No. of	esen	8100	8260	Net	80	9 2 2				
Date	Time	Comp	Grab	Sample I.D.	Aqueous	Soil	Other	Containers	<u>~</u>	TPHS	VOCS	PP15 Metals	3CB,	PAHS				
10/21/21	0905		-	SE-101 (0-2) mw	Q	$\frac{S}{X}$	9	1802 5 4005	MeoH	X	X	V	X	7				
	0910	\vdash	1	SE-101 (2-5) MW		ī		132 Stir be	1460	1	7	- 		-}-		-		
 	1015	+	1	SE-102 (0-2) mus				1	·· VIVO	\dashv	+	\dashv	++	+		-		
	1035		+	\$E-107 (5-10) W		$I \Box$				11	- -	11	+	-1-1				
 	1125	-	\mathcal{H}	SE-103 (0-2) Will		\perp				\neg	71	-11	- -	+				
	1200	┼┼	+	SE- 103 (2-5) MW	•	1					\Box	\dashv	11	71			_	
 	1215	-		SE-104 (0-2)						\Box	71	7	71	\top			_	
	1315	+	- -	SE-105 (0-2)						77	7	\Box	11	71			\dashv	
	1330	\vdash	+	SE-106 (0-2) •••		\bot					TT	T	11	T		$\neg +$		
	1400	 	H	SE-107 (0-2) ••••		\Box	_					T	11	1			_	
44	1430	 	4	SE-108 (0-2) • • •			_	- 3 1,	-1		\prod	T	T					
4	1500	1	J	SE-109 (0-2)	7				01			\coprod	T	T			_	
			~	SE-110 (0-2)		V	-	-V	4	Y	U	4	V	V			_	
Sampled By:		Date/Ti	me	Received By:	Date/T	ime							\Box		-			
n		10/22	12	l		ا ````	abo	oratory Remark		Spec								
Jours	lyna	13:3	- 1						Ì							E(-	
Relinquished E	3v(Date/Ti	me	Received By:	Date/T	ima		,		Sti	7	or	5 (۸ .	Fro	170	LY O	Λ·-
		10125	- 1		Ja				· ·								-, 0	'1
JAT) V	\sim $ $	11:15	. 1		700	A			φ	10/	21/	21	'a) [6	00		
**Netlab Subcr	ontracts the	follow	/inc	tosts: Radialaria da D	<i>[[</i> [7 17	em	p. Received: ()	rice									j
Bromate, Brom	nide, Sieve.	Salme	one	tests: Radiologicals, Radon, TOC ella, Carbamates	z, As	best	os,	UCMRs, Perch	lorate,						<u>.</u>			
<u> </u>	1	. 1	-							urna	roun	<u>d Ti</u> m	ne [B	usin	ess [Davs/	5 Day	(s)
		16 6	ク	6611 1 W	25													-/-

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 1J25020 Client Project: S3969 - 10 Higginson Ave, Central Falls, RI

Report Date: 01-November-2021

Prepared for:

Cathy Racine SAGE Environmental 172 Armistice Blvd Pawtucket, RI 02860

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

NETLAB Case Number: 1J25020

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 10/25/21. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 1J25020. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
1J25020-01	SE-101 (MW)	Water	10/22/2021	10/25/2021
1J25020-02	SE-102 (MW)	Water	10/22/2021	10/25/2021
1J25020-03	SE-103 (MW)	Water	10/22/2021	10/25/2021

NETLAB Case Number: 1J25020

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

SE-101 (MW) (Lab Number: 1J25020-01)

Analysis Method

Volatile Organic Compounds EPA 8260C

SE-102 (MW) (Lab Number: 1J25020-02)

AnalysisMethodVolatile Organic CompoundsEPA 8260C

SE-103 (MW) (Lab Number: 1J25020-03)

Analysis Method

Volatile Organic Compounds EPA 8260C

Method References

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

NETLAB Case Number: 1J25020

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: Volatile Organic Compounds

Sample: SE-101 (MW) Lab Number: 1J25020-01 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Acetone	ND	5	ug/l	10/27/21	10/27/21
Benzene	ND	1	ug/l	10/27/21	10/27/21
Bromobenzene	ND	1	ug/l	10/27/21	10/27/21
Bromochloromethane	ND	1	ug/l	10/27/21	10/27/21
Bromodichloromethane	ND	1	ug/l	10/27/21	10/27/21
Bromoform	ND	1	ug/l	10/27/21	10/27/21
Bromomethane	ND	1	ug/l	10/27/21	10/27/21
2-Butanone	ND	5	ug/l	10/27/21	10/27/21
tert-Butyl alcohol	ND	5	ug/l	10/27/21	10/27/21
sec-Butylbenzene	ND	1	ug/l	10/27/21	10/27/21
n-Butylbenzene	ND	1	ug/l	10/27/21	10/27/21
tert-Butylbenzene	ND	1	ug/l	10/27/21	10/27/21
Methyl t-butyl ether (MTBE)	ND	1	ug/l	10/27/21	10/27/21
Carbon Disulfide	ND	1	ug/l	10/27/21	10/27/21
Carbon Tetrachloride	ND	1	ug/l	10/27/21	10/27/21
Chlorobenzene	ND	1	ug/l	10/27/21	10/27/21
Chloroethane	ND	1	ug/l	10/27/21	10/27/21
Chloroform	ND	1	ug/l	10/27/21	10/27/21
Chloromethane	ND	1	ug/l	10/27/21	10/27/21
4-Chlorotoluene	ND	1	ug/l	10/27/21	10/27/21
2-Chlorotoluene	ND	1	ug/l	10/27/21	10/27/21
.,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	10/27/21	10/27/21
Dibromochloromethane	ND	1	ug/l	10/27/21	10/27/21
L,2-Dibromoethane (EDB)	ND	1	ug/l	10/27/21	10/27/21
Dibromomethane	ND	1	ug/l	10/27/21	10/27/21
1,2-Dichlorobenzene	ND	1	ug/l	10/27/21	10/27/21
1,3-Dichlorobenzene	ND	1	ug/l	10/27/21	10/27/21
1,4-Dichlorobenzene	ND	1	ug/l	10/27/21	10/27/21
1,1-Dichloroethane	ND	1	ug/l	10/27/21	10/27/21
1,2-Dichloroethane	ND	1	ug/l	10/27/21	10/27/21
trans-1,2-Dichloroethene	ND	1	ug/l	10/27/21	10/27/21
cis-1,2-Dichloroethene	ND	1	ug/l	10/27/21	10/27/21
1,1-Dichloroethene	ND	1	ug/l	10/27/21	10/27/21
1,2-Dichloropropane	ND	1	ug/l	10/27/21	10/27/21
2,2-Dichloropropane	ND	1	ug/l	10/27/21	10/27/21
cis-1,3-Dichloropropene	ND	1	ug/l	10/27/21	10/27/21
trans-1,3-Dichloropropene	ND	1	ug/l	10/27/21	10/27/21
1,1-Dichloropropene	ND	1	ug/l	10/27/21	10/27/21
1,3-Dichloropropene (cis + trans)	ND	2	ug/l	10/27/21	10/27/21
Diethyl ether	ND	5	ug/l	10/27/21	10/27/21
.,4-Dioxane	ND	500	ug/l	10/27/21	10/27/21
Ethylbenzene	ND	1	ug/l	10/27/21	10/27/21
Hexachlorobutadiene	ND	1	ug/l	10/27/21	10/27/21
2-Hexanone	ND	5	ug/l	10/27/21	10/27/21
Isopropylbenzene	ND	1	ug/l	10/27/21	10/27/21
p-Isopropyltoluene	ND	1	ug/l	10/27/21	10/27/21
Methylene Chloride	ND	1	ug/l	10/27/21	10/27/21
4-Methyl-2-pentanone	ND	5	ug/l	10/27/21	10/27/21 P

Results: Volatile Organic Compounds (Continued)

Sample: SE-101 (MW) (Continued)

Lab Number: 1J25020-01 (Water)

Analyte	Result	Reporting Qual Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	10/27/21	10/27/21
n-Propylbenzene	ND	1	ug/l	10/27/21	10/27/21
Styrene	ND	1	ug/l	10/27/21	10/27/21
1,1,1,2-Tetrachloroethane	ND	1	ug/l	10/27/21	10/27/21
Tetrachloroethene	ND	1	ug/l	10/27/21	10/27/21
Tetrahydrofuran	ND	5	ug/l	10/27/21	10/27/21
Toluene	ND	1	ug/l	10/27/21	10/27/21
1,2,4-Trichlorobenzene	ND	1	ug/l	10/27/21	10/27/21
1,2,3-Trichlorobenzene	ND	1	ug/l	10/27/21	10/27/21
1,1,2-Trichloroethane	ND	1	ug/l	10/27/21	10/27/21
1,1,1-Trichloroethane	ND	1	ug/l	10/27/21	10/27/21
Trichloroethene	ND	1	ug/l	10/27/21	10/27/21
1,2,3-Trichloropropane	ND	1	ug/l	10/27/21	10/27/21
1,3,5-Trimethylbenzene	ND	1	ug/l	10/27/21	10/27/21
1,2,4-Trimethylbenzene	ND	1	ug/l	10/27/21	10/27/21
Vinyl Chloride	ND	1	ug/l	10/27/21	10/27/21
o-Xylene	ND	1	ug/l	10/27/21	10/27/21
m&p-Xylene	ND	2	ug/l	10/27/21	10/27/21
Total xylenes	ND	1	ug/l	10/27/21	10/27/21
1,1,2,2-Tetrachloroethane	ND	1	ug/l	10/27/21	10/27/21
tert-Amyl methyl ether	ND	1	ug/l	10/27/21	10/27/21
1,3-Dichloropropane	ND	1	ug/l	10/27/21	10/27/21
Ethyl tert-butyl ether	ND	1	ug/l	10/27/21	10/27/21
Diisopropyl ether	ND	1	ug/l	10/27/21	10/27/21
Trichlorofluoromethane	ND	1	ug/l	10/27/21	10/27/21
Dichlorodifluoromethane	ND	1	ug/l	10/27/21	10/27/21
tert-Amyl Alcohol	ND	5	ug/l	10/27/21	10/27/21
Surrogate(s)	Recovery%	Lim	its		
4-Bromofluorobenzene	101%	70-1	'30	10/27/21	10/27/21
1,2-Dichloroethane-d4	98.5%	70-1	30	10/27/21	10/27/21
Toluene-d8	98.0%	70-1	30	10/27/21	10/27/21

Results: Volatile Organic Compounds

Sample: SE-102 (MW) Lab Number: 1J25020-02 (Water)

A	n "	Reporting	11	D-4- D	D-4. 4 1
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
cetone	ND	5	ug/l	10/27/21	10/27/21
Benzene	ND	1	ug/l	10/27/21	10/27/21
Bromobenzene	ND	1	ug/l	10/27/21	10/27/21
Bromochloromethane	ND	1	ug/l	10/27/21	10/27/21
Bromodichloromethane	ND	1	ug/l	10/27/21	10/27/21
Bromoform	ND	1	ug/l	10/27/21	10/27/21
Bromomethane	ND	1	ug/l	10/27/21	10/27/21
2-Butanone	ND	5	ug/l	10/27/21	10/27/21
tert-Butyl alcohol	ND	5	ug/l	10/27/21	10/27/21
sec-Butylbenzene	ND	1	ug/l	10/27/21	10/27/21
n-Butylbenzene	ND	1	ug/l	10/27/21	10/27/21
tert-Butylbenzene	ND	1	ug/l	10/27/21	10/27/21
Methyl t-butyl ether (MTBE)	ND	1	ug/l	10/27/21	10/27/21
Carbon Disulfide	ND	1	ug/l	10/27/21	10/27/21
Carbon Tetrachloride	ND	1	ug/l	10/27/21	10/27/21
Chlorobenzene	ND	1	ug/l	10/27/21	10/27/21
Chloroethane	ND	1	ug/l	10/27/21	10/27/21
Chloroform	ND	1	ug/l	10/27/21	10/27/21
Chloromethane	ND	1	ug/l	10/27/21	10/27/21
4-Chlorotoluene	ND	1	ug/l	10/27/21	10/27/21
2-Chlorotoluene	ND	1	ug/l	10/27/21	10/27/21
,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	10/27/21	10/27/21
Dibromochloromethane	ND	1	ug/l	10/27/21	10/27/21
1,2-Dibromoethane (EDB)	ND	1	ug/l	10/27/21	10/27/21
Dibromomethane	ND	1	ug/l	10/27/21	10/27/21
1,2-Dichlorobenzene	ND	1	ug/l	10/27/21	10/27/21
1,3-Dichlorobenzene	ND	1	ug/l	10/27/21	10/27/21
1,4-Dichlorobenzene	ND	1	ug/l	10/27/21	10/27/21
1,1-Dichloroethane	ND	1	ug/l	10/27/21	10/27/21
1,2-Dichloroethane	ND	1	ug/l	10/27/21	10/27/21
trans-1,2-Dichloroethene	ND	1	ug/l	10/27/21	10/27/21
cis-1,2-Dichloroethene	ND	1	ug/l	10/27/21	10/27/21
1,1-Dichloroethene	ND	1	ug/l	10/27/21	10/27/21
1,2-Dichloropropane	ND	1	ug/l	10/27/21	10/27/21
2,2-Dichloropropane	ND	1	ug/l	10/27/21	10/27/21
cis-1,3-Dichloropropene	ND	1	ug/l	10/27/21	10/27/21
rans-1,3-Dichloropropene	ND	1	ug/l	10/27/21	10/27/21
1,1-Dichloropropene	ND	1	ug/l	10/27/21	10/27/21
L,3-Dichloropropene (cis + trans)	ND	2	ug/l	10/27/21	10/27/21
Diethyl ether	ND	5	ug/l	10/27/21	10/27/21
L,4-Dioxane	ND	500	ug/l	10/27/21	10/27/21
Ethylbenzene	ND	1	ug/l	10/27/21	10/27/21
Hexachlorobutadiene	ND	1	ug/l	10/27/21	10/27/21
2-Hexanone	ND	5		10/27/21	10/27/21
Isopropylbenzene	ND ND	1	ug/l ug/l	10/27/21	10/27/21
p-Isopropyltoluene	ND ND	1		10/27/21	10/27/21
Methylene Chloride	ND ND	1	ug/l	10/27/21	10/27/21
4-Methyl-2-pentanone	ND ND	5	ug/l ug/l	10/27/21	10/27/21 10/27 P

Results: Volatile Organic Compounds (Continued)

Sample: SE-102 (MW) (Continued)

Lab Number: 1J25020-02 (Water)

Analyte	Result	Reporting Qual Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND	1	ug/l	10/27/21	10/27/21
n-Propylbenzene	ND	1	ug/l	10/27/21	10/27/21
Styrene	ND	1	ug/l	10/27/21	10/27/21
1,1,1,2-Tetrachloroethane	ND	1	ug/l	10/27/21	10/27/21
Tetrachloroethene	ND	1	ug/l	10/27/21	10/27/21
Tetrahydrofuran	ND	5	ug/l	10/27/21	10/27/21
Toluene	ND	1	ug/l	10/27/21	10/27/21
1,2,4-Trichlorobenzene	ND	1	ug/l	10/27/21	10/27/21
1,2,3-Trichlorobenzene	ND	1	ug/l	10/27/21	10/27/21
1,1,2-Trichloroethane	ND	1	ug/l	10/27/21	10/27/21
1,1,1-Trichloroethane	ND	1	ug/l	10/27/21	10/27/21
Trichloroethene	ND	1	ug/l	10/27/21	10/27/21
1,2,3-Trichloropropane	ND	1	ug/l	10/27/21	10/27/21
1,3,5-Trimethylbenzene	ND	1	ug/l	10/27/21	10/27/21
1,2,4-Trimethylbenzene	ND	1	ug/l	10/27/21	10/27/21
Vinyl Chloride	ND	1	ug/l	10/27/21	10/27/21
o-Xylene	ND	1	ug/l	10/27/21	10/27/21
m&p-Xylene	ND	2	ug/l	10/27/21	10/27/21
Total xylenes	ND	1	ug/l	10/27/21	10/27/21
1,1,2,2-Tetrachloroethane	ND	1	ug/l	10/27/21	10/27/21
tert-Amyl methyl ether	ND	1	ug/l	10/27/21	10/27/21
1,3-Dichloropropane	ND	1	ug/l	10/27/21	10/27/21
Ethyl tert-butyl ether	ND	1	ug/l	10/27/21	10/27/21
Diisopropyl ether	ND	1	ug/l	10/27/21	10/27/21
Trichlorofluoromethane	ND	1	ug/l	10/27/21	10/27/21
Dichlorodifluoromethane	ND	1	ug/l	10/27/21	10/27/21
tert-Amyl Alcohol	ND	5	ug/l	10/27/21	10/27/21
Surrogate(s)	Recovery%	Lim	its		
4-Bromofluorobenzene	101%	70-1	30	10/27/21	10/27/21
1,2-Dichloroethane-d4	96.6%	70-1	30	10/27/21	10/27/21
Toluene-d8	99.6%	70-1	30	10/27/21	10/27/21

Results: Volatile Organic Compounds

Sample: SE-103 (MW) Lab Number: 1J25020-03 (Water)

cetone irenzene iromobenzene iromochloromethane iromodichloromethane iromoform	Result ND ND ND ND ND	Qual Limit 5 1	ug/l	10/27/21	10/27/21
enzene rromobenzene rromochloromethane rromodichloromethane	ND ND			10/27/21	10/27/21
romobenzene romochloromethane romodichloromethane	ND	1	"		//
romochloromethane romodichloromethane			ug/l	10/27/21	10/27/21
romodichloromethane	ND	1	ug/l	10/27/21	10/27/21
	ND	1	ug/l	10/27/21	10/27/21
romoform	ND	1	ug/l	10/27/21	10/27/21
	ND	1	ug/l	10/27/21	10/27/21
romomethane	ND	1	ug/l	10/27/21	10/27/21
-Butanone	ND	5	ug/l	10/27/21	10/27/21
ert-Butyl alcohol	ND	5	ug/l	10/27/21	10/27/21
ec-Butylbenzene	ND	1	ug/l	10/27/21	10/27/21
-Butylbenzene	ND	1	ug/l	10/27/21	10/27/21
ert-Butylbenzene	ND	1	ug/l	10/27/21	10/27/21
lethyl t-butyl ether (MTBE)	ND	1	ug/l	10/27/21	10/27/21
arbon Disulfide	ND	1	ug/l	10/27/21	10/27/21
arbon Tetrachloride	ND	1	ug/l	10/27/21	10/27/21
hlorobenzene	ND	1	ug/l	10/27/21	10/27/21
hloroethane	ND	1	ug/l	10/27/21	10/27/21
hloroform	ND	1	ug/l	10/27/21	10/27/21
hloromethane	ND	1	ug/l	10/27/21	10/27/21
-Chlorotoluene	ND	1	ug/l	10/27/21	10/27/21
-Chlorotoluene	ND	1	ug/l	10/27/21	10/27/21
,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/l	10/27/21	10/27/21
bibromochloromethane	ND	1	ug/l	10/27/21	10/27/21
,2-Dibromoethane (EDB)	ND	1	ug/l	10/27/21	10/27/21
bibromomethane	ND	1	ug/l	10/27/21	10/27/21
,2-Dichlorobenzene	ND	1	ug/l	10/27/21	10/27/21
,3-Dichlorobenzene	ND	1	ug/l	10/27/21	10/27/21
,4-Dichlorobenzene	ND ND	1	ug/l	10/27/21	10/27/21
,1-Dichloroethane	ND	1	ug/l	10/27/21	10/27/21
,2-Dichloroethane	ND ND	1	ug/l	10/27/21	10/27/21
rans-1,2-Dichloroethene	ND ND	1 1	ug/l	10/27/21	10/27/21 10/27/21
is-1,2-Dichloroethene			ug/l	10/27/21	
,1-Dichloroethene	ND ND	1	ug/l	10/27/21	10/27/21
,2-Dichloropropane	ND	1	ug/l	10/27/21	10/27/21
,2-Dichloropropane	ND	1	ug/l	10/27/21	10/27/21
is-1,3-Dichloropropene	ND	1	ug/l	10/27/21	10/27/21
rans-1,3-Dichloropropene	ND	1	ug/l	10/27/21	10/27/21
,1-Dichloropropene	ND	1	ug/l	10/27/21	10/27/21
,3-Dichloropropene (cis + trans)	ND	2	ug/l	10/27/21	10/27/21
viethyl ether	ND	5	ug/l	10/27/21	10/27/21
,4-Dioxane	ND	500	ug/l	10/27/21	10/27/21
thylbenzene	ND	1	ug/l	10/27/21	10/27/21
lexachlorobutadiene	ND	1	ug/l	10/27/21	10/27/21
-Hexanone	ND	5	ug/l	10/27/21	10/27/21
sopropylbenzene	ND	1	ug/l	10/27/21	10/27/21
-Isopropyltoluene	ND	1	ug/l	10/27/21	10/27/21
lethylene Chloride	ND	1	ug/l	10/27/21	10/27/21 10/2

Results: Volatile Organic Compounds (Continued)

Sample: SE-103 (MW) (Continued)

Lab Number: 1J25020-03 (Water)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND		1	ug/l	10/27/21	10/27/21
n-Propylbenzene	ND		1	ug/l	10/27/21	10/27/21
Styrene	ND		1	ug/l	10/27/21	10/27/21
1,1,1,2-Tetrachloroethane	ND		1	ug/l	10/27/21	10/27/21
Tetrachloroethene	ND		1	ug/l	10/27/21	10/27/21
Tetrahydrofuran	ND		5	ug/l	10/27/21	10/27/21
Toluene	ND		1	ug/l	10/27/21	10/27/21
1,2,4-Trichlorobenzene	ND		1	ug/l	10/27/21	10/27/21
1,2,3-Trichlorobenzene	ND		1	ug/l	10/27/21	10/27/21
1,1,2-Trichloroethane	ND		1	ug/l	10/27/21	10/27/21
1,1,1-Trichloroethane	ND		1	ug/l	10/27/21	10/27/21
Trichloroethene	ND		1	ug/l	10/27/21	10/27/21
1,2,3-Trichloropropane	ND		1	ug/l	10/27/21	10/27/21
1,3,5-Trimethylbenzene	ND		1	ug/l	10/27/21	10/27/21
1,2,4-Trimethylbenzene	ND		1	ug/l	10/27/21	10/27/21
Vinyl Chloride	ND		1	ug/l	10/27/21	10/27/21
o-Xylene	ND		1	ug/l	10/27/21	10/27/21
m&p-Xylene	ND		2	ug/l	10/27/21	10/27/21
Total xylenes	ND		1	ug/l	10/27/21	10/27/21
1,1,2,2-Tetrachloroethane	ND		1	ug/l	10/27/21	10/27/21
tert-Amyl methyl ether	ND		1	ug/l	10/27/21	10/27/21
1,3-Dichloropropane	ND		1	ug/l	10/27/21	10/27/21
Ethyl tert-butyl ether	ND		1	ug/l	10/27/21	10/27/21
Diisopropyl ether	ND		1	ug/l	10/27/21	10/27/21
Trichlorofluoromethane	ND		1	ug/l	10/27/21	10/27/21
Dichlorodifluoromethane	ND		1	ug/l	10/27/21	10/27/21
tert-Amyl Alcohol	ND		5	ug/l	10/27/21	10/27/21
Surrogate(s)	Recovery%		Limit	:S		
4-Bromofluorobenzene	102%		<i>70-13</i>	30	10/27/21	10/27/21
1,2-Dichloroethane-d4	98.2%		70-13	80	10/27/21	10/27/21
Toluene-d8	98.6%		<i>70-13</i>	30	10/27/21	10/27/21

Quality Control

Volatile Organic Compounds

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1J1327 - Purge-Trap										
Blank (B1J1327-BLK1)					Prepared 8	& Analyzed: 10	0/27/21			
Acetone	ND		5	ug/l		,	-, ,			
Benzene	ND		1	ug/l						
Bromobenzene	ND		1	ug/l						
Bromochloromethane	ND		1	ug/l						
Bromodichloromethane	ND		1	ug/l						
Bromoform	ND		1	ug/l						
Bromomethane	ND		1	ug/l						
2-Butanone	ND		5	ug/l						
tert-Butyl alcohol	ND		5	ug/l						
sec-Butylbenzene	ND		1	ug/l						
n-Butylbenzene	ND		1	ug/l						
tert-Butylbenzene	ND		1	ug/l						
Methyl t-butyl ether (MTBE)	ND		1	ug/l						
Carbon Disulfide	ND		1	ug/l						
Carbon Tetrachloride	ND		1	ug/l						
Chlorobenzene	ND		1	ug/l						
Chloroethane	ND		1	ug/l						
Chloroform	ND		1	ug/l						
Chloromethane	ND		1	ug/l						
4-Chlorotoluene	ND		1	ug/l						
2-Chlorotoluene	ND		1	ug/l						
1,2-Dibromo-3-chloropropane (DBCP)	ND		1	ug/l						
Dibromochloromethane	ND		1	ug/l						
1,2-Dibromoethane (EDB)	ND		1	ug/l						
Dibromomethane	ND		1	ug/l						
1,2-Dichlorobenzene	ND		1	ug/l						
1,3-Dichlorobenzene	ND		1	ug/l						
1,4-Dichlorobenzene	ND		1	ug/l						
1,1-Dichloroethane	ND		1	ug/l						
1,2-Dichloroethane	ND		1	ug/l						
trans-1,2-Dichloroethene	ND		1	ug/l						
cis-1,2-Dichloroethene	ND		1	ug/l						
1,1-Dichloroethene	ND		1	ug/l						
1,2-Dichloropropane	ND		1	ug/l						
2,2-Dichloropropane	ND		1	ug/l						
cis-1,3-Dichloropropene	ND		1	ug/l						
trans-1,3-Dichloropropene	ND		1	ug/l						
1,1-Dichloropropene	ND		1	ug/l						
1,3-Dichloropropene (cis + trans)	ND		2	ug/l						
Diethyl ether	ND		5	ug/l						
1,4-Dioxane	ND		500	ug/l						
Ethylbenzene	ND		1	ug/l						
Hexachlorobutadiene	ND		1	ug/l						
2-Hexanone	ND		5	ug/l						
Isopropylbenzene	ND		1	ug/l						
p-Isopropyltoluene	ND		1	ug/l						
Methylene Chloride	ND		1	ug/l						
4-Methyl-2-pentanone	ND		5	ug/l						
Naphthalene	ND		1	ug/l						
n-Propylbenzene	ND		1	ug/l						
Styrene	ND		1	ug/l						
1,1,1,2-Tetrachloroethane	ND		1	ug/l						
Tetrachloroethene	ND		1	ug/l						
Tetrahydrofuran	ND		5	ug/l						

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPC Limi
Batch: B1J1327 - Purge-Trap (Continued)									
Blank (B1J1327-BLK1)	-				Prepared 8	& Analyzed: 1	0/27/21			
Toluene	ND		1	ug/l	•	•	•			
1,2,4-Trichlorobenzene	ND		1	ug/l						
1,2,3-Trichlorobenzene	ND		1	ug/l						
1,1,2-Trichloroethane	ND		1	ug/l						
1,1,1-Trichloroethane	ND		1	ug/l						
Trichloroethene	ND		1	ug/l						
1,2,3-Trichloropropane	ND		1	ug/l						
1,3,5-Trimethylbenzene	ND		1	ug/l						
1,2,4-Trimethylbenzene	ND		1	ug/l						
Vinyl Chloride	ND		1	ug/l						
o-Xylene	ND		1	ug/l						
m&p-Xylene	ND		2	ug/l						
Total xylenes	ND		1	ug/l						
1,1,2,2-Tetrachloroethane	ND		1	ug/l						
tert-Amyl methyl ether	ND		1	ug/l						
1,3-Dichloropropane	ND		1	ug/l						
Ethyl tert-butyl ether	ND		1	ug/l						
Diisopropyl ether	ND		1	ug/l						
Trichlorofluoromethane	ND		1	ug/l						
Dichlorodifluoromethane	ND		1	ug/l						
							405	70.420		
Surrogate: 4-Bromofluorobenzene			52.6	ug/l	50.0		105	70-130		
Surrogate: 1,2-Dichloroethane-d4			47.0	ug/l	50.0		94.0	70-130		
Surrogate: Toluene-d8			50.1	ug/l	50.0		100	70-130		
LCS (B1J1327-BS1)					Prepared 8	& Analyzed: 1	0/27/21			
Acetone	43			ug/l	50.0		86.6	60-140		
Benzene	57			ug/l	50.0		113	70-130		
Bromobenzene	46			ug/l	50.0		92.6	70-130		
Bromochloromethane	50			ug/l	50.0		99.7	70-130		
Bromodichloromethane	58			ug/l	50.0		116	70-130		
Bromoform	50			ug/l	50.0		100	70-130		
Bromomethane	63			ug/l	50.0		126	70-130		
2-Butanone	55			ug/l	50.0		111	60-140		
tert-Butyl alcohol	54			ug/l	50.0		107	70-130		
sec-Butylbenzene	48			ug/l	50.0		95.3	70-130		
n-Butylbenzene	63			ug/l	50.0		126	70-130		
tert-Butylbenzene	52			ug/l	50.0		104	70-130		
Methyl t-butyl ether (MTBE)	52			ug/l	50.0		104	70-130		
Carbon Disulfide	56			ug/l	50.0		113	50-150		
Carbon Tetrachloride	51			ug/l	50.0		101	70-130		
Chlorobenzene	55			ug/l	50.0		110	70-130		
Chloroethane	64			ug/l	50.0		128	70-130		
Chloroform	54			ug/l	50.0		108	70-130		
Chloromethane	75			ug/l	50.0		151	70-130		
4-Chlorotoluene	57			ug/l	50.0		113	70-130		
2-Chlorotoluene	55			ug/l	50.0		111	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	49			ug/l	50.0		98.8	70-130		
Dibromochloromethane	50			ug/l	50.0		100	70-130		
1,2-Dibromoethane (EDB)	55			ug/l	50.0		110	70-130		
Dibromomethane	55			ug/l	50.0		110	70-130		
1,2-Dichlorobenzene	53			ug/l	50.0		105	70-130		
1,3-Dichlorobenzene	47			ug/l	50.0		94.5	70-130		
1,4-Dichlorobenzene	53			ug/l	50.0		105	70-130		
1,1-Dichloroethane	59			ug/l	50.0		118	70-130		
1,2-Dichloroethane	57			ug/l	50.0		113	70-130		
,				- ·						
trans-1,2-Dichloroethene	54			ug/l	50.0		107	70-130		

Page 12 of 17

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1J1327 - Purge-Trap	(Continued)									
LCS (B1J1327-BS1)	(Continued)				Prenared 8	& Analyzed: 1	0/27/21			
1,1-Dichloroethene	58			ug/l	50.0	x Analyzea. I	116	70-130		
1,2-Dichloropropane	62			ug/l	50.0		124	70-130		
2,2-Dichloropropane	68			ug/l	50.0		136	70-130		
cis-1,3-Dichloropropene	63			ug/l	50.0		126	70-130		
trans-1,3-Dichloropropene	64			ug/l	50.0		128	70-130		
1,1-Dichloropropene	55			ug/l	50.0		110	70-130		
Diethyl ether	59			ug/l	50.0		117	70-130		
1,4-Dioxane	261			ug/l	250		104	50-150		
Ethylbenzene	56			ug/l	50.0		112	70-130		
Hexachlorobutadiene	40			ug/l	50.0		80.0	70-130		
2-Hexanone	59			ug/l	50.0		118	70-130		
Isopropylbenzene	55			ug/l	50.0		111	70-130		
p-Isopropyltoluene	51			ug/l	50.0		102	70-130		
Methylene Chloride	58			ug/l	50.0		117	70-130		
4-Methyl-2-pentanone	63			ug/l	50.0		126	70-130		
Naphthalene	40			ug/l	50.0		79.8	70-130		
n-Propylbenzene	57			ug/l	50.0		114	70-130		
Styrene	56			ug/l	50.0		112	70-130		
1,1,1,2-Tetrachloroethane	52			ug/l	50.0		105	70-130		
Tetrachloroethene	43			_	50.0		85.5	70-130		
Tetrahydrofuran	54			ug/l	50.0		109	50-150		
Toluene	52			ug/l	50.0		104	70-130		
1,2,4-Trichlorobenzene	42			ug/l	50.0		84.0	70-130		
1,2,3-Trichlorobenzene	34			ug/l ug/l	50.0		68.1	70-130		
1,1,2-Trichloroethane	59				50.0		118	70-130		
1,1,1-Trichloroethane	52			ug/l ug/l	50.0		104	70-130		
Trichloroethene	44			_	50.0		88.4	70-130		
1,2,3-Trichloropropane	58			ug/l	50.0		116	70-130		
1,3,5-Trimethylbenzene	52			ug/l	50.0		103	70-130		
1,2,4-Trimethylbenzene	52			ug/l	50.0		103	70-130		
Vinyl Chloride	68			ug/l	50.0		136	70-130		
·	55			ug/l	50.0			70-130 70-130		
o-Xylene	108			ug/l	100		110 108	70-130 70-130		
m&p-Xylene 1,1,2,2-Tetrachloroethane	67			ug/l	50.0		135	70-130 70-130		
tert-Amyl methyl ether				ug/l						
1,3-Dichloropropane	56 60			ug/l	50.0 50.0		113 119	70-130 70-130		
Ethyl tert-butyl ether	58			ug/l	50.0		119	70-130 70-130		
Trichlorofluoromethane	58 49			ug/l			97.4			
Dichlorodifluoromethane				ug/l	50.0			70-130 70-130		
DICHIOTOUIHUOTOTHEUIANE	68			ug/l	50.0 		136	70-130		
Surrogate: 4-Bromofluorobenzene			52.1	ug/l	50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4			53.0	ug/l	50.0		106	70-130		
Surrogate: Toluene-d8			49.9	ug/l	50.0		99.8	<i>70-130</i>		

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B1J1327 - Purge-Trap (C	Continued)									
LCS Dup (B1J1327-BSD1)	,				Prepared 8	& Analyzed: 1	0/27/21			
Acetone	42			ug/l	50.0		83.2	60-140	3.98	20
Benzene	58			ug/l	50.0		116	70-130	1.85	20
Bromobenzene	47			ug/l	50.0		94.2	70-130	1.69	20
Bromochloromethane	49			ug/l	50.0		98.6	70-130	1.03	20
Bromodichloromethane	58			ug/l	50.0		116	70-130	0.0345	20
Bromoform	51			ug/l	50.0		102	70-130	1.84	20
Bromomethane	65			ug/l	50.0		131	70-130	3.58	20
2-Butanone	57			ug/l	50.0		113	60-140	2.41	20
tert-Butyl alcohol	54			ug/l	50.0		107	70-130	0.280	20
sec-Butylbenzene	50			ug/l	50.0		99.8	70-130	4.57	20
n-Butylbenzene	63			ug/l	50.0		125	70-130	0.366	20
tert-Butylbenzene	53			-	50.0		107	70-130	2.80	20
Methyl t-butyl ether (MTBE)	52			ug/l	50.0		107	70-130	0.672	20
Carbon Disulfide	59			ug/l	50.0		117		4.09	20
				ug/l				50-150		
Carbon Tetrachloride	52 57			ug/l	50.0		103	70-130	1.80	20
Chlorobenzene	57			ug/l	50.0		113	70-130	2.38	20
Chloroethane	69			ug/l	50.0		137	70-130	7.12	20
Chloroform	54			ug/l	50.0		108	70-130	0.0371	20
Chloromethane	76			ug/l	50.0		153	70-130	1.28	20
4-Chlorotoluene	59			ug/l	50.0		117	70-130	3.49	20
2-Chlorotoluene	57			ug/l	50.0		114	70-130	2.84	20
1,2-Dibromo-3-chloropropane (DBCP)	50			ug/l	50.0		99.9	70-130	1.09	20
Dibromochloromethane	50			ug/l	50.0		101	70-130	0.597	20
1,2-Dibromoethane (EDB)	54			ug/l	50.0		109	70-130	1.21	20
Dibromomethane	55			ug/l	50.0		110	70-130	0.508	20
1,2-Dichlorobenzene	54			ug/l	50.0		109	70-130	3.53	20
1,3-Dichlorobenzene	48			ug/l	50.0		96.4	70-130	1.97	20
1,4-Dichlorobenzene	55			ug/l	50.0		110	70-130	4.53	20
1,1-Dichloroethane	57			ug/l	50.0		114	70-130	3.93	20
1,2-Dichloroethane	57			ug/l	50.0		115	70-130	1.18	20
trans-1,2-Dichloroethene	55			ug/l	50.0		110	70-130	2.85	20
cis-1,2-Dichloroethene	53			ug/l	50.0		105	70-130	0.495	20
1,1-Dichloroethene	59			ug/l	50.0		119	70-130	2.86	20
1,2-Dichloropropane	61			ug/l	50.0		122	70-130	0.975	20
2,2-Dichloropropane	69			ug/l	50.0		137	70-130	1.35	20
cis-1,3-Dichloropropene	58			ug/l	50.0		117	70-130	8.12	20
trans-1,3-Dichloropropene	60			ug/l	50.0		120	70-130	6.31	20
1,1-Dichloropropene	57			ug/l	50.0		115	70-130	3.66	20
Diethyl ether	60			ug/l	50.0		119	70-130	1.42	20
1,4-Dioxane	254			ug/l	250		102	50-150	2.56	20
Ethylbenzene	58			ug/l	50.0		116	70-130	3.26	20
Hexachlorobutadiene	41			ug/l	50.0		81.5	70-130	1.88	20
2-Hexanone	58			ug/l	50.0		115	70-130	2.59	20
Isopropylbenzene	57			ug/l	50.0		114	70-130	2.91	20
p-Isopropyltoluene	53			ug/l	50.0		106	70-130	4.22	20
Methylene Chloride	59			ug/l	50.0		118	70-130	0.802	20
4-Methyl-2-pentanone	62			ug/l	50.0		124	70-130	1.64	20
Naphthalene	41			ug/l	50.0		82.3	70-130	3.06	20
n-Propylbenzene	58			ug/l	50.0		116	70-130	2.38	20
Styrene	58			ug/l	50.0		116	70-130	3.27	20
1,1,1,2-Tetrachloroethane	54			ug/l	50.0		109	70-130	3.86	20
Tetrachloroethene	44				50.0		87.1	70-130	1.85	20
Tetrahydrofuran	55			ug/l	50.0		109	50-150	0.440	20
Toluene	53			ug/l	50.0		109	70-130	2.51	20
1,2,4-Trichlorobenzene	53 44			ug/l	50.0		88.4	70-130 70-130	5.15	20
				ug/l						
1,2,3-Trichlorobenzene	36			ug/l	50.0		71.7	70-130	5.24	20
1,1,2-Trichloroethane	59			ug/l	50.0		118	70-130	Page	14 c

Volatile Organic Compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B1J1327 - Purge-Trap	(Continued)									
LCS Dup (B1J1327-BSD1)					Prepared 8	& Analyzed: 10	0/27/21			
1,1,1-Trichloroethane	52			ug/l	50.0		105	70-130	0.671	20
Trichloroethene	46			ug/l	50.0		91.6	70-130	3.58	20
1,2,3-Trichloropropane	59			ug/l	50.0		118	70-130	1.26	20
1,3,5-Trimethylbenzene	54			ug/l	50.0		107	70-130	4.05	20
1,2,4-Trimethylbenzene	54			ug/l	50.0		108	70-130	3.77	20
Vinyl Chloride	66			ug/l	50.0		133	70-130	2.04	20
o-Xylene	56			ug/l	50.0		112	70-130	2.43	20
m&p-Xylene	111			ug/l	100		111	70-130	2.94	20
1,1,2,2-Tetrachloroethane	64			ug/l	50.0		128	70-130	4.99	20
tert-Amyl methyl ether	57			ug/l	50.0		113	70-130	0.459	20
1,3-Dichloropropane	59			ug/l	50.0		118	70-130	1.54	20
Ethyl tert-butyl ether	59			ug/l	50.0		117	70-130	1.63	20
Trichlorofluoromethane	52			ug/l	50.0		103	70-130	5.94	20
Dichlorodifluoromethane	69			ug/l	50.0		138	70-130	1.95	20
Surrogate: 4-Bromofluorobenzene			52.4	ug/l	50.0		105	70-130		
Surrogate: 1,2-Dichloroethane-d4			52.0	ug/l	50.0		104	70-130		
Surrogate: Toluene-d8			49.1	ug/l	50.0		98.2	70-130		

Notes and Definitions

<u>Item</u>	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

59 Greenhill Street West Warwick, RI 02893

1-888-863-8522

Chain of Custody Record

Project No. S3949	Project Na	me/l	Loca	tion: Son Aw, Centr	al Folk.	RI								Te	sts**		
Client: SA	GE EN	Silvin	V TO	nmental, in	c.		latri	x		w	0						
Report To:	sage	<u>5 5</u>	ag	e-enviro.c	om.					vativ	8260						
Invoice To:	aga) S	ag	e-enviro.	com				No. of	Preservative							
Date	Time	Comp	Grab	Sample I.	D.	Aqueous	Soil	Other	Containers	_	V0Cs						
10/22/21	10:12	ľ	Y	5E-101 (Mu) ••	X			2×40mL	HCL	X						-
1	09:15			SF-102 (M	•• (w	1				1	1		-	-	-+		
<u>U</u>	(1:00	 	1	SE- 103 (n	vaj) ••	Y	 		 	-	*	_		1			
		╁					\vdash	-									
		 															
											1		-				
					,			┞				-					
			ļ				-	┼			+-+		+	1			
		-	╁			├		\vdash		 	1 1						
		╁	 			\vdash	 	T									
		†	†											<u> </u>			
						<u> </u>	<u> </u>	<u> </u>		<u> </u>	1	ial la d		<u></u>			
Sampled By	1			Received By:		Date	:/Time	Lai	boratory Rema	rks:	1 .	ial Inst				_	
1 Van.	VOILIM	i i	22/2	4							1 1/2	-(D1	EW	\ (14	Gu	NOS
Facy	thing	13	28			L_	·	1								,	
1 (<u> </u>	Det	o/Timoo	Density and Day		Date	/Time	4									
Relinquishe	з ву:			Received By:		1 -	25										
$\Psi / / \sim 1$	Λ		122	.1		19				6							
MU		1.,	15	1 CM	1	11	15		mp. Received:								
**Netlab Sul	ocontracts th	ne fol	llowir	ng tests: Ragiological	s, Radon, T	ЭC,	Asb	esto	s, UCMRs, Pe	rchlorate,				. rn	.!	David	E Days
Bromate, Br	omide, Sieve	e, Sa	almor	nella, Carbamates							Hurr	around	ı ime	Dus	mess	Days	5 Days

Page 17 of 17

af